1
|
Li M, Zhou Y, Chen X, Chen W, Yang Y, Qian C, Yang L, Zhang Y, Zhang Z, Wu W, Yin Y. Engineered Nanocatalyst-Enabled Cheolesterol Depletion for Enhanced Tumor Piezocatalytic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500967. [PMID: 39965056 PMCID: PMC11984833 DOI: 10.1002/advs.202500967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/06/2025] [Indexed: 02/20/2025]
Abstract
The inadequate generation of reactive oxygen species (ROS) and metastasis of malignant tumors are critical factors that limit the efficacy of conventional sonodynamic therapy in cancer treatment. Herein, an engineered piezocatalyst: cholesterol oxidase (CHO)-loaded Pt-ZnO nanoparticles (Pt-ZnO/CHO) that can explosively generate large amounts of ROS and block the metastasis of tumor, is developed for improving piezocatalytic tumor therapy. In this process, Pt-ZnO can substantially generate ROS via initiating ultrasound (US)-triggered piezocatalytic reactions. In situ-grown Pt nanoparticles not only optimize piezocatalytic activities but also facilitate oxygen (O2) production, thereby synergistically boosting ROS generation. Moreover, O2 produced by Pt-ZnO can accelerate the depletion of excess cholesterol in tumor cells under CHO catalysis to disrupt the integrity of lipid rafts and inhibit the formation of lamellipodia, significantly suppressing the proliferation and metastasis of tumor cells. This strategy by promoting ROS generation and blocking the metastatic pathway of cancer cells offers a new idea for enhanced efficacy-oriented cancer therapeutic strategies.
Collapse
Affiliation(s)
- Mengdan Li
- Department of Medical UltrasoundAffiliated Hospital of Nantong University, Medical School of NanTong UniversityNantongJiangsu226001P. R. China
| | - Yajun Zhou
- Department of UltrasoundThe Fourth Affiliated HospitalNanjing Medical UniversityNanjingJiangsu210029P. R. China
| | - Xiaoyang Chen
- Department of Medical UltrasoundAffiliated Hospital of Nantong University, Medical School of NanTong UniversityNantongJiangsu226001P. R. China
| | - Weiwei Chen
- Department of Medical UltrasoundAffiliated Hospital of Nantong University, Medical School of NanTong UniversityNantongJiangsu226001P. R. China
| | - Yifei Yang
- Department of Medical UltrasoundAffiliated Hospital of Nantong University, Medical School of NanTong UniversityNantongJiangsu226001P. R. China
| | - Cheng Qian
- Department of Medical UltrasoundAffiliated Hospital of Nantong University, Medical School of NanTong UniversityNantongJiangsu226001P. R. China
| | - Lei Yang
- Department of Medical UltrasoundAffiliated Hospital of Nantong University, Medical School of NanTong UniversityNantongJiangsu226001P. R. China
| | - Yaohan Zhang
- Department of Medical UltrasoundAffiliated Hospital of Nantong University, Medical School of NanTong UniversityNantongJiangsu226001P. R. China
| | - Zheng Zhang
- Department of Medical UltrasoundAffiliated Hospital of Jiangsu UniversityZhenjiangJiangsu212000P. R. China
| | - Wencheng Wu
- Central Laboratory and Department of Medical UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuan610072P. R. China
| | - Yifei Yin
- Department of Medical UltrasoundAffiliated Hospital of Nantong University, Medical School of NanTong UniversityNantongJiangsu226001P. R. China
| |
Collapse
|
2
|
Miceli R, Allen NG, Subramaniam B, Carmody L, Dordick JS, Corr DT, Cotten M, Gross RA. Synergistic Treatment of Breast Cancer by Combining the Antimicrobial Peptide Piscidin with a Modified Glycolipid. ACS OMEGA 2024; 9:33408-33424. [PMID: 39130564 PMCID: PMC11308023 DOI: 10.1021/acsomega.3c09902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/30/2024] [Accepted: 06/11/2024] [Indexed: 08/13/2024]
Abstract
Piscidin 3 (P3), a peptide produced by fish, and a hexyl ester-modified sophorolipid (SL-HE), have individually shown promise as antimicrobial and anticancer drugs. A recent report by our team revealed that combining P3 with SL-HE in a 1:8 molar ratio resulted in an 8-fold enhancement in peptide activity, while SL-HE improved by 25-fold its antimicrobial activity against the Gram-positive microorganism Bacillus cereus. Extending these findings, the same P3/SL-HE combination was assessed on two breast cancer cell lines: BT-474, a hormonally positive cell line, and MDA-MB-231, an aggressive triple-negative cell line. The results demonstrated that the 1:8 molar ratio of P3/SL-HE synergistically enhances the anticancer effects against both tumorigenic breast cell lines. Mechanistic studies indicate the activation of an intrinsic apoptotic cell death mechanism through an increase in reactive oxygen species and mitochondrial dysfunction and a secondary programmed necrotic pathway that involves pore formation in the plasma membrane. When a fibroblast cell line, CCD1065SK HDF, was utilized to determine selectivity, the synergistic SL-HE/P3 combination exhibited a protective property compared to the use of SL-HE alone and therefore afforded vastly improved selectivity indices. Given the promising results reported herein, the synergistic combination of P3/SL-HE constitutes a novel strategy that merits further study for the treatment of breast cancer.
