1
|
Fu Z, Zhao L, Guo Y, Yang J. Gene therapy for hereditary hearing loss. Hear Res 2025; 455:109151. [PMID: 39616957 DOI: 10.1016/j.heares.2024.109151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/12/2024] [Accepted: 11/24/2024] [Indexed: 12/28/2024]
Abstract
Gene therapy is a technique by which exogenous genetic material is introduced into target cells to treat or prevent diseases caused by genetic mutations. Hearing loss is the most common sensory disorder. Genetic factors contribute to approximately 50 % of all cases of profound hearing loss, and more than 150 independent genes have been reported as associated with hearing loss. Recent advances in CRISPR/Cas based gene-editing tools have facilitated the development of gene therapies for hereditary hearing loss (HHL). Viral delivery vectors, and especially adeno-associated virus (AAV) vectors, have been demonstrated as safe and efficient carriers for the delivery of transgenes into inner ear cells in animal models. More importantly, AAV-mediated gene therapy can restore hearing in some children with hereditary deafness. However, there are many different types of HHL that need to be identified and evaluated to determine appropriate gene therapy options. In the present review, we summarize recent animal model-based advances in gene therapy for HHL, as well as gene therapy strategies, gene-editing tools, delivery vectors, and administration routes. We also discuss the strengths and limitations of different gene therapy methods and describe future challenges for the eventual clinical application of gene therapy for HHL.
Collapse
Affiliation(s)
- Zeming Fu
- Department of Otolaryngology- Head and Neck Surgery, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130022, China
| | - Liping Zhao
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130022, China
| | - Yingyuan Guo
- Department of Otolaryngology- Head and Neck Surgery, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130022, China
| | - Jingpu Yang
- Department of Otolaryngology- Head and Neck Surgery, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130022, China.
| |
Collapse
|
2
|
Manchanda P, Kaur H, Khan F, Sidhu GS, Hunjan MS, Chhuneja P, Bains NS. RETRACTED ARTICLE: Agroinfiltration-based transient genome editing for targeting phytoene desaturase gene in kinnow mandarin (C. reticulata Blanco). Mol Biotechnol 2025; 67:91. [PMID: 38041775 DOI: 10.1007/s12033-023-00980-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/01/2023] [Indexed: 12/03/2023]
Affiliation(s)
- Pooja Manchanda
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Harleen Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Faishal Khan
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Gurupkar S Sidhu
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Mandeep S Hunjan
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Navtej S Bains
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
3
|
Murjani K, Tripathi R, Singh V. An overview and potential of CRISPR-Cas systems for genome editing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:1-17. [PMID: 39266179 DOI: 10.1016/bs.pmbts.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Genome editing involves altering of the DNA in organisms including bacteria, plants, and animals using molecular scissors that helps in treatment and diagnosis of various diseases. Genome editing technology is exponentially growing and have been developed for enabling precise genomic alterations and the addition, removal, and correction of genes. These modifications begin with the creation of double-stranded breaks (DSBs) that is generated by nucleases and can be joined through homology-directed repair (HDR) or non-homologous end-joining (NHEJ). NHEJ is quick but increases mutation chances due to deletions and insertions of nucleotides at the break site, while HDR uses homologous templates for precise repair and targeted DNA specific to the gene or sequence. Other methods such as zinc-finger protein is a transcription factor that binds with DNA and binds specific to that sequence, which uniquely recognise 3-base pairs of DNA. TALENs consists of two domains: TALE domain, a transcription activator and FokI that is a restriction endonuclease that cuts the DNA at specific sites. CRISPR-Cas systems are clustered regularly interspersed short palindromic repeats present in various bacterial species. These sequences activate RNA-guided DNA cleavage, aiding in the development of an adaptive immune defence against foreign DNA. CRISPR-Cas9 is widely used for genome editing, regulation, diagnostic and many.
Collapse
Affiliation(s)
- Karan Murjani
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Renu Tripathi
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India.
| |
Collapse
|
4
|
Khorshid Sokhangouy S, Alizadeh F, Lotfi M, Sharif S, Ashouri A, Yoosefi Y, Bozorg Qomi S, Abbaszadegan MR. Recent advances in CRISPR-Cas systems for colorectal cancer research and therapeutics. Expert Rev Mol Diagn 2024; 24:677-702. [PMID: 39132997 DOI: 10.1080/14737159.2024.2388777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/28/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Colon cancer, ranked as the fourth leading global cause of cancer death, exhibits a complex progression marked by genetic variations. Over the past decade, the utilization of diverse CRISPR systems has propelled accelerated research into colorectal cancer (CRC) treatment. AREAS COVERED CRISPR/Cas9, a key player in this research, identifies new oncogenes, tumor suppressor genes (TSGs), and drug-resistance genes. Additionally, it facilitates the construction of experimental models, conducts genome-wide library screening, and develops new therapeutic targets, especially for targeted knockout in vivo or molecular targeted drug delivery, contributing to personalized treatments and significantly enhancing the care of colon cancer patients. In this review, we provide insights into the mechanism of the CRISPR/Cas9 system, offering a comprehensive exploration of its applications in CRC, spanning screening, modeling, gene functions, diagnosis, and gene therapy. While acknowledging its transformative potential, the article highlights the challenges and limitations of CRISPR systems. EXPERT OPINION The application of CRISPR/Cas9 in CRC research provides a promising avenue for personalized treatments. Its potential for identifying key genes and enabling experimental models and genome-wide screening enhances patient care. This review underscores the significance of CRISPR-Cas9 gene editing technology across basic research, diagnosis, and the treatment landscape of colon cancer.
