1
|
Luppov D, Sorokin M, Zolotovskaya M, Sekacheva M, Suntsova M, Zakharova G, Buzdin A. Gene Expression and Pathway Activation Biomarkers of Breast Cancer Sensitivity to Taxanes. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1803-1822. [PMID: 39523117 DOI: 10.1134/s0006297924100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024]
Abstract
Taxanes are one of the most widely used classes of breast cancer (BC) therapeutics. Despite the long history of clinical usage, the molecular mechanisms of their action and cancer resistance are still not fully understood. Here we aimed to identify gene expression and molecular pathway activation biomarkers of BC sensitivity to taxane drugs paclitaxel and docetaxel. We used to our knowledge the biggest collection of clinically annotated publicly available literature BC gene expression data (12 datasets, n = 1250) and the experimental clinical BC cohort (n = 12). Seven literature datasets were used for biomarker discovery (n = 914), and the remaining five literature plus one experimental datasets (n = 336) - for the validation. We totally found 34 genes and 29 molecular pathways which could strongly discriminate good and poor responders to taxane treatments. The biomarker genes and pathways were associated with molecular processes related to formation of mitotic spindle and centromeres, and with the spindle assembly mitotic checkpoint. Furthermore, we created gene expression and pathway activation signatures predicting BC response to taxanes. These signatures were tested on the validation BC cohort and demonstrated strong biomarker potential reflected by mean AUC values of 0.76 and 0.77, respectively, which outperforms previously reported analogs. Taken together, these findings can deepen our understanding of mechanism of action of taxanes and potentially improve personalization of treatment in BC.
Collapse
Affiliation(s)
- Daniil Luppov
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
- Laboratory of Clinical and Genomic Bioinformatics, I. M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| | - Maxim Sorokin
- Laboratory of Clinical and Genomic Bioinformatics, I. M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia
- OmicsWay Corp., Walnut, CA, 91789, USA
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), Brussels, Belgium
| | - Marianna Zolotovskaya
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
- Laboratory of Clinical and Genomic Bioinformatics, I. M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| | - Marina Sekacheva
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Maria Suntsova
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, 119991, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Galina Zakharova
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Anton Buzdin
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), Brussels, Belgium
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, 119991, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
- Oncobox Ltd., Moscow, 141701, Russia
| |
Collapse
|
2
|
Martínez-Rivera FJ, Yim YY, Godino A, Minier-Toribio A, Tofani S, Holt LM, Torres-Berrío A, Futamura R, Browne CJ, Markovic T, Hamilton PJ, Neve RL, Nestler EJ. Cell-Type-Specific Regulation of Cocaine Reward by the E2F3a Transcription Factor in Nucleus Accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602609. [PMID: 39026727 PMCID: PMC11257579 DOI: 10.1101/2024.07.08.602609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The development of drug addiction is characterized by molecular changes in brain reward regions that lead to the transition from recreational to compulsive drug use. These neurobiological processes in brain reward regions, such as the nucleus accumbens (NAc), are orchestrated in large part by transcriptional regulation. Our group recently identified the transcription factor E2F3a as a novel regulator of cocaine's rewarding effects and gene expression regulation in the NAc of male mice. Despite this progress, no information is available about the role of E2F3a in regulating cocaine reward at the sex- and cell-specific levels. Here, we used male and female mice expressing Cre-recombinase in either D1- or D2-type medium spiny neurons (MSNs) combined with viral-mediated gene transfer to bidirectionally control levels of E2F3a in a cell-type-specific manner in the NAc during conditioned place preference (CPP) to cocaine. Our findings show that selective overexpression of E2F3a in D1-MSNs increased cocaine CPP in both male and female mice, whereas opposite effects were observed under knockdown conditions. In contrast, equivalent E2F3a manipulations in D2-MSNs had no significant effects. To further explore the role of E2F3a in sophisticated operant and motivated behaviors, we performed viral manipulations of all NAc neurons in combination with cocaine self-administration and behavioral economics procedures in rats and demonstrated that E2F3a regulates sensitivity aspects of cocaine seeking and taking. These results confirm E2F3a as a central substrate of cocaine reward and demonstrate that this effect is mediated in D1-MSNs, thereby providing increased knowledge of cocaine action at the transcriptional level.