Collapse
Affiliation(s)
- Rebecca
T. Miceli
- Department
of Chemistry and Chemical Biology, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Noah G. Allen
- Department
of Biomedical Engineering, Rensselaer Polytechnic
Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Bhagyashree Subramaniam
- Department
of Chemistry and Chemical Biology, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Livia Carmody
- Department
of Chemistry and Chemical Biology, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
| | - Jonathan S. Dordick
- Department
of Biomedical Engineering, Rensselaer Polytechnic
Institute, Troy, New York 12180, United States
- Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - David T. Corr
- Department
of Biomedical Engineering, Rensselaer Polytechnic
Institute, Troy, New York 12180, United States
| | - Myriam Cotten
- Department
of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States
| | - Richard A. Gross
- Department
of Chemistry and Chemical Biology, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
3
|
Maja M, Verfaillie M, Van Der Smissen P, Henriet P, Pierreux CE, Sounni NE, Tyteca D. Targeting cholesterol impairs cell invasion of all breast cancer types. Cancer Cell Int 2024; 24:27. [PMID: 38200575 PMCID: PMC10782689 DOI: 10.1186/s12935-023-03206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Breast cancer clinical outcome relies on its intrinsic molecular subtype and mortality is almost exclusively due to metastasis, whose mechanism remains unclear. We recently revealed the specific contribution of plasma membrane cholesterol to the invasion of malignant MCF10CAIa but not premalignant MCF10AT and normal MCF10A cell lines in 2D, through invadopodia formation and extracellular matrix (ECM) degradation. In the present study, we address the impact of breast cancer subtypes, mutations and aggressiveness on cholesterol implication in breast cancer cell invasion and 3D spheroid invasion and growth. METHODS We used nine breast cancer cell lines grouped in four subtypes matching breast tumor classification. Four of these cell lines were also used to generate 3D spheroids. These cell lines were compared for cell invasion in 2D and 3D, spheroid growth in 3D, gelatin degradation, cortactin expression, activation and subcellular distribution as well as cell surface cholesterol distribution and lipid droplets. The effect of plasma membrane cholesterol depletion on all these parameters was determined in parallel and systematically compared with the impact of global matrix metalloproteinase (MMP) inhibition. RESULTS The six invasive cell lines in 2D were sensitive to partial cholesterol depletion, independently of their subtype, aggressiveness or mutation. Nevertheless, the effect was stronger in the three cell lines able to degrade gelatin. 3D spheroid invasion was also reduced after cholesterol depletion in all breast cancer subtypes tested. Notably, targeting cholesterol was more powerful than MMP inhibition in reducing invasion in both 2D and 3D culture models. Moreover, cholesterol depletion in the six invasive cell lines impaired cortactin distribution in the perinuclear region where invadopodia localized. Breast cancer cell line aggressiveness relied on cholesterol-enriched domains at the ECM-free side and intracellular lipid droplets. Furthermore, the three gelatin-degrading cell lines were characterized by increased cholesterol-enriched submicrometric domains at their ECM-contact side. CONCLUSION Together, our data suggest cell surface cholesterol combined with lipid droplet labeling as a breast cancer cell aggressiveness marker. They also open the way to test other cholesterol-targeting drugs in more complex models to further evaluate whether cholesterol could represent a strategy in breast cancer therapy.
Collapse
Affiliation(s)
- Mauriane Maja
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, 1200, Brussels, Belgium
| | - Marie Verfaillie
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, 1200, Brussels, Belgium
| | | | - Patrick Henriet
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, 1200, Brussels, Belgium
| | - Christophe E Pierreux
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, 1200, Brussels, Belgium
| | - Nor Eddine Sounni
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, 4000, Liège, Belgium
| | - Donatienne Tyteca
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, 1200, Brussels, Belgium.
