1
|
Jarocki M, Turek K, Saczko J, Tarek M, Kulbacka J. Lipids associated with autophagy: mechanisms and therapeutic targets. Cell Death Discov 2024; 10:460. [PMID: 39477959 PMCID: PMC11525783 DOI: 10.1038/s41420-024-02224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Autophagy is a molecular process essential for maintaining cellular homeostasis, with its impairment or dysregulation linked to the progression of various diseases in mammals. Specific lipids, including phosphoinositides, sphingolipids, and oxysterols, play pivotal roles in inducing and regulating autophagy, highlighting their significance in this intricate process. This review focuses on the critical involvement of these lipids in autophagy and lipophagy, providing a comprehensive overview of the current understanding of their functions. Moreover, we delve into how abnormalities in autophagy, influenced by these lipids, contribute to the pathogenesis of various diseases. These include age-related conditions such as cardiovascular diseases, neurodegenerative disorders, type 2 diabetes, and certain cancers, as well as inflammatory and liver diseases, skeletal muscle pathologies and age-related macular degeneration (AMD). This review aims to highlight function of lipids and their potential as therapeutic targets in treating diverse human pathologies by elucidating the specific roles of phosphoinositides, sphingolipids, and oxysterols in autophagy.
Collapse
Affiliation(s)
- Michał Jarocki
- University Clinical Hospital, Wroclaw Medical University, Wroclaw, Poland
| | | | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, Nancy, France
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| |
Collapse
|
2
|
Fan Y, Zhang W, Iqbal Z, Li X, Lin Z, Wu Z, Li Q, Dong H, Zhang X, Gong P, Liu P. Rod-shaped mesoporous silica nanoparticles reduce bufalin cardiotoxicity and inhibit colon cancer by blocking lipophagy. Lipids Health Dis 2024; 23:318. [PMID: 39334257 PMCID: PMC11437918 DOI: 10.1186/s12944-024-02301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Bufalin (BA) is a potent traditional Chinese medicine derived from toad venom. It has shown significant antitumor activity, but its use is limited by cardiotoxicity, which necessitates innovative delivery methods, such as rod-shaped mesoporous silica nanoparticles (rMSNs). rMSNs have been extensively employed for reducing drug toxicity and for controlled or targeted drug delivery in tumor therapy. However, their potential in delivering BA has not been completely elucidated. Therefore, in this study, BA-loaded rMSNs (BA-rMSNs) were developed to investigate their potential and mechanism in impairing colon cancer cells. METHODS rMSNs were developed via the sol‒gel method. Drug encapsulation efficiency and loading capacity were determined to investigate the advantages of the rMSN in loading BA. The antiproliferative activities of the BA-rMSNs were investigated via 5-ethynyl-2'-deoxyuridine and CCK-8. To evaluate cell death, Annexin V-APC/PI apoptotic and calcein-AM/PI double staining were performed. Western blotting, oil red O staining, and Nile red solution were employed to determine the ability of BA-rMSNs to regulate lipophagy. RESULTS The diameter of the BA-rMSNs was approximately 60 nm. In vitro studies demonstrated that BA-rMSNs markedly inhibited HCT 116 and HT-29 cell proliferation and induced cell death. In vivo studies revealed that BA-rMSNs reduced BA-mediated cardiotoxicity and enhanced BA tumor targeting. Mechanistic studies revealed that BA-rMSNs blocked lipophagy. CONCLUSIONS rMSNs reduced BA-mediated cardiotoxicity and impaired the growth of colon cancer cells. Mechanistically, antitumor activity depends on lipophagy.
Collapse
Affiliation(s)
- Yibao Fan
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
- International Association for Diagnosis and Treatment of Cancer, HongKong, Guangdong, 999077, China
| | - Wei Zhang
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
- International Association for Diagnosis and Treatment of Cancer, HongKong, Guangdong, 999077, China
| | - Zoya Iqbal
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xinxin Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Zhiyin Lin
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zhuolin Wu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Qianyou Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Hongxia Dong
- Department of Gastroenterology, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Xianbin Zhang
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
- International Association for Diagnosis and Treatment of Cancer, HongKong, Guangdong, 999077, China
| | - Peng Gong
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| | - Peng Liu
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
3
|
Cao LQ, Xie Y, Fleishman JS, Liu X, Chen ZS. Hepatocellular carcinoma and lipid metabolism: Novel targets and therapeutic strategies. Cancer Lett 2024; 597:217061. [PMID: 38876384 DOI: 10.1016/j.canlet.2024.217061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Hepatocellular carcinoma (HCC) is an increasingly prevalent disease that is associated with high and continually rising mortality rates. Lipid metabolism holds a crucial role in the pathogenesis of HCC, in which abnormalities pertaining to the delicate balance of lipid synthesis, breakdown, and storage, predispose for the pathogenesis of the nonalcoholic fatty liver disease (NAFLD), a disease precursor to HCC. If caught early enough, HCC treatment may be curative. In later stages, treatment is only halting the inevitable outcome of death, boldly prompting for novel drug discovery to provide a fighting chance for this patient population. In this review, we begin by providing a summary of current local and systemic treatments against HCC. From such we discuss hepatic lipid metabolism and highlight novel targets that are ripe for anti-cancer drug discovery. Lastly, we provide a targeted summary of current known risk factors for HCC pathogenesis, providing key insights that will be essential for rationalizing future development of anti-HCC therapeutics.
