1
|
Abdel-Hady GN, Hino T, Murakami H, Miwa A, Thi Thuy Cao L, Kuroki T, Nimura-Matsune K, Ikeda T, Ishida T, Funabashi H, Watanabe S, Kuroda A, Hirota R. Laboratory evolution and characterization of nitrate-resistant phosphite dehydrogenase (PtxD) for enhanced cyanobacterial cultivation. J Biotechnol 2025; 402:59-68. [PMID: 40086668 DOI: 10.1016/j.jbiotec.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
Phosphite dehydrogenase (PtxD) catalyzes NAD+-dependent oxidation of phosphite (Pt) to phosphate (Pi), offering various biotechnological applications, such as the creation of Pt-dependency for the biological containment of genetically modified organisms. Previously, we established a Pt-dependent cyanobacterial strain (RH714) by expressing PtxD and a reduced phosphorous compound-specific transporter (HtxBCDE) in Synechococcus elongatus PCC 7942 devoid of its endogenous Pi transporters. This strain demonstrated strict Pt dependency but failed to grow in unbuffered BG-11 medium supplemented with 2 % CO2 owing to medium acidification below approximately pH 6.5. The present study aimed to overcome this limitation by passaging the RH714 strain in an unbuffered growth medium, resulting in mutants capable of growing without buffering. The mutant strains carried a Gly157Ser mutation in the Rossmann fold domain of PtxD, leading to approximately five- and eight-fold higher Km values for NAD+ and Pt, respectively, compared with the wild-type enzyme. Interestingly, PtxDG157S exhibited enhanced resistance to nitrate, a major component of BG-11, suggesting that reduced substrate affinity mitigates nitrate inhibition at lower pH levels. Further kinetic analysis revealed that nitrate inhibits wild-type PtxD through an uncompetitive mechanism, targeting the enzyme-substrate complex at an allosteric site. Consequently, the PtxDG157S mutation reduces nitrate binding, facilitating sustained growth of Pt-dependent strains under conditions without pH buffering. These findings imply that PtxDG157S could significantly enhance the applicability of Pt-dependent cyanobacterial strain.
Collapse
Affiliation(s)
- Gamal Nasser Abdel-Hady
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan; Department of Genetics, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Tomohito Hino
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hiroki Murakami
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Akari Miwa
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Linh Thi Thuy Cao
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tomomi Kuroki
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | | | - Takeshi Ikeda
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takenori Ishida
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hisakage Funabashi
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan; Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Akio Kuroda
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan; Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Japan
| | - Ryuichi Hirota
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan; Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Japan.
| |
Collapse
|
2
|
Treinen C, Peternell C, Noll P, Magosch O, Hausmann R, Henkel M. Molecular process control for industrial biotechnology. Trends Biotechnol 2025:S0167-7799(25)00130-1. [PMID: 40335343 DOI: 10.1016/j.tibtech.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 05/09/2025]
Abstract
The development of sustainable and economically competitive biotechnological processes is a central challenge of modern industrial biotechnology. Conventional strategies such as macroscopic and molecular bioprocess design are often insufficient to exploit their full potential. To circumvent this, molecular process control provides the missing link to further consolidate various optimization strategies to achieve multilayered process design. This review highlights the molecular mechanisms that can be exploited for molecular process control. These can either be endogenous or specifically implemented into the organism, and comprise regulatory mechanisms at the transcriptional, translational, and system levels. In addition to serving as a design tool to enhance existing bioprocesses, molecular process control is the gateway to biotechnological advances that will extend the boundaries of future process design.