| |
Collapse
|
4
|
Liu Y, Niu R, Deng R, Wang Y, Song S, Zhang H. Multi-Enzyme Co-Expressed Nanomedicine for Anti-Metastasis Tumor Therapy by Up-Regulating Cellular Oxidative Stress and Depleting Cholesterol. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307752. [PMID: 37734072 DOI: 10.1002/adma.202307752] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/07/2023] [Indexed: 09/23/2023]
Abstract
Tumor cells movement and migration are inseparable from the integrity of lipid rafts and the formation of lamellipodia, and lipid rafts are also a prerequisite for the formation of lamellipodia. Therefore, destroying the lipid rafts is an effective strategy to inhibit tumor metastasis. Herein, a multi-enzyme co-expressed nanomedicine: cholesterol oxidase (CHO) loaded Co─PN3 single-atom nanozyme (Co─PN3 SA/CHO) that can up-regulate cellular oxidative stress, disrupt the integrity of lipid rafts, and inhibit lamellipodia formation to induce anti-metastasis tumor therapy, is developed. In this process, Co─PN3 SA can catalyze oxygen (O2 ) and hydrogen peroxide (H2 O2 ) to generate reactive oxygen species (ROS) via oxidase-like and Fenton-like properties. The doping of P atoms optimizes the adsorption process of the intermediate at the active site and enhances the ROS generation properties of nanomedicine. Meantime, O2 produced by catalase-like catalysis can combine with excess cholesterol to generate more H2 O2 under CHO catalysis, achieving enhanced oxidative damage to tumor cells. Most importantly, cholesterol depletion in tumor cells also disrupts the integrity of lipid rafts and inhibits the formation of lamellipodia, greatly inhibiting the proliferation and metastasis of tumor cells. This strategy by up-regulating cellular oxidative stress and depleting cellular cholesterol constructs a new idea for anti-metastasis-oriented cancer therapy strategies.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Rui Niu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ruiping Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
5
|
Li D, Park Y, Hemati H, Liu X. Cell aggregation activates small GTPase Rac1 and induces CD44 cleavage by maintaining lipid raft integrity. J Biol Chem 2023; 299:105377. [PMID: 37866630 PMCID: PMC10692920 DOI: 10.1016/j.jbc.2023.105377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
Lipid rafts are highly ordered membrane domains that are enriched in cholesterol and glycosphingolipids and serve as major platforms for signal transduction. Cell detachment from the extracellular matrix (ECM) triggers lipid raft disruption and anoikis, which is a barrier for cancer cells to metastasize. Compared to single circulating tumor cells (CTCs), our recent studies have demonstrated that CD44-mediatd cell aggregation enhances the stemness, survival and metastatic ability of aggregated cells. Here, we investigated whether and how lipid rafts are involved in CD44-mediated cell aggregation. We found that cell detachment, which mimics the condition when tumor cells detach from the ECM to metastasize, induced lipid raft disruption in single cells, but lipid raft integrity was maintained in aggregated cells. We further found that lipid raft integrity in aggregated cells was required for Rac1 activation to prevent anoikis. In addition, CD44 and γ-secretase coexisted at lipid rafts in aggregated cells, which promoted CD44 cleavage and generated CD44 intracellular domain (CD44 ICD) to enhance stemness of aggregated cells. Consequently, lipid raft disruption inhibited Rac1 activation, CD44 ICD generation, and metastasis. Our findings reveal two new pathways regulated by CD44-mediated cell aggregation via maintaining lipid raft integrity. These findings also suggest that targeting cell aggregation-mediated pathways could be a novel therapeutic strategy to prevent CTC cluster-initiated metastasis.
Collapse
Affiliation(s)
- Dong Li
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Younhee Park
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Hami Hemati
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Xia Liu
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA; Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
6
|
Gulia S, Chandra P, Das A. The Prognosis of Cancer Depends on the Interplay of Autophagy, Apoptosis, and Anoikis within the Tumor Microenvironment. Cell Biochem Biophys 2023; 81:621-658. [PMID: 37787970 DOI: 10.1007/s12013-023-01179-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Within the tumor microenvironment, the fight between the immune system and cancer influences tumor transformation. Metastasis formation is an important stage in the progression of cancer. This process is aided by cellular detachment and resistance to anoikis, which are achieved by altering intercellular signaling. Autophagy, specifically pro-survival autophagy, aids cancer cells in developing treatment resistance. Numerous studies have shown that autophagy promotes tumor growth and resistance to anoikis. To regulate protective autophagy, cancer-related genes phosphorylate both pro- and anti-apoptotic proteins. Apoptosis, a type of controlled cell death, eliminates damaged or unwanted cells. Anoikis is a type of programmed cell death in which cells lose contact with the extracellular matrix. The dysregulation of these cellular pathways promotes tumor growth and spread. Apoptosis, anoikis, and autophagy interact meticulously and differently depending on the cellular circumstances. For instance, autophagy can protect cancer cells from apoptosis by removing cellular components that are damaged and might otherwise trigger apoptotic pathways. Similarly, anoikis dysregulation can trigger autophagy by causing cellular harm and metabolic stress. In order to prevent or treat metastatic disease, specifically, targeting these cellular mechanisms may present a promising prospect for cancer therapy. This review discourses the state of our understanding of the molecular and cellular mechanisms underlying tumor transformation and the establishment of metastatic tumors. To enhance the prognosis for cancer, we highlight and discuss potential therapeutic approaches that target these processes and genes involved in them.