Collapse
Affiliation(s)
- Lu-Qi Cao
- Institute for Biotechnology, St. John's University, New York, NY, 11439, USA; College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Yuhao Xie
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Joshua S Fleishman
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Xuan Liu
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518034, China.
| | - Zhe-Sheng Chen
- Institute for Biotechnology, St. John's University, New York, NY, 11439, USA; College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA.
| |
Collapse
|
4
|
Liu YL, Xiang Z, Zhang BY, Zou YW, Chen GL, Yin L, Shi YL, Xu LL, Bi J, Wang Q. APOA5 alleviates reactive oxygen species to promote oxaliplatin resistance in PIK3CA-mutated colorectal cancer. Aging (Albany NY) 2024; 16:9410-9436. [PMID: 38848145 PMCID: PMC11210231 DOI: 10.18632/aging.205872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/25/2024] [Indexed: 06/09/2024]
Abstract
Although platinum-based chemotherapy is the frontline regimen for colorectal cancer (CRC), drug resistance remains a major challenge affecting its therapeutic efficiency. However, there is limited research on the correlation between chemotherapy resistance and lipid metabolism, including PIK3CA mutant tumors. In this present study, we found that PIK3CA-E545K mutation attenuated cell apoptosis and increased the cell viability of CRC with L-OHP treatment in vitro and in vivo. Mechanistically, PIK3CA-E545K mutation promoted the nuclear accumulation of SREBP1, which promoted the transcription of Apolipoprotein A5 (APOA5). APOA5 activated the PPARγ signaling pathway to alleviate reactive oxygen species (ROS) production following L-OHP treatment, which contributed to cell survival of CRC cells. Moreover, APOA5 overexpression enhanced the stemness-related traits of CRC cells. Increased APOA5 expression was associated with PIK3CA mutation in tumor specimens and poor response to first-line chemotherapy, which was an independent detrimental factor for chemotherapy sensitivity in CRC patients. Taken together, this study indicated that PIK3CA-E545K mutation promoted L-OHP resistance by upregulating APOA5 transcription in CRC, which could be a potent target for improving L-OHP chemotherapeutic efficiency. Our study shed light to improve chemotherapy sensitivity through nutrient management in CRC.
Collapse
Affiliation(s)
- Yu-Lin Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250023, China
- Department of Oncology, Shandong Second Provincial General Hospital, Jinan 250023, China
| | - Zhuo Xiang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250023, China
- Department of Oncology, Shandong Second Provincial General Hospital, Jinan 250023, China
| | - Bo-Ya Zhang
- China Key Laboratory of Marine Drugs, The Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yu-Wei Zou
- Department of Pathology, Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, China
| | - Gui-Lai Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250023, China
- Department of Oncology, Shandong Second Provincial General Hospital, Jinan 250023, China
| | - Li Yin
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250023, China
- Department of Oncology, Shandong Second Provincial General Hospital, Jinan 250023, China
| | - Yan-Long Shi
- Department of Oncology, 960 Hospital of People’s Liberation Army, Jinan 250031, China
| | - Li-Li Xu
- Department of Pathology, Navy 971 People’s Liberation Army Hospital, Qingdao 266071, China
| | - Jingwang Bi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250023, China
- Department of Oncology, Shandong Second Provincial General Hospital, Jinan 250023, China
| | - Qiang Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250023, China
- Department of Oncology, Shandong Second Provincial General Hospital, Jinan 250023, China
| |
Collapse
|
5
|
Luo MY, Han Z, Wang J, Zhong C, Chen J. TARDBP is a candidate diagnostic biomarker promoting tumor progression via impacting tumor immunity and tumor microenvironment. J Cancer 2024; 15:4113-4127. [PMID: 38947395 PMCID: PMC11212099 DOI: 10.7150/jca.96800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
In the realm of cancer research, particularly hepatocellular carcinoma (HCC), TAR DNA-binding protein (TARDBP) has transitioned from being associated with neurodegenerative diseases to emerging as a significant molecule in oncology due to its aberrant expression in HCC and other malignancies. This shift underlines the versatility of TARDBP and its critical role in tumorigenesis. Our study illuminates TARDBP's universal upregulation across various cancers, indicating its involvement in fundamental oncogenic processes and potential impact on genomic instability. The relationship between TARDBP expression and tumor mutational burden (TMB) across several cancers highlights its influence on a key hallmark of cancer progression. Additionally, TARDBP's interaction with immune and inflammatory factors within the tumor microenvironment, including its association with immune-stimulatory factors and inverse relationship with immune inhibitors, suggests its role in modulating immune evasion. Clinically, TARDBP's aberrant expression correlates with adverse patient outcomes in HCC, making it a promising candidate for therapeutic targeting. The study concludes that TARDBP holds significant potential as a novel therapeutic target in HCC and possibly other malignancies, meriting further exploration to integrate TARDBP-targeted therapies into cancer treatment protocols, thereby advancing the field of precision medicine.