Collapse
Affiliation(s)
- Chantal Treinen
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Christina Peternell
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Philipp Noll
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Olivia Magosch
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Rudolf Hausmann
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Marius Henkel
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Strasse 4, 85354 Freising, Germany.
| |
Collapse
|
3
|
Gillett DL, Selinidis M, Seamons T, George D, Igwe AN, Del Valle I, Egbert RG, Hofmockel KS, Johnson AL, Matthews KRW, Masiello CA, Stadler LB, Chappell J, Silberg JJ. A roadmap to understanding and anticipating microbial gene transfer in soil communities. Microbiol Mol Biol Rev 2025:e0022524. [PMID: 40197024 DOI: 10.1128/mmbr.00225-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
SUMMARYEngineered microbes are being programmed using synthetic DNA for applications in soil to overcome global challenges related to climate change, energy, food security, and pollution. However, we cannot yet predict gene transfer processes in soil to assess the frequency of unintentional transfer of engineered DNA to environmental microbes when applying synthetic biology technologies at scale. This challenge exists because of the complex and heterogeneous characteristics of soils, which contribute to the fitness and transport of cells and the exchange of genetic material within communities. Here, we describe knowledge gaps about gene transfer across soil microbiomes. We propose strategies to improve our understanding of gene transfer across soil communities, highlight the need to benchmark the performance of biocontainment measures in situ, and discuss responsibly engaging community stakeholders. We highlight opportunities to address knowledge gaps, such as creating a set of soil standards for studying gene transfer across diverse soil types and measuring gene transfer host range across microbiomes using emerging technologies. By comparing gene transfer rates, host range, and persistence of engineered microbes across different soils, we posit that community-scale, environment-specific models can be built that anticipate biotechnology risks. Such studies will enable the design of safer biotechnologies that allow us to realize the benefits of synthetic biology and mitigate risks associated with the release of such technologies.
Collapse
Affiliation(s)
- David L Gillett
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Malyn Selinidis
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Travis Seamons
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Dalton George
- Department of Biosciences, Rice University, Houston, Texas, USA
- School for the Future of Innovation in Society, Arizona State University, Tempe, Arizona, USA
| | - Alexandria N Igwe
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Ilenne Del Valle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Robert G Egbert
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kirsten S Hofmockel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Alicia L Johnson
- Baker Institute for Public Policy, Rice University, Houston, Texas, USA
| | | | - Caroline A Masiello
- Department of Biosciences, Rice University, Houston, Texas, USA
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, Texas, USA
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - James Chappell
- Department of Biosciences, Rice University, Houston, Texas, USA
| | | |
Collapse
|
4
|
Li Z, Kong X, Zhang Z, Tang F, Wang M, Zhao Y, Shi F. The functional mechanisms of phosphite and its applications in crop plants. FRONTIERS IN PLANT SCIENCE 2025; 16:1538596. [PMID: 40260435 PMCID: PMC12009805 DOI: 10.3389/fpls.2025.1538596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/05/2025] [Indexed: 04/23/2025]
Abstract
Phosphite (Phi), the reduced form of phosphate (Pi), is characterized by its stability, high solubility, efficient transport, resistance to fixation in soil, and widespread occurrence in natural environments. Although Phi exhibits greater suitability than Pi as a soil fertilizer, it cannot be metabolized by plants. In agricultural applications, Phi serves as a bio-stimulant, fungicide, herbicide, and has other purposes. As a bio-stimulant, Phi has been shown to promote plant growth, enhance stress resistance, and improve fruit quality. Additionally, when used as a fungicide or pesticide, it effectively inhibits the growth of phytopathogens in various crop species. The discovery of the phosphite dehydrogenase (ptxD) gene in microorganisms has significantly expanded the potential applications of Phi, including its use as a herbicide, phosphatic fertilizer, and a selectable chemical for generating marker-free transgenic plants. Therefore, the dual fertilization and weed control system of ptxD/Phi facilitates the utilization of Phi as the sole phosphorus source while concurrently suppressing the evolution of herbicide-resistant weeds in the future. Notably, ptxD also acts as an ideal selectable marker because its resistant is specific to Phi, thereby eliminating the risk of false positive clones. The application of Phi provides a promising strategy for addressing phosphorus resource shortages and improving the efficiency of phosphatic fertilizers in agriculture. Furthermore, Phi is considered an environmentally friendly fertilizer, as it contributes to the mitigation of eutrophication. In prospect, Phi is anticipated to play a significant role as a chemical fertilizer that promotes the sustainable development of agriculture. In this review, we provide a comprehensive analysis of the functional mechanisms of Phi and its current applications in agriculture, with the aim of offering deeper insights into its potential benefits and practical utility.
