1
|
Linghu K, Xu K, Zhao X, Zhou J, Wang X. Modulating phosphate transfer process for promoting phosphorylation activity of acid phosphatase. BIORESOURCE TECHNOLOGY 2025; 427:132348. [PMID: 40081774 DOI: 10.1016/j.biortech.2025.132348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Klebsiella pneumonia acid phosphatase is widely employed in the large-scale synthesis of nucleotides. It was found that the phosphate acceptance capability of the substrate limited the efficiency of the phosphate transfer process. By reducing steric hindrance and optimizing substrate interaction with the catalytic site, variants of Klebsiella pneumonia acid phosphatase were designed, with the E104G variant showing significantly enhanced hydrolysis activity while maintaining high phosphorylation activity. Crystal structure and quantum mechanics/molecular mechanics analyses of the E104G variant revealed that the mutation promotes substrate binding and lowers the energy barrier. Based on these insights, several mutations were designed, achieving significantly improved conversion rates. By knocking out degradation-related enzymes, the degradation rates of inosinic acid and guanylic acid were successfully controlled. This study provides a structure-based top-down design strategy that effectively enhances enzyme specificity, offering a promising enzyme candidate for large-scale nucleotide synthesis.
Collapse
Affiliation(s)
- Kai Linghu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Kangjie Xu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinyi Zhao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Xinglong Wang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Wang X, Chen Q, Huang Z, Lin Y, Zhou J, Ma F. Discovering novel transglutaminases from Streptomyces species for efficient protein cross-linking in foods. Int J Biol Macromol 2025; 313:144283. [PMID: 40381772 DOI: 10.1016/j.ijbiomac.2025.144283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/22/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Transglutaminase (TG) is a key enzyme in food processing by catalyzing protein crosslinking. This study identified novel hyperactive TGs from Streptomyces species to enhance crosslinking efficiency. We integrated phylogenetic analysis for initial screening, followed by virtual docking for further selection. Of the eight variants tested, all exhibited specific activity against CBZ-Gln-Gly, with TG derived from Streptomyces wuyuanensis (SwTG) displayed a specific activity of 78.3 U/mg, which is 2.3-fold higher than that of the commonly used Streptomyces mobaraensis derived TG (SmTG). The top three variants were selected for crosslinking experiments, showing that SwTG, Streptomyces sp. TN58 derived TG (StTG), and Streptomyces roseoverticillatus (SrTG) outperformed SmTG in casein crosslinking, while only StTG showed obvious higher activity than SmTG in crosslinking minced meat. These findings suggest that the specific activity of TGs does not always correlate with their ability to induce protein crosslinks. Further investigation using molecular dynamics simulations revealed that larger enzyme volumes with lower flexibility could hinder substrate binding, resulting in weak crosslinking activity for food proteins. Additionally, surface charge was found to be another key factor that disrupt substrate binding. This study presents alternative TGs for generating food crosslinks and offers valuable insights into the mechanisms behind TG-induced crosslinking.
Collapse
Affiliation(s)
- Xinglong Wang
- Medical Enzyme Engineering Center, CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Suzhou 215004, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Qiming Chen
- Medical Enzyme Engineering Center, CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Suzhou 215004, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zhongshi Huang
- Medical Enzyme Engineering Center, CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Suzhou 215004, China
| | - Yanna Lin
- Shandong Lab of Advanced Biomaterials and Medical Devices in Weihai, 288 Shanhai Road, Weihai, Shandong 264210, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Fuqiang Ma
- Medical Enzyme Engineering Center, CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Suzhou 215004, China; Shandong Lab of Advanced Biomaterials and Medical Devices in Weihai, 288 Shanhai Road, Weihai, Shandong 264210, China.
| |
Collapse
|
3
|
Lerner A, Benzvi C, Vojdani A. The Frequently Used Industrial Food Process Additive, Microbial Transglutaminase: Boon or Bane. Nutr Rev 2025; 83:e1286-e1294. [PMID: 38960726 DOI: 10.1093/nutrit/nuae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Microbial transglutaminase (mTG) is a frequently consumed processed food additive, and use of its cross-linked complexes is expanding rapidly. It was designated as a processing aid and was granted the generally recognized as safe (GRAS) classification decades ago, thus avoiding thorough assessment according to current criteria of toxicity and public health safety. In contrast to the manufacturer's declarations and claims, mTG and/or its transamidated complexes are proinflammatory, immunogenic, allergenic, pathogenic, and potentially toxic, hence raising concerns for public health. Being a member of the transglutaminase family and functionally imitating the tissue transglutaminase, mTG was recently identified as a potential inducer of celiac disease. Microbial transglutaminase and its docked complexes have numerous detrimental effects. Those harmful aspects are denied by the manufacturers, who claim the enzyme is deactivated when heated or by gastric acidity, and that its covalently linked isopeptide bonds are safe. The present narrative review describes the potential side effects of mTG, highlighting its thermostability and activity over a broad pH range, thus, challenging the manufacturers' and distributers' safety claims. The national food regulatory authorities and the scientific community are urged to reevaluate mTG's GRAS status, prioritizing public health protection against the possible risks associated with this enzyme and its health-damaging consequences.