Collapse
Affiliation(s)
- Min-Yi Luo
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Zhe Han
- Department of Neurology, The First Bethune Hospital of Jilin University, 130000, Changchun, Jilin, China
| | - Jiaqi Wang
- Department of Neonatology, Jiangmen People's Hospital, 52900, Jiangmen, Guangdong, China
| | - Cheng Zhong
- Department of Orthopedics, Jiangmen Hospital of Traditional Chinese Medicine Affiliated to Jinan University, 52900, Jiangmen, Guangdong, China
| | - Jiancong Chen
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Hao K, Wang J, Yu H, Chen L, Zeng W, Wang Z, Hu G. Peroxisome Proliferator-Activated Receptor γ Regulates Lipid Metabolism in Sheep Trophoblast Cells through mTOR Pathway-Mediated Autophagy. PPAR Res 2023; 2023:6422804. [PMID: 38020065 PMCID: PMC10651342 DOI: 10.1155/2023/6422804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/03/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a key nuclear receptor transcription factor that is highly expressed in trophoblastic cells during embryonic attachment and is accompanied by rapid cell proliferation and increased lipid accumulation. We previously showed that the autophagy pathway is activated in cells after activation of PPARγ, accompanied by increased lipid accumulation. In this study, we used PPARγ agonist rosiglitazone and inhibitor GW9662, as well as autophagy activator rapamycin and inhibitor 3-methyladenine, to unravel the probable mechanism of PPARγ engaged in lipid metabolism in sheep trophoblast cells (STCs). After 12 h, 24 h, and 48 h of drug treatment, the levels of autophagy-related proteins were detected by Western blot, the triglyceride content and MDA level of cells were detected by colorimetry, and the lipid droplets and lysosomes were localized by immunofluorescence. We found that PPARγ inhibited the activity of mammalian target of rapamycin (mTOR) pathway in STCs for a certain period of time, promoted the increase of autophagy and lysosome formation, and enhanced the accumulation of lipid droplets and triglycerides. Compared with cells whose PPARγ function is activated, blocking autophagy before activating PPARγ will hinder lipid accumulation in STCs. Pretreatment of cells with rapamycin promoted autophagy with results similar to rosiglitazone treatment, while inhibition of autophagy with 3-methyladenine reduced lysosome and lipid accumulation. Based on these observations, we conclude that PPARγ can induce autophagy by blocking the mTOR pathway, thereby promoting the accumulation of lipid droplets and lysosomal degradation, providing an energy basis for the rapid proliferation of trophoblast cells during embryo implantation. In brief, this study partially revealed the molecular regulatory mechanism of PPARγ, mTOR pathway, and autophagy on trophoblast cell lipid metabolism, which provides a theoretical basis for further exploring the functional regulatory network of trophoblast cells during the attachment of sheep embryos.
Collapse
Affiliation(s)
- Kexing Hao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Jing Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Hengbin Yu
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Lei Chen
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Weibin Zeng
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Zhengrong Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Guangdong Hu
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| |
Collapse
|
7
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Mammalian lipid droplets: structural, pathological, immunological and anti-toxicological roles. Prog Lipid Res 2023; 91:101233. [PMID: 37156444 DOI: 10.1016/j.plipres.2023.101233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Mammalian lipid droplets (LDs) are specialized cytosolic organelles consisting of a neutral lipid core surrounded by a membrane made up of a phospholipid monolayer and a specific population of proteins that varies according to the location and function of each LD. Over the past decade, there have been significant advances in the understanding of LD biogenesis and functions. LDs are now recognized as dynamic organelles that participate in many aspects of cellular homeostasis plus other vital functions. LD biogenesis is a complex, highly-regulated process with assembly occurring on the endoplasmic reticulum although aspects of the underpinning molecular mechanisms remain elusive. For example, it is unclear how many enzymes participate in the biosynthesis of the neutral lipid components of LDs and how this process is coordinated in response to different metabolic cues to promote or suppress LD formation and turnover. In addition to enzymes involved in the biosynthesis of neutral lipids, various scaffolding proteins play roles in coordinating LD formation. Despite their lack of ultrastructural diversity, LDs in different mammalian cell types are involved in a wide range of biological functions. These include roles in membrane homeostasis, regulation of hypoxia, neoplastic inflammatory responses, cellular oxidative status, lipid peroxidation, and protection against potentially toxic intracellular fatty acids and lipophilic xenobiotics. Herein, the roles of mammalian LDs and their associated proteins are reviewed with a particular focus on their roles in pathological, immunological and anti-toxicological processes.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 1DL, Wales, United Kingdom..
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria..
| |
Collapse
|
8
|
Alizadeh J, Kavoosi M, Singh N, Lorzadeh S, Ravandi A, Kidane B, Ahmed N, Mraiche F, Mowat MR, Ghavami S. Regulation of Autophagy via Carbohydrate and Lipid Metabolism in Cancer. Cancers (Basel) 2023; 15:2195. [PMID: 37190124 PMCID: PMC10136996 DOI: 10.3390/cancers15082195] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Metabolic changes are an important component of tumor cell progression. Tumor cells adapt to environmental stresses via changes to carbohydrate and lipid metabolism. Autophagy, a physiological process in mammalian cells that digests damaged organelles and misfolded proteins via lysosomal degradation, is closely associated with metabolism in mammalian cells, acting as a meter of cellular ATP levels. In this review, we discuss the changes in glycolytic and lipid biosynthetic pathways in mammalian cells and their impact on carcinogenesis via the autophagy pathway. In addition, we discuss the impact of these metabolic pathways on autophagy in lung cancer.