Collapse
Affiliation(s)
- Shweta Gulia
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| |
Collapse
|
7
|
Yang T, Liang N, Zhang J, Bai Y, Li Y, Zhao Z, Chen L, Yang M, Huang Q, Hu P, Wang Q, Zhang H. OCTN2 enhances PGC-1α-mediated fatty acid oxidation and OXPHOS to support stemness in hepatocellular carcinoma. Metabolism 2023; 147:155628. [PMID: 37315888 DOI: 10.1016/j.metabol.2023.155628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND The Metabolic reprogramming of tumor cells plays a vital role in the progression of hepatocellular carcinoma. Organic cation/carnitine transporter 2 (OCTN2), a sodium-ion dependent carnitine transporter and a sodium-ion independent tetraethylammonium (TEA) transporter, has been reported to contribute tumor malignancies and metabolic dysregulation in renal and esophageal carcinoma. However, the role of lipid metabolism deregulation mediated by OCTN2 in HCC cells has not been clarified. METHODS Bioinformatics analyses and immunohistochemistry assay were employed to identify OCTN2 expression in HCC tissues. The correlation between OCTN2 expression and prognosis was elucidated through K-M survival analysis. The expression and function of OCTN2 were examined via the assays of western blotting, sphere formation, cell proliferation, migration and invasion. The mechanism of OCTN2-mediated HCC malignancies was investigated through RNA-seq and metabolomic analyses. Furthermore, xenograft tumor models based on HCC cells with different OCTN2 expression levels were conducted to analyze the tumorigenic and targetable role of OCTN2 in vivo. RESULTS We found that gradually focused OCTN2 was significantly upregulated in HCC and tightly associated with poor prognosis. Additionally, OCTN2 upregulation promoted HCC cells proliferation and migration in vitro and augmented the growth and metastasis of HCC. Moreover, OCTN2 promoted the cancer stem-like properties of HCC by increasing fatty acid oxidation and oxidative phosphorylation. Mechanistically, PGC-1α signaling participated in the HCC cancer stem-like properties mediated by OCTN2 overexpression, which is confirmed by in vitro and in vivo analyses. Furthermore, OCTN2 upregulation may be transcriptionally activated by YY1 in HCC. Particularly, treatment with mildronate, an inhibitor of OCTN2, showed a therapeutic influence on HCC in vitro and in vivo. CONCLUSIONS Our findings demonstrate that OCTN2 plays a critical metabolic role in HCC cancer stemness maintenance and HCC progression, providing evidence for OCTN2 as a promising target for HCC therapy.
Collapse
Affiliation(s)
- Tao Yang
- Department of Pain Treatment, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Ning Liang
- Department of General Surgery, The 75th Group Army Hospital, Dali 671000, China; Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jiahao Zhang
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yaxing Bai
- Department of Dermatology, XiJing Hospital, Xi'an, Shaanxi 710032, China
| | - Yuedan Li
- Department of Pharmacy, General Hospital of Central Theater Command, Wuhan 430010, China
| | - Zifeng Zhao
- Department of Pain Treatment, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Liusheng Chen
- Clinical Research Center, The 75th Group Army Hospital, Dali, Yunnan 671000, China
| | - Min Yang
- Department of General Surgery, The 75th Group Army Hospital, Dali 671000, China
| | - Qian Huang
- Clinical Research Center, The 75th Group Army Hospital, Dali, Yunnan 671000, China
| | - Pan Hu
- Department of Anesthesiology, the 920 Hospital of Joint Logistic Support Force of Chinese PLA, Kunming, Yunnan 650500, China.
| | - Qian Wang
- Department of General Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Hongxin Zhang
- Department of Pain Treatment, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China; Department of Intervention Therapy, The Second Affiliated Hospital, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| |
Collapse
|
8
|
Zhang J, Xiang Q, Wu M, Lao YZ, Xian YF, Xu HX, Lin ZX. Autophagy Regulators in Cancer. Int J Mol Sci 2023; 24:10944. [PMID: 37446120 PMCID: PMC10341480 DOI: 10.3390/ijms241310944] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Autophagy plays a complex impact role in tumor initiation and development. It serves as a double-edged sword by supporting cell survival in certain situations while also triggering autophagic cell death in specific cellular contexts. Understanding the intricate functions and mechanisms of autophagy in tumors is crucial for guiding clinical approaches to cancer treatment. Recent studies highlight its significance in various aspects of cancer biology. Autophagy enables cancer cells to adapt to and survive unfavorable conditions by recycling cellular components. However, excessive or prolonged autophagy can lead to the self-destruction of cancer cells via a process known as autophagic cell death. Unraveling the molecular mechanisms underlying autophagy regulation in cancer is crucial for the development of targeted therapeutic interventions. In this review, we seek to present a comprehensive summary of current knowledge regarding autophagy, its impact on cancer cell survival and death, and the molecular mechanisms involved in the modulation of autophagy for cancer therapy.