Collapse
Affiliation(s)
- Zhenyi Li
- Key Laboratory of Grassland Resources, Ministry of Education People's Republic of China, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiangjiu Kong
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhiqiang Zhang
- Key Laboratory of Grassland Resources, Ministry of Education People's Republic of China, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Fang Tang
- Key Laboratory of Grassland Resources, Ministry of Education People's Republic of China, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Mingjiu Wang
- Key Laboratory of Grassland Resources, Ministry of Education People's Republic of China, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
- National Center of Pratacultural Technology Innovation (under preparation), Hohhot, China
| | - Yan Zhao
- Key Laboratory of Grassland Resources, Ministry of Education People's Republic of China, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Fengling Shi
- Key Laboratory of Grassland Resources, Ministry of Education People's Republic of China, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
5
|
Chemla Y, Sweeney CJ, Wozniak CA, Voigt CA. Design and regulation of engineered bacteria for environmental release. Nat Microbiol 2025; 10:281-300. [PMID: 39905169 DOI: 10.1038/s41564-024-01918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/04/2024] [Indexed: 02/06/2025]
Abstract
Emerging products of biotechnology involve the release of living genetically modified microbes (GMMs) into the environment. However, regulatory challenges limit their use. So far, GMMs have mainly been tested in agriculture and environmental cleanup, with few approved for commercial purposes. Current government regulations do not sufficiently address modern genetic engineering and limit the potential of new applications, including living therapeutics, engineered living materials, self-healing infrastructure, anticorrosion coatings and consumer products. Here, based on 47 global studies on soil-released GMMs and laboratory microcosm experiments, we discuss the environmental behaviour of released bacteria and offer engineering strategies to help improve performance, control persistence and reduce risk. Furthermore, advanced technologies that improve GMM function and control, but lead to increases in regulatory scrutiny, are reviewed. Finally, we propose a new regulatory framework informed by recent data to maximize the benefits of GMMs and address risks.
Collapse
Affiliation(s)
- Yonatan Chemla
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Connor J Sweeney
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Griffin C, Oz MT, Demirer GS. Engineering plant-microbe communication for plant nutrient use efficiency. Curr Opin Biotechnol 2024; 88:103150. [PMID: 38810302 DOI: 10.1016/j.copbio.2024.103150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Nutrient availability and efficient use are critical for crop productivity. Current agricultural practices rely on excessive chemical fertilizers, contributing to greenhouse gas emissions and environmental pollution. Rhizosphere microbes facilitate plant nutrient acquisition and contribute to nutrient use efficiency. Thus, engineering plant-microbe communication within the rhizosphere emerges as a promising and sustainable strategy to enhance agricultural productivity. Recent advances in plant engineering have enabled the development of plants capable of selectively enriching beneficial microbes through root exudates. At the same time, synthetic biology techniques have produced microbes capable of improving nutrient availability and uptake by plants. By engineering plant-microbe communication, researchers aim to harness beneficial soil microbes, thereby offering a targeted and efficient approach to optimizing plant nutrient use efficiency.