Collapse
Affiliation(s)
- Javad Alizadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Navjit Singh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada;
| | - Biniam Kidane
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 6C5, Canada;
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
| | - Naseer Ahmed
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Radiology, Section of Radiation Oncology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar;
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Michael R. Mowat
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
- Research Institute of Oncology and Hematology, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, Academia of Silesia, 41-800 Zabrze, Poland
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
9
|
Fader Kaiser CM, Romano PS, Vanrell MC, Pocognoni CA, Jacob J, Caruso B, Delgui LR. Biogenesis and Breakdown of Lipid Droplets in Pathological Conditions. Front Cell Dev Biol 2022; 9:826248. [PMID: 35198567 PMCID: PMC8860030 DOI: 10.3389/fcell.2021.826248] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Lipid droplets (LD) have long been considered as mere fat drops; however, LD have lately been revealed to be ubiquitous, dynamic and to be present in diverse organelles in which they have a wide range of key functions. Although incompletely understood, the biogenesis of eukaryotic LD initiates with the synthesis of neutral lipids (NL) by enzymes located in the endoplasmic reticulum (ER). The accumulation of NL leads to their segregation into nanometric nuclei which then grow into lenses between the ER leaflets as they are further filled with NL. The lipid composition and interfacial tensions of both ER and the lenses modulate their shape which, together with specific ER proteins, determine the proneness of LD to bud from the ER toward the cytoplasm. The most important function of LD is the buffering of energy. But far beyond this, LD are actively integrated into physiological processes, such as lipid metabolism, control of protein homeostasis, sequestration of toxic lipid metabolic intermediates, protection from stress, and proliferation of tumours. Besides, LD may serve as platforms for pathogen replication and defense. To accomplish these functions, from biogenesis to breakdown, eukaryotic LD have developed mechanisms to travel within the cytoplasm and to establish contact with other organelles. When nutrient deprivation occurs, LD undergo breakdown (lipolysis), which begins with the LD-associated members of the perilipins family PLIN2 and PLIN3 chaperone-mediated autophagy degradation (CMA), a specific type of autophagy that selectively degrades a subset of cytosolic proteins in lysosomes. Indeed, PLINs CMA degradation is a prerequisite for further true lipolysis, which occurs via cytosolic lipases or by lysosome luminal lipases when autophagosomes engulf portions of LD and target them to lysosomes. LD play a crucial role in several pathophysiological processes. Increased accumulation of LD in non-adipose cells is commonly observed in numerous infectious diseases caused by intracellular pathogens including viral, bacterial, and parasite infections, and is gradually recognized as a prominent characteristic in a variety of cancers. This review discusses current evidence related to the modulation of LD biogenesis and breakdown caused by intracellular pathogens and cancer.
Collapse
Affiliation(s)
- Claudio M Fader Kaiser
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Patricia S Romano
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - M Cristina Vanrell
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Cristian A Pocognoni
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Julieta Jacob
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Benjamín Caruso
- Instituto de Investigaciones Biologicas y Tecnologicas, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Laura R Delgui
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| |
Collapse
|
10
|
Zhong CC, Zhao T, Hogstrand C, Chen F, Song CC, Luo Z. Copper (Cu) induced changes of lipid metabolism through oxidative stress-mediated autophagy and Nrf2/PPARγ pathways. J Nutr Biochem 2021; 100:108883. [PMID: 34653601 DOI: 10.1016/j.jnutbio.2021.108883] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
Oxidative stress can induce occurrence of non-alcoholic fatty liver disease (NAFLD). Nrf2 is a central regulator of cellular oxidative stress and also participates in the control of lipid deposition and metabolism. Here, we hypothesize that oxidative stress-mediated Nrf2 activation participates in the regulation of the Cu-induced lipid deposition. We found that Cu excess activated oxidative stress and autophagy, up-regulated lipogenesis and lipid metabolism, suppressed Keap1 expression and activated Nrf2 signaling. Moreover, Cu induced lipid deposition via oxidative stress and the mitochondrial dysfunction. Oxidative stress mediated Cu-induced activation of Nrf2 and autophagy. The activation of autophagy helps to alleviate Cu-induced lipid deposition and accordingly provided a protective role against Cu-induced NAFLD. Meantime, Cu-induced oxidative stress promoted Nrf2 recruitment to the PPARγ promoter, inducing target gene transcription, and subsequent lipogenesis. Our findings, for the first time, provide direct evidences for Nrf2 function in the modulation of lipogenic metabolism via the transcriptional activation of PPARγ, and elucidate the mechanisms by which Nrf2 functions as the central regulator of lipogenic genes and highlights the significance of Nrf2 as potential therapeutic targets for oxidative stress-associated obesity and NAFLD for fish and human beings.