Collapse
Affiliation(s)
- Juan Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; (J.Z.); (Y.-F.X.)
| | - Qian Xiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Q.X.); (M.W.); (Y.-Z.L.)
| | - Man Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Q.X.); (M.W.); (Y.-Z.L.)
| | - Yuan-Zhi Lao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Q.X.); (M.W.); (Y.-Z.L.)
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; (J.Z.); (Y.-F.X.)
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Q.X.); (M.W.); (Y.-Z.L.)
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; (J.Z.); (Y.-F.X.)
- Hong Kong Institute of Integrative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
9
|
Alizadeh J, Kavoosi M, Singh N, Lorzadeh S, Ravandi A, Kidane B, Ahmed N, Mraiche F, Mowat MR, Ghavami S. Regulation of Autophagy via Carbohydrate and Lipid Metabolism in Cancer. Cancers (Basel) 2023; 15:2195. [PMID: 37190124 PMCID: PMC10136996 DOI: 10.3390/cancers15082195] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Metabolic changes are an important component of tumor cell progression. Tumor cells adapt to environmental stresses via changes to carbohydrate and lipid metabolism. Autophagy, a physiological process in mammalian cells that digests damaged organelles and misfolded proteins via lysosomal degradation, is closely associated with metabolism in mammalian cells, acting as a meter of cellular ATP levels. In this review, we discuss the changes in glycolytic and lipid biosynthetic pathways in mammalian cells and their impact on carcinogenesis via the autophagy pathway. In addition, we discuss the impact of these metabolic pathways on autophagy in lung cancer.
Collapse
Affiliation(s)
- Javad Alizadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Navjit Singh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada;
| | - Biniam Kidane
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 6C5, Canada;
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
| | - Naseer Ahmed
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Radiology, Section of Radiation Oncology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar;
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Michael R. Mowat
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
- Research Institute of Oncology and Hematology, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, Academia of Silesia, 41-800 Zabrze, Poland
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
10
|
Chan NN, Yamazaki M, Maruyama S, Abé T, Haga K, Kawaharada M, Izumi K, Kobayashi T, Tanuma JI. Cholesterol Is a Regulator of CAV1 Localization and Cell Migration in Oral Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24076035. [PMID: 37047005 PMCID: PMC10093846 DOI: 10.3390/ijms24076035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Cholesterol plays an important role in cancer progression, as it is utilized in membrane biogenesis and cell signaling. Cholesterol-lowering drugs have exhibited tumor-suppressive effects in oral squamous cell carcinoma (OSCC), suggesting that cholesterol is also essential in OSCC pathogenesis. However, the direct effects of cholesterol on OSCC cells remain unclear. Here, we investigated the role of cholesterol in OSCC with respect to caveolin-1 (CAV1), a cholesterol-binding protein involved in intracellular cholesterol transport. Cholesterol levels in OSCC cell lines were depleted using methyl-β-cyclodextrin and increased using the methyl-β-cyclodextrin-cholesterol complex. Functional analysis was performed using timelapse imaging, and CAV1 expression in cholesterol-manipulated cells was investigated using immunofluorescence and immunoblotting assays. CAV1 immunohistochemistry was performed on surgical OSCC samples. We observed that cholesterol addition induced polarized cell morphology, along with CAV1 localization at the trailing edge, and promoted cell migration. Moreover, CAV1 was upregulated in the lipid rafts and formed aggregates in the plasma membrane in cholesterol-added cells. High membranous CAV1 expression in tissue specimens was associated with OSCC recurrence. Therefore, cholesterol promotes the migration of OSCC cells by regulating cell polarity and CAV1 localization to the lipid raft. Furthermore, membranous CAV1 expression is a potential prognostic marker for OSCC patients.