Collapse
|
3
|
Jin FF, Wang CJ, Cui L, Liu FF, Wang KL, Li WJ, Li ZG. Interaction of E2F3a and CASP8AP2 Regulates Histone Expression and Chemosensitivity of Leukemic Cells. J Pediatr Hematol Oncol 2023; 45:e339-e344. [PMID: 36162009 PMCID: PMC10030168 DOI: 10.1097/mph.0000000000002558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022]
Abstract
Low expression levels of E2F3a and caspase 8-associated protein 2 (CASP8AP2) are associated with poor outcomes in children with acute lymphoblastic leukemia. Our previous study showed that a combined assessment of E2F3a and CASP8AP2 expression was more accurate in predicting relapse in children with acute lymphoblastic leukemia. However, the underlying mechanism remains unclear. In this study, the interaction between E2F3a and CASP8AP2 and its role in the regulation of histone expression, cell proliferation, the cell cycle, and chemosensitivity were investigated. Exogenous E2F3a-GST was coprecipitated with CASP8AP2-FLAG in HEK-293T cells. E2F3a was colocalized with CASP8AP2-GFP in the nucleus. The replication-dependent histones H2A and H2B were significantly upregulated when E2F3a or CASP8AP2 was overexpressed in HEK-293T or 697 cells and downregulated by E2F3a or CASP8AP2 knockdown. E2F3a and CASP8AP2 could collaboratively enhance the transcriptional activity of HIST1H2AG and HIST1H2BK . Both CASP8AP2 and E2F3a are involved in S phase progression. E2F3a and CASP8AP2 also affected the sensitivity of leukemic cells to daunorubicin. Therefore, CASP8AP2 and E2F3a collaboratively regulated replication-dependent histone expression, cell cycle progression, and chemosensitivity of leukemic cells.
Collapse
Affiliation(s)
- Fen-fen Jin
- Beijing Key Laboratory of Pediatric Hematology-Oncology, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematologic Diseases Laboratory, Hematology Center, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health
- Department of Hematology-Oncology, Children’s Hospital, Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chan-juan Wang
- Beijing Key Laboratory of Pediatric Hematology-Oncology, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematologic Diseases Laboratory, Hematology Center, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health
| | - Lei Cui
- Beijing Key Laboratory of Pediatric Hematology-Oncology, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematologic Diseases Laboratory, Hematology Center, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health
| | - Fei-fei Liu
- Department of Pediatrics, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Kai-ling Wang
- Department of Pediatrics, Beijing Luhe Hospital, Capital Medical University, Beijing
| | - Wei-jing Li
- Beijing Key Laboratory of Pediatric Hematology-Oncology, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematologic Diseases Laboratory, Hematology Center, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health
| | - Zhi-gang Li
- Beijing Key Laboratory of Pediatric Hematology-Oncology, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematologic Diseases Laboratory, Hematology Center, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health
| |
Collapse
|
4
|
Wang CJ, Jia MZ, Deng LP, Li WJ, Zhang Q, Zhang TJ, Li SY, Cui L, Li ZG. Interaction between CASP8AP2 and ZEB2-CtBP2 Regulates the Expression of LEF1. Pediatr Hematol Oncol 2022; 39:549-560. [PMID: 35139734 DOI: 10.1080/08880018.2022.2033369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Low expression of CTBP2 and CASP8AP2 correlated with poor outcome and predicted risk of relapse in pediatric B-cell acute lymphoblastic leukemia (B-ALL). This study aimed to investigate the molecular mechanism by which CASP8AP2 regulates LEF1 expression by interacting with CtBP2 and ZEB2 in Acute lymphoblastic lymphoma (ALL). There was an interaction between CASP8AP2, ZEB2, and CtBP2, and then the interaction between CtBP2 and ZEB2 was observed after downregulating the expression of CASP8AP2. The wild type (containing the ZEB2 binding site) or mutant (containing a mutant binding site) LEF1 gene promoter sequence was inserted into the pGL3-basic plasmid, and a dual-luciferase reporter gene detection system was used to observe how CASP8AP2, ZEB2, and CtBP2 regulate the transcription of the LEF1 gene. We conclude that CASP8AP2, CtBP2, and ZEB2 can all bind to the LEF1 gene promoter region and reduce the luciferase activity of the LEF1 promoter. Meanwhile, the interaction of ZEB2 and the LEF1 promoter was significantly weakened after downregulation of CASP8AP2. Knockdown of CASP8AP2 in the 697 cell lines resulted in the significant upregulation of the mRNA expression levels of the stemness-related genes CD44, JAG1, and SALL4. In conclusion, CASP8AP2 is vital for the interaction between CtBP2 and ZEB2, inhibiting LEF1 and stemness-related genes expression ALL.Supplemental data for this article is available online at https://doi.org/10.1080/08880018.2022.2033369 .