Collapse
Affiliation(s)
- Chong-Chao Zhong
- Laboratory of Molecular Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan Hubei Province, China
| | - Tao Zhao
- Laboratory of Molecular Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan Hubei Province, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London, UK
| | - Fang Chen
- Laboratory of Molecular Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan Hubei Province, China
| | - Chang-Chun Song
- Laboratory of Molecular Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan Hubei Province, China
| | - Zhi Luo
- Laboratory of Molecular Nutrition and Health, Fishery College, Huazhong Agricultural University, Wuhan Hubei Province, China; Hubei Hongshan Laboratory, Wuhan, Hubei Province, China.
| |
Collapse
|
11
|
Marti JLG, Wells A, Brufsky AM. Dysregulation of the mevalonate pathway during SARS-CoV-2 infection: An in silico study. J Med Virol 2021; 93:2396-2405. [PMID: 33331649 PMCID: PMC9553089 DOI: 10.1002/jmv.26743] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
SARS-CoV-2 triggers a dysregulated innate immune system activation. As the mevalonate pathway (MVP) prevents the activation of inflammasomes and cytokine release and regulates endosomal transport, compromised signaling could be associated with the pathobiology of COVID-19. Prior transcriptomic studies of host cells in response to SARS-CoV-2 infection have not reported to date the effects of SARS-CoV-2 on the MVP. In this study, we accessed public data sets to report in silico investigations into gene expression. In addition, we proposed candidate genes that are thought to have a direct association with the pathogenesis of COVID-19, and which may be dependent on signals derived from the MVP. Our results revealed dysregulation of genes involved in the MVP. These results were not found when investigating the gene expression data from host cells infected with H3N2 influenza virus, H1N1 influenza virus, or respiratory syncytial virus. Our manually curated gene set showed significant gene expression variability in A549 cells infected with SARS-CoV-2, as per Blanco-Melo et al. data set (GSE147507). In light of the present findings, SARS-CoV-2 could hijack the MVP, leading to hyperinflammatory responses. Prompt reconstitution of this pathway with available agents should be considered in future studies.
Collapse
Affiliation(s)
- Juan Luis Gomez Marti
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh VA Health System, Pittsburgh, Pennsylvania, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh VA Health System, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Adam M. Brufsky
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Zhang S, Zhuang L, Liu Q, Yu X, Min Q, Chen M, Chen Q. PPARγ induces the paroxysm of endometriosis by regulating the transcription of MAT2A gene. Am J Transl Res 2021; 13:1377-1388. [PMID: 33841663 PMCID: PMC8014359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To investigate the molecular mechanism of PPARγ impacting the paroxysm of endometriosis. METHODS Immunohistochemistry, qRT-PCR and Western Blot were used to determine the expression level of PPARγ and MAT2A in Eu, Ec and normal endometrial tissue (control). ESC and NSC were separately isolated. PPARγ was silenced in NSC and was up-regulated in ESC. Rosiglitazone (RSG) were used to incubate with ESC. Proliferation, apoptosis, invasion, and ultrastructure of cells were evaluated in vitro. The combination between PPARγ and the promoters of MAT2A was detected by dual-luciferase reporter assay. RESULTS MAT2A was up-regulated and PPARγ was down-regulated in Eu and Ec. The cell viability and the ability of migration and invasion declined greatly after up-regulating the expression of PPARγ or treating with RSG in ESC. Meanwhile, the expression level of MAT2A was significantly inhibited. Plenty of vacuoles and classical morphological changes of apoptotic cells were observed in the ESC with PPARγ over-expressed. The cell viability and the ability of migration and invasion of NSC with PPARγ silenced were promoted greatly. Meanwhile, the expression level of MAT2A was significantly up-regulated. CONCLUSION The paroxysm and development of endometriosis were impacted by over-expressing PPARγ or introducing of RSG by inhibiting the transcription of MAT2A.