Collapse
Affiliation(s)
| | - Farzaneh Alizadeh
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Sharif
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Ashouri
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasamin Yoosefi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Bozorg Qomi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Wang S, Kong H, Zhuo C, Liu L, Lv S, Cheng D, Lao YH, Tao Y, Li M. Functionalized extracellular nanovesicles as advanced CRISPR delivery systems. Biomater Sci 2024; 12:3480-3499. [PMID: 38808607 DOI: 10.1039/d4bm00054d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR) system, an emerging tool for genome editing, has garnered significant public interest for its potential in treating genetic diseases. Despite the rapid advancements in CRISPR technology, the progress in developing effective delivery strategies lags, impeding its clinical application. Extracellular nanovesicles (EVs), either in their endogenous forms or with engineered modifications, have emerged as a promising solution for CRISPR delivery. These EVs offer several advantages, including high biocompatibility, biological permeability, negligible immunogenicity, and straightforward production. Herein, we first summarize various types of functional EVs for CRISPR delivery, such as unmodified, modified, engineered virus-like particles (VLPs), and exosome-liposome hybrid vesicles, and examine their distinct intracellular pathways. Then, we outline the cutting-edge techniques for functionalizing extracellular vesicles, involving producer cell engineering, vesicle engineering, and virus-like particle engineering, emphasizing the diverse CRISPR delivery capabilities of these nanovesicles. Lastly, we address the current challenges and propose rational design strategies for their clinical translation, offering future perspectives on the development of functionalized EVs.
Collapse
Affiliation(s)
- Siqing Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Huimin Kong
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Chenya Zhuo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Li Liu
- Department of Gynecology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518000, China
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Du Cheng
- PCFM Lab of Ministry of Education, School of Material Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| |
Collapse
|
6
|
Upreti A, Mukherjee S. Therapeutic Potential of CRISPR/Cas in Hashimoto's Thyroiditis: A Comprehensive Review. Curr Gene Ther 2024; 24:179-192. [PMID: 38310457 DOI: 10.2174/0115665232266508231210154930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/26/2023] [Accepted: 11/09/2023] [Indexed: 02/05/2024]
Abstract
Hashimoto's thyroiditis (HT) is a commonly occurring illness of autoimmune endocrine origin. It is usually present in the pediatric age group along with other well-known diseases, such as type 1 insulin-dependent diabetes. The defining feature of this disease is the immune-- mediated attack on the thyroid gland resulting in the destruction of thyroid tissues and cells. Given that HT frequently affects family members, it is well-recognized that individuals are genetically predisposed to this disease. Patients with HT also display a significantly increased risk for several different cancers, justifying the eminent need for the development of therapies for managing and treating HT. Gene editing has made several advancements in the field of molecular biology and has turned out to become a promising approach to correct several autoimmune diseases. Currently, CRISPR/Cas, a nuclease-based editing technique, is publicized as a promising tool for curing several genetic diseases and cancers. However, very limited research has been conducted as of now on autoimmune disease management and cure via CRISPR/Cas technique. This review provides an account of the potential candidate genes associated with Hashimoto's thyroiditis, and only a few animal and human models have been generated via the CRISPR/Cas gene editing technique. Mouse models of autoimmune thyroiditis generated through the CRISPR/Cas gene editing technique by targeting the candidate genes will provide us with a deeper insight into the pathophysiology of HT and further pave the way for the immunomodulation of HT via gene editing.