Collapse
Affiliation(s)
- Aaron Lerner
- Research Department, Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, 52621 Tel Hashomer, Israel
| | - Carina Benzvi
- Research Department, Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, 52621 Tel Hashomer, Israel
| | - Aristo Vojdani
- Research Department, Immunosciences Lab., Inc., Los Angeles, CA 90035, USA
| |
Collapse
|
4
|
Wang X, Xu K, Fu H, Chen Q, Zhao B, Zhao X, Zhou J. Enhancing substrate specificity of microbial transglutaminase for precise nanobody labeling. Synth Syst Biotechnol 2024; 10:185-193. [PMID: 39552758 PMCID: PMC11564792 DOI: 10.1016/j.synbio.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Streptomyces mobaraenesis transglutaminase (smTG) can be used for site-specific labeling of proteins with chemical groups. Here, we explored the use of modified smTG for the biosynthesis of nanobody-fluorophore conjugates (NFC). smTG catalyzes the conjugation of acyl donors containing glutamine with lysine-containing acceptors, which can lead to non-specific cross-linking. To achieve precise site-specific labeling, we employed molecular docking and virtual mutagenesis to redesign the enzyme's substrate specificity towards the peptide GGGGQR, a non-preferred acyl donor for smTG. Starting with a thermostable and highly active smTG variant (TGm2), we identified that single mutations G250H and Y278E significantly enhanced activity against GGGGQR, increasing it by 41 % and 1.13-fold, respectively. Notably, the Y278E mutation dramatically shifted the enzyme's substrate preference, with the activity ratio against GGGGQR versus the standard substrate CBZ-Gln-Gly rising from 0.05 to 0.93. In case studies, we used nanobodies 1C12 and 7D12 as labeling targets, catalyzing their conjugation with a synthetic fluorophore via smTG variants. Nanobodies fused with GGGGQR were successfully site-specifically labeled by TGm2-Y278E, in contrast to non-specific labeling observed with other variants. These results suggest that engineering smTG for site-specific labeling is a promising approach for the biosynthesis of antibody-drug conjugates.
Collapse
Affiliation(s)
- Xinglong Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Kangjie Xu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Haoran Fu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Qiming Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Beichen Zhao
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, 1010, New Zealand
| | - Xinyi Zhao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
5
|
Aqeel SM, Abdulqader AA, Du G, Liu S. Integrated strategies for efficient production of Streptomyces mobaraensis transglutaminase in Komagataella phaffii. Int J Biol Macromol 2024; 273:133113. [PMID: 38885870 DOI: 10.1016/j.ijbiomac.2024.133113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Transglutaminase (TGase) from Streptomyces mobaraensis commonly used to improve protein-based foods due to its unique enzymatic reactions, which imply considerable attention in its production. Recently, TGase exhibit broad market potential in non-food industries. However, achieving efficient synthesis of TGase remains a significant challenge. Herein, we achieved a substantial amount of a fully functional and kinetically stable TGase produced by Komagataella phaffii (Pichia pastoris) using multiple strategies including Geneticin (G418) screening, combinatorial mutations, promoter optimization, and co-expression. The active TGase expression reached a maximum of 10.1 U mL-1 in shake flask upon 96 h of induction, which was 3.8-fold of the wild type. Also, the engineered strain exhibited a 6.4-fold increase in half-life and a 2-fold increase in specific activity, reaching 172.67 min at 60 °C (t1/2(60 °C)) and 65.3 U mg-1, respectively. Moreover, the high-cell density cultivation in 5-L fermenter was also applied to test the productivity at large scale. Following optimization at a fermenter, the secretory yield of TGase reached 47.96 U mL-1 in the culture supernatant. Given the complexity inherent in protein expression and secretion, our research is of great significance and offers a comprehensive guide for improving the production of a wide range of heterologous proteins.