Collapse
Affiliation(s)
- Shun Zhang
- The First Affiliated Hospital of Nanchang University No. 17 Yongwaizheng Street, Donghu District, Nanchang, Jiangxi, People's Republic of China
| | - Lingling Zhuang
- The First Affiliated Hospital of Nanchang University No. 17 Yongwaizheng Street, Donghu District, Nanchang, Jiangxi, People's Republic of China
| | - Qian Liu
- The First Affiliated Hospital of Nanchang University No. 17 Yongwaizheng Street, Donghu District, Nanchang, Jiangxi, People's Republic of China
| | - Xiaolin Yu
- The First Affiliated Hospital of Nanchang University No. 17 Yongwaizheng Street, Donghu District, Nanchang, Jiangxi, People's Republic of China
| | - Qinghua Min
- The First Affiliated Hospital of Nanchang University No. 17 Yongwaizheng Street, Donghu District, Nanchang, Jiangxi, People's Republic of China
| | - Minjie Chen
- The First Affiliated Hospital of Nanchang University No. 17 Yongwaizheng Street, Donghu District, Nanchang, Jiangxi, People's Republic of China
| | - Qi Chen
- The First Affiliated Hospital of Nanchang University No. 17 Yongwaizheng Street, Donghu District, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
13
|
Matsushita Y, Nakagawa H, Koike K. Lipid Metabolism in Oncology: Why It Matters, How to Research, and How to Treat. Cancers (Basel) 2021; 13:474. [PMID: 33530546 PMCID: PMC7865757 DOI: 10.3390/cancers13030474] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Lipids in our body, which are mainly composed of fatty acids, triacylglycerides, sphingolipids, phospholipids, and cholesterol, play important roles at the cellular level. In addition to being energy sources and structural components of biological membranes, several types of lipids serve as signaling molecules or secondary messengers. Metabolic reprogramming has been recognized as a hallmark of cancer, but changes in lipid metabolism in cancer have received less attention compared to glucose or glutamine metabolism. However, recent innovations in mass spectrometry- and chromatography-based lipidomics technologies have increased our understanding of the role of lipids in cancer. Changes in lipid metabolism, so-called "lipid metabolic reprogramming", can affect cellular functions including the cell cycle, proliferation, growth, and differentiation, leading to carcinogenesis. Moreover, interactions between cancer cells and adjacent immune cells through altered lipid metabolism are known to support tumor growth and progression. Characterization of cancer-specific lipid metabolism can be used to identify novel metabolic targets for cancer treatment, and indeed, several clinical trials are currently underway. Thus, we discuss the latest findings on the roles of lipid metabolism in cancer biology and introduce current advances in lipidomics technologies, focusing on their applications in cancer research.
Collapse
Affiliation(s)
| | - Hayato Nakagawa
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.M.); (K.K.)
| | | |
Collapse
|
14
|
Peroxisome Proliferator-Activated Receptors as Molecular Links between Caloric Restriction and Circadian Rhythm. Nutrients 2020; 12:nu12113476. [PMID: 33198317 PMCID: PMC7696073 DOI: 10.3390/nu12113476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The circadian rhythm plays a chief role in the adaptation of all bodily processes to internal and environmental changes on the daily basis. Next to light/dark phases, feeding patterns constitute the most essential element entraining daily oscillations, and therefore, timely and appropriate restrictive diets have a great capacity to restore the circadian rhythm. One of the restrictive nutritional approaches, caloric restriction (CR) achieves stunning results in extending health span and life span via coordinated changes in multiple biological functions from the molecular, cellular, to the whole-body levels. The main molecular pathways affected by CR include mTOR, insulin signaling, AMPK, and sirtuins. Members of the family of nuclear receptors, the three peroxisome proliferator-activated receptors (PPARs), PPARα, PPARβ/δ, and PPARγ take part in the modulation of these pathways. In this non-systematic review, we describe the molecular interconnection between circadian rhythm, CR-associated pathways, and PPARs. Further, we identify a link between circadian rhythm and the outcomes of CR on the whole-body level including oxidative stress, inflammation, and aging. Since PPARs contribute to many changes triggered by CR, we discuss the potential involvement of PPARs in bridging CR and circadian rhythm.
Collapse
|
15
|
Soto-Avellaneda A, Morrison BE. Signaling and other functions of lipids in autophagy: a review. Lipids Health Dis 2020; 19:214. [PMID: 32998777 PMCID: PMC7525950 DOI: 10.1186/s12944-020-01389-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
The process of autophagy is integral to cellular function. In this process, proteins, organelles, and metabolites are engulfed in a lipid vesicle and trafficked to a lysosome for degradation. Its central role in protein and organelle homeostasis has piqued interest for autophagy dysfunction as a driver of pathology for a number of diseases including cancer, muscular disorders, neurological disorders, and non-alcoholic fatty liver disease. For much of its history, the study of autophagy has centered around proteins, however, due to advances in mass spectrometry and refined methodologies, the role of lipids in this essential cellular process has become more apparent. This review discusses the diverse endogenous lipid compounds shown to mediate autophagy. Downstream lipid signaling pathways are also reviewed in the context of autophagy regulation. Specific focus is placed upon the Mammalian Target of Rapamycin (mTOR) and Peroxisome Proliferator-Activated Receptor (PPAR) signaling pathways as integration hubs for lipid regulation of autophagy.
Collapse
Affiliation(s)
| | - Brad E Morrison
- Biomolecular Sciences Graduate programs, Boise State University, Boise, ID, 83725, USA.
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA.
| |
Collapse
|
16
|
Peroxisome Proliferator-Activated Receptors and Caloric Restriction-Common Pathways Affecting Metabolism, Health, and Longevity. Cells 2020; 9:cells9071708. [PMID: 32708786 PMCID: PMC7407644 DOI: 10.3390/cells9071708] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR) is a traditional but scientifically verified approach to promoting health and increasing lifespan. CR exerts its effects through multiple molecular pathways that trigger major metabolic adaptations. It influences key nutrient and energy-sensing pathways including mammalian target of rapamycin, Sirtuin 1, AMP-activated protein kinase, and insulin signaling, ultimately resulting in reductions in basic metabolic rate, inflammation, and oxidative stress, as well as increased autophagy and mitochondrial efficiency. CR shares multiple overlapping pathways with peroxisome proliferator-activated receptors (PPARs), particularly in energy metabolism and inflammation. Consequently, several lines of evidence suggest that PPARs might be indispensable for beneficial outcomes related to CR. In this review, we present the available evidence for the interconnection between CR and PPARs, highlighting their shared pathways and analyzing their interaction. We also discuss the possible contributions of PPARs to the effects of CR on whole organism outcomes.