Collapse
Affiliation(s)
- Catherine Griffin
- Department of Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - M Tufan Oz
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Gozde S Demirer
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
7
|
Martínez-García E, de Lorenzo V. Pseudomonas putida as a synthetic biology chassis and a metabolic engineering platform. Curr Opin Biotechnol 2024; 85:103025. [PMID: 38061264 DOI: 10.1016/j.copbio.2023.103025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 02/09/2024]
Abstract
The soil bacterium Pseudomonas putida, especially the KT2440 strain, is increasingly being utilized as a host for biotransformations of both industrial and environmental interest. The foundations of such performance include its robust redox metabolism, ability to tolerate a wide range of physicochemical stresses, rapid growth, versatile metabolism, nonpathogenic nature, and the availability of molecular tools for advanced genetic programming. These attributes have been leveraged for hosting engineered pathways for production of valuable chemicals or degradation/valorization of environmental pollutants. This has in turn pushed the boundaries of conventional enzymology toward previously unexplored reactions in nature. Furthermore, modifications to the physical properties of the cells have been made to enhance their catalytic performance. These advancements establish P. putida as bona fide chassis for synthetic biology, on par with more traditional metabolic engineering platforms.
Collapse
Affiliation(s)
- Esteban Martínez-García
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Calle Darwin 3, 28049 Madrid, Spain
| | - Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Calle Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
8
|
Jansson JK, McClure R, Egbert RG. Soil microbiome engineering for sustainability in a changing environment. Nat Biotechnol 2023; 41:1716-1728. [PMID: 37903921 DOI: 10.1038/s41587-023-01932-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/01/2023] [Indexed: 11/01/2023]
Abstract
Recent advances in microbial ecology and synthetic biology have the potential to mitigate damage caused by anthropogenic activities that are deleteriously impacting Earth's soil ecosystems. Here, we discuss challenges and opportunities for harnessing natural and synthetic soil microbial communities, focusing on plant growth promotion under different scenarios. We explore current needs for microbial solutions in soil ecosystems, how these solutions are being developed and applied, and the potential for new biotechnology breakthroughs to tailor and target microbial products for specific applications. We highlight several scientific and technological advances in soil microbiome engineering, including characterization of microbes that impact soil ecosystems, directing how microbes assemble to interact in soil environments, and the developing suite of gene-engineering approaches. This Review underscores the need for an interdisciplinary approach to understand the composition, dynamics and deployment of beneficial soil microbiomes to drive efforts to mitigate or reverse environmental damage by restoring and protecting healthy soil ecosystems.
Collapse
Affiliation(s)
- Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Ryan McClure
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Robert G Egbert
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
9
|
Wang Y, Li YQ, Wang MJ, Luo CB. Non-sterilized conversion of whole lignocellulosic components into polyhydroxybutyrate by Halomonas sp. Y3 with a dual anti-microbial contamination system. Int J Biol Macromol 2023; 241:124606. [PMID: 37116849 DOI: 10.1016/j.ijbiomac.2023.124606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Polyhydroxybutyrate (PHB) production from lignocellulosic biomass is challenging due to the need for whole components and energy-effective conversion. Herein, Halomonas sp. Y3, a ligninolytic bacterium with the capacity to produce PHB from lignin and cellulose- and hemicellulose-derived sugars, is employed to explore its feasibility. This strain shows high sugar tolerance up to 200 g/L of glucose and 120 g/L of xylose. A dual anti-microbial contamination system (DACS) containing alkali-halophilic system (AHS) and phosphite-urea system (PUS) is presented, successfully achieving a completely aseptic effect and resulting in a total of 8.2 g of PHB production from 100 g bamboo biomass. We further develop a stage-fed-batch fermentation to promote the complete utilization of xylose. Approximately 69.99 g of dry cell weight (DCW) and 46.45 g of PHB with 66.35 % are obtained from a total of 296.58 g of sugars and 5.70 g of lignin, showing a significant advancement for LCB bioconversion. We then delete the native phosphate transporters, rendering the strain unable to grow on phosphate-loaded media, effectively improving the strain biosafety without compromising its ability to produce PHB. Overall, our findings demonstrate the potential of Y3 as a classic bacterium strain for PHB production with potential uses in industry.