Collapse
Affiliation(s)
- Sahibzada Muhammad Aqeel
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Al-Adeeb Abdulqader
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| | - Song Liu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Ye J, Yang P, Zhou J, Du G, Liu S. Efficient Production of a Thermostable Mutant of Transglutaminase by Streptomyces mobaraensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4207-4216. [PMID: 38354706 DOI: 10.1021/acs.jafc.3c07621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The transglutaminase (TGase) from Streptomyces mobaraensis is widely used to improve the texture of protein-based foods. However, wild-type TGase is not heat-resistant, which is unfavorable for its application. In this study, we successfully constructed a S. mobaraensis strain that can efficiently produce TGm2, a thermostable mutant of S. mobaraensis TGase. First, S. mobaraensis DSM40587 was subjected to atmospheric room temperature plasma mutagenesis, generating mutant smY2022 with a 12.2-fold increase in TGase activity. Then, based on the double-crossover recombination, we replaced the coding sequence of the TGase with that of TGm2 in smY2022, obtaining the strain smY2022-TGm2. The extracellular TGase activity of smY2022-TGm2 reached 61.7 U/mL, 147% higher than that of smY2022. Finally, the catalytic properties of TGm2 were characterized. The half-life time at 60 °C and specific activity of TGm2 reached 64 min and 71.15 U/mg, 35.6- and 2.9-fold higher than those of the wild-type TGase, respectively. As indicated by SDS-PAGE analysis, TGm2 exhibited demonstrably better protein cross-linking ability than the wild-type TGase at 70 °C, although both enzymes shared a similar ability at 40 °C. With improved enzyme production and thermal stability, smY2022-TGm2 could be a competitive strain for the industrial production of transglutaminase.
Collapse
Affiliation(s)
- Jiacai Ye
- Engineering Research Center of Ministry of Education on Food Synthetic Biorheology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Penghui Yang
- Engineering Research Center of Ministry of Education on Food Synthetic Biorheology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biorheology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Engineering Research Center of Ministry of Education on Food Synthetic Biorheology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biorheology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
7
|
Xu K, Yu S, Wang K, Tan Y, Zhao X, Liu S, Zhou J, Wang X. AI and Knowledge-Based Method for Rational Design of Escherichia coli Sigma70 Promoters. ACS Synth Biol 2024; 13:402-407. [PMID: 38176073 DOI: 10.1021/acssynbio.3c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Expanding sigma70 promoter libraries can support the engineering of metabolic pathways and enhance recombinant protein expression. Herein, we developed an artificial intelligence (AI) and knowledge-based method for the rational design of sigma70 promoters. Strong sigma70 promoters were identified by using high-throughput screening (HTS) with enhanced green fluorescent protein (eGFP) as a reporter gene. The features of these strong promoters were adopted to guide promoter design based on our previous reported deep learning model. In the following case study, the obtained strong promoters were used to express collagen and microbial transglutaminase (mTG), resulting in increased expression levels by 81.4% and 33.4%, respectively. Moreover, these constitutive promoters achieved soluble expression of mTG-activating protease and contributed to active mTG expression in Escherichia coli. The results suggested that the combined method may be effective for promoter engineering.
Collapse
Affiliation(s)
- Kangjie Xu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shangyang Yu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Kun Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yameng Tan
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xinyi Zhao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
8
|
Vasić K, Knez Ž, Leitgeb M. Transglutaminase in Foods and Biotechnology. Int J Mol Sci 2023; 24:12402. [PMID: 37569776 PMCID: PMC10419021 DOI: 10.3390/ijms241512402] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Stabilization and reusability of enzyme transglutaminase (TGM) are important goals for the enzymatic process since immobilizing TGM plays an important role in different technologies and industries. TGM can be used in many applications. In the food industry, it plays a role as a protein-modifying enzyme, while, in biotechnology and pharmaceutical applications, it is used in mediated bioconjugation due to its extraordinary crosslinking ability. TGMs (EC 2.3.2.13) are enzymes that catalyze the formation of a covalent bond between a free amino group of protein-bound or peptide-bound lysine, which acts as an acyl acceptor, and the γ-carboxamide group of protein-bound or peptide-bound glutamine, which acts as an acyl donor. This results in the modification of proteins through either intramolecular or intermolecular crosslinking, which improves the use of the respective proteins significantly.
Collapse
Affiliation(s)
- Katja Vasić
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia
| |
Collapse
|