Collapse
|
17
|
Zhao T, Wu K, Hogstrand C, Xu YH, Chen GH, Wei CC, Luo Z. Lipophagy mediated carbohydrate-induced changes of lipid metabolism via oxidative stress, endoplasmic reticulum (ER) stress and ChREBP/PPARγ pathways. Cell Mol Life Sci 2020; 77:1987-2003. [PMID: 31392349 PMCID: PMC11105093 DOI: 10.1007/s00018-019-03263-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/05/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
High-carbohydrate diets (HCD) can induce the occurrence of nonalcoholic fatty liver disease (NAFLD), characterized by dramatic accumulation of hepatic lipid droplets (LDs). However, the potential molecular mechanisms are still largely unknown. In this study, we investigated the role of autophagy in the process of HCD-induced changes of hepatic lipid metabolism, and to examine the process of underlying mechanisms during these molecular contexts. We found that HCD significantly increased hepatic lipid accumulation and activated autophagy. Using primary hepatocytes, we found that HG increased lipid accumulation and stimulated the release of NEFA by autophagy-mediated lipophagy, and that lipophagy significantly alleviated high glucose (HG)-induced lipid accumulation. Oxidative and endoplasmic reticulum (ER) stress pathways played crucial regulatory roles in HG-induced lipophagy activation and HG-induced changes of lipid metabolism. Further investigation found that HG-activated lipophagy and HG-induced changes of lipid metabolism were via enhancing carbohydrate response element-binding protein (ChREBP) DNA binding capacity at PPARγ promoter region, which in turn induced transcriptional activation of the key genes related to lipogenesis and autophagy. The present study, for the first time, revealed the novel mechanism for lipophagy mediating HCD-induced changes of lipid metabolism by oxidative stress and ER stress, and ChREBP/PPARγ pathways. Our study provided innovative evidence for the direct relationship between carbohydrate and lipid metabolism via ChREBP/PPARγ pathway.
Collapse
Affiliation(s)
- Tao Zhao
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kun Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London, UK
| | - Yi-Huan Xu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guang-Hui Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuan-Chuan Wei
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
18
|
Chirumbolo S. Oxidative Stress, Nutrition and Cancer: Friends or Foes? World J Mens Health 2020; 39:19-30. [PMID: 32202081 PMCID: PMC7752511 DOI: 10.5534/wjmh.190167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022] Open
Abstract
The relationship between cancer and nutrition, as well as nutrition and oxidative stress, shares puzzling aspects that current research is investigating as the possible components of an intriguing regulating mechanism involving the complex interplay between adipose tissue and other compartments. Along the very recent biological evolution, humans underwent a rapid change in their lifestyles and henceforth the role of the adipocytes earned a much more complex task in the fine tuning of the tissue microenvironment. A lipidic signaling language probably evolved in association with the signaling role of reactive oxygen species, which gained a fundamental part in the regulation of cell stem and plasticity. The possible relationship with cancer onset might have some causative mechanism in the impairment of this complex task, usually deregulated by drastic changes in one's own lifestyle and dietary habit. This review tries to address this issue.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
19
|
Lin CH, Liao LY, Yang TY, Chang YJ, Tung CW, Hsu SL, Hsueh CM. Microglia-Derived Adiposomes are Potential Targets for the Treatment of Ischemic Stroke. Cell Mol Neurobiol 2019; 39:591-604. [PMID: 30852719 PMCID: PMC11462839 DOI: 10.1007/s10571-019-00665-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 02/19/2019] [Indexed: 12/28/2022]
Abstract
It is known that cerebral ischemia can cause brain inflammation and adiposome can serve as a depot of inflammatory mediators. In the study, the pro-inflammatory and pro-death role of adiposome in ischemic microglia and ischemic brain was newly investigated. The contribution of PPARγ to adiposome formation was also evaluated for the first time in ischemic microglia. Focal cerebral ischemia/reperfusion (I/R) animal model and the in vitro glucose-oxygen-serum deprivation (GOSD) cell model were both applied in the study. GOSD- or I/R-induced adiposome formation, inflammatory activity, cell death of microglia, and brain infarction were, respectively, determined, in the absence or presence of NS-398 (adiposome inhibitor) or GW9662 (PPARγ antagonist). GOSD-increased adiposome formation played a critical role in stimulating the inflammatory activity (production of TNF-α and IL-1β) and cell death of microglia. Similar results were also found in ischemic brain tissues. GOSD-induced PPARγ partially contributed to the increase of adiposomes and adiposome-mediated inflammatory responses of microglia. Blockade of adiposome formation with NS-398 or GW9662 significantly reduced not only the inflammatory activity and death rate of GOSD-treated microglia but also the brain infarct volume and motor function deficit of ischemic rats. The pathological role of microglia-derived adiposome in cerebral ischemia has been confirmed and attributed to its pro-inflammatory and/or pro-death effect upon ischemic brain cells and tissues. Adiposome and its upstream regulator PPARγ were therefore as potential targets for the treatment of ischemic stroke. Therapeutic values of NS-398 and GW9662 have been suggested.