Collapse
Affiliation(s)
- Nyein Nyein Chan
- Division of Oral Pathology, Department of Tissue Regeneration and Reconstruction, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Manabu Yamazaki
- Division of Oral Pathology, Department of Tissue Regeneration and Reconstruction, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Satoshi Maruyama
- Oral Pathology Section, Department of Surgical Pathology, Niigata University Hospital, Niigata 951-8520, Japan
| | - Tatsuya Abé
- Division of Oral Pathology, Department of Tissue Regeneration and Reconstruction, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Kenta Haga
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Masami Kawaharada
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Kenji Izumi
- Division of Biomimetics, Department of Oral Health Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Tadaharu Kobayashi
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Jun-Ichi Tanuma
- Division of Oral Pathology, Department of Tissue Regeneration and Reconstruction, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Oral Pathology Section, Department of Surgical Pathology, Niigata University Hospital, Niigata 951-8520, Japan
| |
Collapse
|
11
|
Cholesterol and Sphingomyelin Polarize at the Leading Edge of Migrating Myoblasts and Involve Their Clustering in Submicrometric Domains. Biomolecules 2023; 13:biom13020319. [PMID: 36830688 PMCID: PMC9953279 DOI: 10.3390/biom13020319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Myoblast migration is crucial for myogenesis and muscular tissue homeostasis. However, its spatiotemporal control remains elusive. Here, we explored the involvement of plasma membrane cholesterol and sphingolipids in this process. In resting C2C12 mouse myoblasts, those lipids clustered in sphingomyelin/cholesterol/GM1 ganglioside (SM/chol/GM1)- and cholesterol (chol)-enriched domains, which presented a lower stiffness than the bulk membrane. Upon migration, cholesterol and sphingomyelin polarized at the front, forming cholesterol (chol)- and sphingomyelin/cholesterol (SM/chol)-enriched domains, while GM1-enriched domains polarized at the rear. A comparison of domain proportion suggested that SM/chol- and GM1-enriched domains originated from the SM/chol/GM1-coenriched domains found at resting state. Modulation of domain proportion (through cholesterol depletion, combined or not with actin polymerization inhibition, or sphingolipid synthesis inhibition) revealed that the higher the chol- and SM/chol-enriched domains, the higher the myoblast migration. At the front, chol- and SM/chol-enriched domains were found in proximity with F-actin fibers and the lateral mobility of sphingomyelin in domains was specifically restricted in a cholesterol- and cytoskeleton-dependent manner while domain abrogation impaired F-actin and focal adhesion polarization. Altogether, we showed the polarization of cholesterol and sphingomyelin and their clustering in chol- and SM/chol-enriched domains with differential properties and roles, providing a mechanism for the spatial and functional control of myoblast migration.
Collapse
|
12
|
Ye Z, Wang Q, Dai S, Ji X, Cao P, Xu C, Bao G. The Berberis vulgaris L. extract berberine exerts its anti-oxidant effects to ameliorate cholesterol overloading-induced cell apoptosis in the primary mice hepatocytes: an in vitro study. In Vitro Cell Dev Biol Anim 2022; 58:855-866. [PMID: 36481977 DOI: 10.1007/s11626-022-00737-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/03/2022] [Indexed: 12/14/2022]
Abstract
Cholesterol overloading stress damages normal cellular functions in hepatocytes and induces metabolic disorders to facilitate the development of multiple diseases, including cardiovascular diseases, which seriously degrades the life quality of human beings. Recent data suggest that the Berberis vulgaris L. extract berberine is capable of regulating cholesterol homeostasis, which is deemed as potential therapeutic drug for the treatment of cholesterol overloading-associated diseases, but its detailed functions and molecular mechanisms are still largely unknown. In the present study, we evidenced that berberine suppressed cell apoptosis in high-cholesterol-diet mice liver and cholesterol-overloaded mice hepatocytes. Also, cholesterol overloading promoted reactive oxygen species (ROS) generation to trigger oxidative damages in hepatocytes, which were reversed by co-treating cells with both berberine and the ROS scavenger N-acetylcysteine (NAC). Moreover, the underlying mechanisms were uncovered, and we validated that berberine downregulated Keap1, and upregulated Nrf2 to activate the anti-oxidant Nrf2/HO-1 signaling pathway in cholesterol overloading-treated hepatocytes, and both Keap1 upregulation and Nrf2 downregulation abrogated the suppressing effects of berberine on cell apoptosis in the hepatocytes with cholesterol exposure. Taken together, we concluded that berberine activated the anti-oxidant Keap1/Nrf2/HO-1 pathway to eliminate cholesterol overloading-induced oxidative stress and apoptotic cell death in mice hepatocytes, and those evidences hinted that berberine might be used as putative therapeutic drug for the treatment of cholesterol overloading-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Zhengchen Ye
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan Province, China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan Province, China
| | - Shupeng Dai
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan Province, China
| | - Xiang Ji
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan Province, China
| | - Pingli Cao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan Province, China
| | - Chenglei Xu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan Province, China
| | - Guoqing Bao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan Province, China.
| |
Collapse
|
13
|
Maja M, Tyteca D. Alteration of cholesterol distribution at the plasma membrane of cancer cells: From evidence to pathophysiological implication and promising therapy strategy. Front Physiol 2022; 13:999883. [PMID: 36439249 PMCID: PMC9682260 DOI: 10.3389/fphys.2022.999883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Cholesterol-enriched domains are nowadays proposed to contribute to cancer cell proliferation, survival, death and invasion, with important implications in tumor progression. They could therefore represent promising targets for new anticancer treatment. However, although diverse strategies have been developed over the years from directly targeting cholesterol membrane content/distribution to adjusting sterol intake, all approaches present more or less substantial limitations. Those data emphasize the need to optimize current strategies, to develop new specific cholesterol-targeting anticancer drugs and/or to combine them with additional strategies targeting other lipids than cholesterol. Those objectives can only be achieved if we first decipher (i) the mechanisms that govern the formation and deformation of the different types of cholesterol-enriched domains and their interplay in healthy cells; (ii) the mechanisms behind domain deregulation in cancer; (iii) the potential generalization of observations in different types of cancer; and (iv) the specificity of some alterations in cancer vs. non-cancer cells as promising strategy for anticancer therapy. In this review, we will discuss the current knowledge on the homeostasis, roles and membrane distribution of cholesterol in non-tumorigenic cells. We will then integrate documented alterations of cholesterol distribution in domains at the surface of cancer cells and the mechanisms behind their contribution in cancer processes. We shall finally provide an overview on the potential strategies developed to target those cholesterol-enriched domains in cancer therapy.