Collapse
Affiliation(s)
- Yan Wang
- College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Yuan-Qiu Li
- College of Life Science, Leshan Normal University, Leshan 614000, China; College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ming-Jun Wang
- College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Chao-Bing Luo
- College of Life Science, Leshan Normal University, Leshan 614000, China.
| |
Collapse
|
10
|
Pavão G, Sfalcin I, Bonatto D. Biocontainment Techniques and Applications for Yeast Biotechnology. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Biocontainment techniques for genetically modified yeasts (GMYs) are pivotal due to the importance of these organisms for biotechnological processes and also due to the design of new yeast strains by using synthetic biology tools and technologies. Due to the large genetic modifications that many yeast strains display, it is highly desirable to avoid the leakage of GMY cells into natural environments and, consequently, the spread of synthetic genes and circuits by horizontal or vertical gene transfer mechanisms within the microorganisms. Moreover, it is also desirable to avoid patented yeast gene technologies spreading outside the production facility. In this review, the different biocontainment technologies currently available for GMYs were evaluated. Interestingly, uniplex-type biocontainment approaches (UTBAs), which rely on nutrient auxotrophies induced by gene mutation or deletion or the expression of the simple kill switches apparatus, are still the major biocontainment approaches in use with GMY. While bacteria such as Escherichia coli account for advanced biocontainment technologies based on synthetic biology and multiplex-type biocontainment approaches (MTBAs), GMYs are distant from this scenario due to many reasons. Thus, a comparison of different UTBAs and MTBAs applied for GMY and genetically engineered microorganisms (GEMs) was made, indicating the major advances of biocontainment techniques for GMYs.
Collapse
|
11
|
Asin-Garcia E, Robaey Z, Kampers LFC, Martins Dos Santos VAP. Exploring the Impact of Tensions in Stakeholder Norms on Designing for Value Change: The Case of Biosafety in Industrial Biotechnology. SCIENCE AND ENGINEERING ETHICS 2023; 29:9. [PMID: 36882674 PMCID: PMC9992083 DOI: 10.1007/s11948-023-00432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Synthetic biologists design and engineer organisms for a better and more sustainable future. While the manifold prospects are encouraging, concerns about the uncertain risks of genome editing affect public opinion as well as local regulations. As a consequence, biosafety and associated concepts, such as the Safe-by-design framework and genetic safeguard technologies, have gained notoriety and occupy a central position in the conversation about genetically modified organisms. Yet, as regulatory interest and academic research in genetic safeguard technologies advance, the implementation in industrial biotechnology, a sector that is already employing engineered microorganisms, lags behind. The main goal of this work is to explore the utilization of genetic safeguard technologies for designing biosafety in industrial biotechnology. Based on our results, we posit that biosafety is a case of a changing value, by means of further specification of how to realize biosafety. Our investigation is inspired by the Value Sensitive Design framework, to investigate scientific and technological choices in their appropriate social context. Our findings discuss stakeholder norms for biosafety, reasonings about genetic safeguards, and how these impact the practice of designing for biosafety. We show that tensions between stakeholders occur at the level of norms, and that prior stakeholder alignment is crucial for value specification to happen in practice. Finally, we elaborate in different reasonings about genetic safeguards for biosafety and conclude that, in absence of a common multi-stakeholder effort, the differences in informal biosafety norms and the disparity in biosafety thinking could end up leading to design requirements for compliance instead of for safety.
Collapse
Affiliation(s)
- Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands.
- Bioprocess Engineering Group, Wageningen University & Research, 6700, AA, Wageningen, The Netherlands.
| | - Zoë Robaey
- Department of Social Sciences, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
| | - Linde F C Kampers
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
- Bioprocess Engineering Group, Wageningen University & Research, 6700, AA, Wageningen, The Netherlands
- LifeGlimmer GmbH, Berlin, Germany
| |
Collapse
|