Collapse
Affiliation(s)
- Chan-Juan Wang
- Hematologic Diseases Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ming-Zhu Jia
- Hematologic Diseases Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Li-Ping Deng
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wei-Jing Li
- Hematologic Diseases Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Qing Zhang
- Hematologic Diseases Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Tong-Jia Zhang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Science, Peking University Health Science Centre, Beijing, China
| | - Shu-Yan Li
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Science, Peking University Health Science Centre, Beijing, China
| | - Lei Cui
- Hematologic Diseases Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zhi-Gang Li
- Hematologic Diseases Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
5
|
Cao M, Shi L, Peng P, Han B, Liu L, Lv X, Ma Z, Zhang S, Sun D. Determination of genetic effects and functional SNPs of bovine HTR1B gene on milk fatty acid traits. BMC Genomics 2021; 22:575. [PMID: 34315401 PMCID: PMC8314477 DOI: 10.1186/s12864-021-07893-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Our previous genome-wide association study (GWAS) on milk fatty acid traits in Chinese Holstein cows revealed, the SNP, BTB-01556197, was significantly associated with C10:0 at genome-wide level (P = 0.0239). It was located in the down-stream of 5-hydroxytryptamine receptor 1B (HTR1B) gene that has been shown to play an important role in the regulation of fatty acid oxidation. Hence, we considered it as a promising candidate gene for milk fatty acids in dairy cattle. In this study, we aimed to investigate whether the HTR1B gene had significant genetic effects on milk fatty acid traits. RESULTS We re-sequenced the entire coding region and 3000 bp of 5' and 3' flanking regions of HTR1B gene. A total of 13 SNPs was identified, containing one in 5' flanking region, two in 5' untranslated region (UTR), two in exon 1, five in 3' UTR, and three in 3' flanking region. By performing genotype-phenotype association analysis with SAS9.2 software, we observed that 13 SNPs were significantly associated with medium-chain saturated fatty acids such as C6:0, C8:0 and C10:0 (P < 0.0001 ~ 0.042). With Haploview 4.1 software, linkage disequilibrium (LD) analysis was performed. Two haplotype blocks formed by two and ten SNPs were observed. Haplotype-based association analysis indicated that both haplotype blocks were strongly associated with C6:0, C8:0 and C10:0 as well (P < 0.0001 ~ 0.0071). With regards to the missense mutation in exon 1 (g.17303383G > T) that reduced amino acid change from alanine to serine, we predicted that it altered the secondary structure of HTR1B protein with SOPMA. In addition, we predicted that three SNPs in promoter region, g.17307103A > T, g.17305206 T > G and g.17303761C > T, altered the binding sites of transcription factors (TFs) HMX2, PAX2, FOXP1ES, MIZ1, CUX2, DREAM, and PPAR-RXR by Genomatix. Of them, luciferase assay experiment further confirmed that the allele T of g.17307103A > T significantly increased the transcriptional activity of HTR1B gene than allele A (P = 0.0007). CONCLUSIONS In conclusion, our findings provided first evidence that the HTR1B gene had significant genetic effects on milk fatty acids in dairy cattle.
Collapse
Affiliation(s)
- Mingyue Cao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193 China
| | - Lijun Shi
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193 China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Peng Peng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193 China
| | - Bo Han
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193 China
| | - Lin Liu
- Beijing Dairy Cattle Center, Beijing, 100192 China
| | - Xiaoqing Lv
- Beijing Dairy Cattle Center, Beijing, 100192 China
| | - Zhu Ma
- Beijing Dairy Cattle Center, Beijing, 100192 China
| | - Shengli Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193 China
| | - Dongxiao Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
6
|
Cui L, Gao C, Wang CJ, Liu SG, Wu MY, Zhang RD, Li ZG. Low expression of CTBP2 and CASP8AP2 predicts risk of relapse in childhood B-cell precursor acute lymphoblastic leukemia: a retrospective cohort study. Pediatr Hematol Oncol 2020; 37:732-746. [PMID: 32804017 DOI: 10.1080/08880018.2020.1798572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
CtBP is a known corepressor abundantly expressed in cancer and regulates genes involved in cancer initiation, progression, and metastasis. This study aimed to investigate the prognostic significance of CTBP2 expression in a cohort of pediatric patients with B cell precursor acute lymphoblastic leukemia (BCP-ALL). It further evaluated the role of combined CTBP2 and CASP8AP2 expression in risk of relapse of BCP-ALL. The expression of CTBP2 mRNA was retrospectively detected by a qRT-PCR approach in bone marrow samples from 104 children with newly diagnosed BCP-ALL. CASP8AP2 was assessed simultaneously in the 100 patients included in this study. The receiver operating characteristic (ROC) curve analysis determined the cut off levels for CTBP2 and CASP8AP2 expression with good predictive significance for relapse of BCP-ALL. Patients with low CTBP2 expression had inferior relapse-free survival (RFS) and event-free survival (EFS) when compared to patients with high-CTBP2 expression. The expression level of CTBP2 was significantly associated with CASP8AP2 expression (r = 0.449, P < 0.001). Patients were stratified into three groups according to the combined evaluation of the two gene expression, and patients with simultaneous low-expression had the worst outcome (6-year RFS: 64.6%±12.8%, P < 0.001). Multivariate analysis demonstrated the expression of CTBP2 and CASP8AP2, minimal residual disease (MRD) at day 33 remained as independent prognostic factors for RFS. Based on the final Cox hazards model, we proposed an algorithm to calculate the risk index, which was more precise for predicting relapse. In conclusion, low expression of CTBP2 and CASP8AP2 correlated with poor outcome and predicted risk of relapse in pediatric BCP-ALL.