Collapse
|
14
|
Maja M, Mohammed D, Dumitru AC, Verstraeten S, Lingurski M, Mingeot-Leclercq MP, Alsteens D, Tyteca D. Surface cholesterol-enriched domains specifically promote invasion of breast cancer cell lines by controlling invadopodia and extracellular matrix degradation. Cell Mol Life Sci 2022; 79:417. [PMID: 35819726 PMCID: PMC9276565 DOI: 10.1007/s00018-022-04426-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022]
Abstract
Tumor cells exhibit altered cholesterol content. However, cholesterol structural subcellular distribution and implication in cancer cell invasion are poorly understood mainly due to difficulties to investigate cholesterol both quantitatively and qualitatively and to compare isogenic cell models. Here, using the MCF10A cell line series (non-tumorigenic MCF10A, pre-malignant MCF10AT and malignant MCF10CAIa cells) as a model of breast cancer progression and the highly invasive MDA-MB-231 cell line which exhibits the common TP53 mutation, we investigated if cholesterol contributes to cancer cell invasion, whether the effects are specific to cancer cells and the underlying mechanism. We found that partial membrane cholesterol depletion specifically and reversibly decreased invasion of the malignant cell lines. Those cells exhibited dorsal surface cholesterol-enriched submicrometric domains and narrow ER-plasma membrane and ER-intracellular organelles contact sites. Dorsal cholesterol-enriched domains can be endocytosed and reach the cell ventral face where they were involved in invadopodia formation and extracellular matrix degradation. In contrast, non-malignant cells showed low cell invasion, low surface cholesterol exposure and cholesterol-dependent focal adhesions. The differential cholesterol distribution and role in breast cancer cell invasion provide new clues for the understanding of the molecular events underlying cellular mechanisms in breast cancer.
Collapse
Affiliation(s)
- Mauriane Maja
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, B1.75.05, avenue Hippocrate, 75, 1200, Brussels, Belgium
| | - Danahe Mohammed
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Andra C Dumitru
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Sandrine Verstraeten
- Cellular and Molecular Pharmacology Unit (FACM), Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Maxime Lingurski
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, B1.75.05, avenue Hippocrate, 75, 1200, Brussels, Belgium
| | | | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Donatienne Tyteca
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, B1.75.05, avenue Hippocrate, 75, 1200, Brussels, Belgium.
| |
Collapse
|
15
|
Wu ZH, Wu B, Li C, Zhang YJ, Zhou T. Pyroptosis-Related Signature and Tumor Microenvironment Infiltration Characterization in Head and Neck Squamous Cell Carcinoma. Front Cell Dev Biol 2022; 10:702224. [PMID: 35712671 PMCID: PMC9194563 DOI: 10.3389/fcell.2022.702224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is the sixth most widespread and deadly cancer. Until now, very few studies have systematically evaluated the role of pyroptosis-related genes (PRGs) and lncRNAs in HNSCC patients. Methods: We integrated the genomic data to comprehensively assess the role of pyroptosis with the tumor microenvironment cell-infiltrating characteristics in HNSCC. In addition, we also constructed a set of the scoring system to calculate the pyroptosis dysfunction in each patient. Results: The analysis of the CNV alteration frequency displayed that CNV changes were common in 33 PRGs, and the frequency of copy number gain and loss was similar. CASP8 demonstrated the highest mutation frequency. Considering the individual heterogeneity, a scoring system to quantify the pyroptosis pattern in each patient was constructed based on these phenotypic-related genes, which we named as the PyroptosisScore. The results indicated that the low PyroptosisScore group experienced increased extensive TMB than the high group, with the most significant mutated genes being TP53 and TTN. Finally, we tried to find some useful pyroptosis-related lncRNAs, and 14 differentially expressed lncRNAs were selected as independent prognosis factors of HNSCC patients based on the multivariate Cox analysis. Conclusion: This work suggests the pyroptosis features and the potential mechanisms of the tumor microenvironment. The exploration may assist in identifying novel biomarkers and help patients predict prognosis, clinical diagnosis, and management.