Collapse
Affiliation(s)
- Chi-Hsin Lin
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Li-Ya Liao
- Department of Life Sciences, National Chung Hsing University, 145, Xingda Road, Taichung, 402, Taiwan, ROC
| | - Tsung-Ying Yang
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Jyun Chang
- Department of Life Sciences, National Chung Hsing University, 145, Xingda Road, Taichung, 402, Taiwan, ROC
| | - Chia-Wen Tung
- Department of Life Sciences, National Chung Hsing University, 145, Xingda Road, Taichung, 402, Taiwan, ROC
| | - Shih-Lan Hsu
- Department of Life Sciences, National Chung Hsing University, 145, Xingda Road, Taichung, 402, Taiwan, ROC
| | - Chi-Mei Hsueh
- Department of Life Sciences, National Chung Hsing University, 145, Xingda Road, Taichung, 402, Taiwan, ROC.
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC.
| |
Collapse
|
20
|
Li X, Xue Y, Pang L, Len B, Lin Z, Huang J, ShangGuan Z, Pan Y. Agaricus bisporus-derived β-glucan prevents obesity through PPAR γ downregulation and autophagy induction in zebrafish fed by chicken egg yolk. Int J Biol Macromol 2018; 125:820-828. [PMID: 30557642 DOI: 10.1016/j.ijbiomac.2018.12.122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/07/2018] [Accepted: 12/14/2018] [Indexed: 01/06/2023]
Abstract
β-(1,4)-d-Glucan with (1,2) and (1,6)-linked branches (short for β-glucan), extracted from Agaricus bisporus (Lange) Sing, had significant anti-obesity and lowering-fat effect. FITC-β-glucan was absorbed by adipocytes of zebrafish larvae when stained by Nile Red. β-Glucan decreased the adiposity mass, reduced the expression of ppar g, mtp, L-fabp, ifabp in ISH, which was coincident as the results of RT-PCT. β-Glucan lowered the level of C/EBP α, c SREBP1, LXR α, PPAR γ by WB analysis, which were accompanied by an increase level in LC3 II/LC3 I and a decline level in p62 in dose-dependent manner. This study explored the effect and mechanisms of Agaricus bisporus derived-β-glucan to regulate lipid metabolism and prevent lipid deposits, and provided the experimental data for its use in diet food and food addictive.
Collapse
Affiliation(s)
- Xiumin Li
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China.
| | - Yu Xue
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Liang Pang
- The College of Physical Education, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Bo Len
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Zhichao Lin
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Jiafu Huang
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Zhaoshui ShangGuan
- Central Laboratory, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Yutian Pan
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China.
| |
Collapse
|
21
|
Petan T, Jarc E, Jusović M. Lipid Droplets in Cancer: Guardians of Fat in a Stressful World. Molecules 2018; 23:molecules23081941. [PMID: 30081476 PMCID: PMC6222695 DOI: 10.3390/molecules23081941] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer cells possess remarkable abilities to adapt to adverse environmental conditions. Their survival during severe nutrient and oxidative stress depends on their capacity to acquire extracellular lipids and the plasticity of their mechanisms for intracellular lipid synthesis, mobilisation, and recycling. Lipid droplets, cytosolic fat storage organelles present in most cells from yeast to men, are emerging as major regulators of lipid metabolism, trafficking, and signalling in various cells and tissues exposed to stress. Their biogenesis is induced by nutrient and oxidative stress and they accumulate in various cancers. Lipid droplets act as switches that coordinate lipid trafficking and consumption for different purposes in the cell, such as energy production, protection against oxidative stress or membrane biogenesis during rapid cell growth. They sequester toxic lipids, such as fatty acids, cholesterol and ceramides, thereby preventing lipotoxic cell damage and engage in a complex relationship with autophagy. Here, we focus on the emerging mechanisms of stress-induced lipid droplet biogenesis; their roles during nutrient, lipotoxic, and oxidative stress; and the relationship between lipid droplets and autophagy. The recently discovered principles of lipid droplet biology can improve our understanding of the mechanisms that govern cancer cell adaptability and resilience to stress.
Collapse
Affiliation(s)
- Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana SI-1000, Slovenia.
| | - Eva Jarc
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana SI-1000, Slovenia.
- Jožef Stefan International Postgraduate School, Ljubljana SI-1000, Slovenia.
| | - Maida Jusović
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana SI-1000, Slovenia.
- Jožef Stefan International Postgraduate School, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
22
|
Assumpção JAF, Magalhães KG, Corrêa JR. Correction to: The role of pparγ and autophagy in ros production, lipid droplets biogenesis and its involvement with colorectal cancer cells modulation. Cancer Cell Int 2017; 17:99. [PMID: 29118672 PMCID: PMC5669013 DOI: 10.1186/s12935-017-0463-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 01/28/2023] Open
Affiliation(s)
| | - Kelly Grace Magalhães
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - José Raimundo Corrêa
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|