Collapse
Affiliation(s)
- Lei Cui
- Laboratory of Hematologic Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chao Gao
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chan-Juan Wang
- Laboratory of Hematologic Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shu-Guang Liu
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Min-Yuan Wu
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Rui-Dong Zhang
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zhi-Gang Li
- Laboratory of Hematologic Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
7
|
Gao C, Liu SG, Lu WT, Yue ZX, Zhao XX, Xing TY, Chen ZP, Zheng HY, Li ZG. Downregulating CREBBP inhibits proliferation and cell cycle progression and induces daunorubicin resistance in leukemia cells. Mol Med Rep 2020; 22:2905-2915. [PMID: 32945392 PMCID: PMC7453649 DOI: 10.3892/mmr.2020.11347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/23/2020] [Indexed: 11/24/2022] Open
Abstract
Low expression levels of CREB-binding protein (CREBBP) have been demonstrated to be associated with high minimal residual disease at the end of induction therapy and adverse long-term outcomes in pediatric patients with acute lymphoblastic leukemia (ALL). However, the effect of low CREBBP expression on the prognosis of ALL has not yet been investigated. In the present study, CREBBP was downregulated and overexpressed in ALL cell lines (Jurkat and Reh). Sensitivity to chemotherapy and cell proliferation activity was determined via a Cell Counting Kit-8 assay. Cell cycle analysis was performed using flow cytometry. Immunofluorescence confocal microscopy and co-immunoprecipitation (Co-IP) assays were performed to determine the interaction between CREBBP and E2F transcription factor 3a (E2F3a). The binding of CREBBP to downstream gene caspase 8 associated protein 2 (CASP8AP2) promoters was assessed using a chromatin immunoprecipitation assay, and mRNA expression levels were detected via reverse transcription-quantitative PCR. Western blot analysis was performed to detect protein expression of CREBBP, E2F3a and CASP8AP2. Downregulation of CREBBP increased the IC50 value of daunorubicin; however, no significant affects were observed on the IC50 values of vincristine and L-asparaginase. Furthermore, downregulation of CREBBP notably inhibited leukemia cell proliferation, accumulated cells in the G0/G1 phase and decreased cell proportions in the S and G2/M phases. Co-IP analysis demonstrated that CREBBP interacted with E2F3a, a transcription factor involved in G1/S transition. Immunofluorescence confocal microscopy indicated co-localization of CREBBP and E2F3a at the cell nucleus. Furthermore, E2F3a protein expression decreased in CREBBP RNA interference treated Jurkat and Reh cells. CASP8AP2, a target gene of E2F3a, was also identified to be a downstream gene of CREBBP. In addition, decreased IC50 value and cell proportions in the G0/G1 phase, accelerated cell proliferation and upregulated E2F3a and CASP8AP2 expression were exhibited in CREBBP overexpressed cells. Taken together, the results of the present study suggested that CREBBP downregulation affects proliferation and cell cycle progression in leukemia cells, potentially via the interaction and regulation of E2F3a, resulting in chemotherapy resistance. Thus, targeting CREBBP may be a therapeutic strategy for treating pediatric patients with ALL.
Collapse
Affiliation(s)
- Chao Gao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing 100045, P.R. China
| | - Shu-Guang Liu
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing 100045, P.R. China
| | - Wen-Ting Lu
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing 100045, P.R. China
| | - Zhi-Xia Yue
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing 100045, P.R. China
| | - Xiao-Xi Zhao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing 100045, P.R. China
| | - Tian-Yu Xing
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing 100045, P.R. China
| | - Zhen-Ping Chen
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing 100045, P.R. China
| | - Hu-Yong Zheng
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing 100045, P.R. China
| | - Zhi-Gang Li
- Hematology and Oncology Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| |
Collapse
|