Collapse
Affiliation(s)
- Zeng-Hong Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Li
- Department of Otolaryngology Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - You-Jing Zhang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Tao Zhou,
| |
Collapse
|
16
|
The emerging role of paraptosis in tumor cell biology: Perspectives for cancer prevention and therapy with natural compounds. Biochim Biophys Acta Rev Cancer 2020; 1873:188338. [PMID: 31904399 DOI: 10.1016/j.bbcan.2020.188338] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/06/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
Abstract
Standard anti-cancer therapies promote tumor growth suppression mainly via induction of apoptosis. However, in most cases cancer cells acquire the ability to escape apoptotic cell death, thus becoming resistant to current treatments. In this setting, the interest in alternative cell death modes has recently increased. Paraptosis is a new form of programmed cell death displaying endoplasmic reticulum (ER) and/or mitochondria dilation, generally due to proteostasis disruption or redox and ion homeostasis alteration. Recent studies have highlighted that several natural compounds can trigger paraptosis in different tumor cell lines. Here, we review the molecular mechanisms underlying paraptotic cell death, as well as the natural products inducing this kind of cell death program. A better understanding of paraptosis should facilitate the development of new therapeutic strategies for cancer prevention and treatment.
Collapse
|
17
|
Gu L, Saha ST, Thomas J, Kaur M. Targeting cellular cholesterol for anticancer therapy. FEBS J 2019; 286:4192-4208. [DOI: 10.1111/febs.15018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/30/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Liang Gu
- School of Molecular and Cell Biology University of the Witwatersrand Johannesburg South Africa
| | - Sourav Taru Saha
- School of Molecular and Cell Biology University of the Witwatersrand Johannesburg South Africa
| | - Jodie Thomas
- School of Molecular and Cell Biology University of the Witwatersrand Johannesburg South Africa
| | - Mandeep Kaur
- School of Molecular and Cell Biology University of the Witwatersrand Johannesburg South Africa
| |
Collapse
|
18
|
Xiao J, Deng YM, Liu XR, Cao JP, Zhou M, Tang YL, Xiong WH, Jiang ZS, Tang ZH, Liu LS. PCSK9: A new participant in lipophagy in regulating atherosclerosis? Clin Chim Acta 2019; 495:358-364. [PMID: 31075236 DOI: 10.1016/j.cca.2019.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022]
Abstract
Proprotein convertase subtilisin kexin 9 (PCSK9) regulates lipid metabolism by degrading low-density lipoprotein receptor on the surface of hepatocytes. PCSK9-mediated lipid degradation is associated with lipophagy. Lipophagy is a process by which autophagosomes selectively sequester lipid-droplet-stored lipids and are delivered to lysosomes for degradation. Lipophagy was first discovered in hepatocytes, and its occurrence provides important fundamental insights into how lipid metabolism regulates cellular physiology and pathophysiology. Furthermore, PCSK9 may regulate lipid levels by affecting lipophagy. This review will discuss recent advances by which PCSK9 mediates lipid degradation via the lipophagy pathway and present lipophagy as a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Jun Xiao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Yi-Min Deng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiang-Rui Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Jian-Ping Cao
- Hunan Environmental Biology Vocational and Technical College, Hengyang, Hunan 421001, PR China
| | - Min Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Ya-Ling Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Wen-Hao Xiong
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China.
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
19
|
Li K, Xiu C, Zhou Q, Ni L, Du J, Gong T, Li M, Saijilafu, Yang H, Chen J. A dual role of cholesterol in osteogenic differentiation of bone marrow stromal cells. J Cell Physiol 2018; 234:2058-2066. [PMID: 30317648 DOI: 10.1002/jcp.27635] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/27/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Kun Li
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySuzhou China
- Department of Orthopedic Institute, Medical College, Soochow UniversitySuzhou China
| | - Chunmei Xiu
- Department of Orthopedic Institute, Medical College, Soochow UniversitySuzhou China
| | - Qiang Zhou
- Department of RadiologyThe First Affiliated Hospital of Soochow UniversitySuzhou China
| | - Li Ni
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySuzhou China
- Department of Orthopedic Institute, Medical College, Soochow UniversitySuzhou China
| | - Jun Du
- Department of Orthopedic Magnetic Resonance ChamberThe First Affiliated Hospital of Soochow UniversitySuzhou China
| | - Tingting Gong
- Department of Orthopedic Institute, Medical College, Soochow UniversitySuzhou China
| | - Meng Li
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySuzhou China
- Department of Orthopedic Institute, Medical College, Soochow UniversitySuzhou China
| | - Saijilafu
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySuzhou China
- Department of Orthopedic Institute, Medical College, Soochow UniversitySuzhou China
| | - Huilin Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySuzhou China
- Department of Orthopedic Institute, Medical College, Soochow UniversitySuzhou China
| | - Jianquan Chen
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySuzhou China
- Department of Orthopedic Institute, Medical College, Soochow UniversitySuzhou China
| |
Collapse
|