Collapse
Affiliation(s)
- Apoorva Upreti
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow 226028, Uttar Pradesh, India
| | - Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow 226028, Uttar Pradesh, India
| |
Collapse
|
7
|
Mondal R, Brahmbhatt N, Sandhu SK, Shah H, Vashi M, Gandhi SK, Patel P. Applications of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) as a Genetic Scalpel for the Treatment of Cancer: A Translational Narrative Review. Cureus 2023; 15:e50031. [PMID: 38186450 PMCID: PMC10767422 DOI: 10.7759/cureus.50031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Cancer remains a global health challenge with high prevalence and mortality rates, imposing significant financial and emotional burdens on affected families. However, hope lies in genetic manipulation, with a focus on innovative approaches to combat genetically linked cancers. Clustered regularly interspaced short palindromic repeats (CRISPR), an adaptive immune system found in various bacteria and archaea, hold immense potential. We searched articles on PubMed Central, Medline, and PubMed databases indexed journals. The keywords from the research topic, i.e., "CRISPR AND genetic therapy," were searched, and we found 3397 articles. Following this, we explored the medical subject headings (MeSH) glossary and created a search strategy "Clustered Regularly Interspaced Short Palindromic Repeats"[Mesh] AND "Genetic Therapy"[Majr] and after applying a variety of filters we included 30 studies in our review. CRISPR consists of unique spacers and CRISPR-associated (Cas) genes, operating through acquisition, CRISPR ribonucleic acid (crRNA) biogenesis, and target interference phases. The type II CRISPR-Cas9 system is a well-researched avenue for gene editing, with Cas9 cleaving specific genomic regions and initiating deoxyribonucleic acid (DNA) repair mechanisms. Cancer results from genetic alterations, leading to tumor development with properties like metastasis. CRISPR/Cas9 offers precise genome editing to inhibit tumor formation by removing specific genomic sequences and promoting DNA repair. Challenges in CRISPR's use for cancer therapy, including delivery methods, cell adaptation, and ethical concerns, are recognized. Beyond cancer, CRISPR finds diverse applications in infectious diseases and non-cancerous conditions, signifying its transformative potential in modern medicine. CRISPR technology represents a groundbreaking frontier in cancer therapy and beyond, offering insights into genetic editing, disease mechanisms, and potential cures. Despite challenges and ethical considerations, precise genome editing promises improved cancer treatments and innovative medical interventions in the future.
Collapse
Affiliation(s)
- Riddhi Mondal
- Department of Internal Medicine, Jagannath Gupta Institute of Medical Sciences and Hospital, Kolkata, IND
- Department of Internal Medicine, OneStepForward Research Initiative, Ahmedabad, IND
| | - Niki Brahmbhatt
- Department of Internal Medicine, Gujarat Medical Education & Research Society (GMERS) Medical College Sola, Ahmedabad, IND
- Department of Internal Medicine, OneStepForward Research Initiative, Ahmedabad, IND
| | - Sahibjot K Sandhu
- Department of Internal Medicine, Sri Guru Ram Das Institute of Medical Sciences and Research, Amritsar, IND
- Department of Internal Medicine, OneStepForward Research Initiative, Ahmedabad, IND
| | - Hetvi Shah
- Department of Anesthesia, Dr L H Hiranandani Hospital, Mumbai, IND
- Department of Internal Medicine, OneStepForward Research Initiative, Ahmedabad, IND
| | - Mandeepsinh Vashi
- Department of Internal Medicine, Surat Municipal Institute of Medical Education and Research, Surat, IND
- Department of Internal Medicine, OneStepForward Research Initiative, Ahmedabad, IND
| | - Siddharth Kamal Gandhi
- Department of Internal Medicine, Shri M. P. Shah Government Medical College, Jamnagar, IND
- Department of Internal Medicine, OneStepForward Research Initiative, Ahmedabad, IND
| | - Priyansh Patel
- Department of Internal Medicine, Medical College Baroda, Vadodara, IND
- Department of Internal Medicine, OneStepForward Research Initiative, Ahmedabad, IND
| |
Collapse
|
8
|
Ali JH, Walter M. Combining old and new concepts in targeting telomerase for cancer therapy: transient, immediate, complete and combinatory attack (TICCA). Cancer Cell Int 2023; 23:197. [PMID: 37679807 PMCID: PMC10483736 DOI: 10.1186/s12935-023-03041-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Telomerase can overcome replicative senescence by elongation of telomeres but is also a specific element in most cancer cells. It is expressed more vastly than any other tumor marker. Telomerase as a tumor target inducing replicative immortality can be overcome by only one other mechanism: alternative lengthening of telomeres (ALT). This limits the probability to develop resistance to treatments. Moreover, telomerase inhibition offers some degree of specificity with a low risk of toxicity in normal cells. Nevertheless, only one telomerase antagonist reached late preclinical studies. The underlying causes, the pitfalls of telomerase-based therapies, and future chances based on recent technical advancements are summarized in this review. Based on new findings and approaches, we propose a concept how long-term survival in telomerase-based cancer therapies can be significantly improved: the TICCA (Transient Immediate Complete and Combinatory Attack) strategy.
Collapse
Affiliation(s)
- Jaber Haj Ali
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Rostock, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany
| | - Michael Walter
- Institute of Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Rostock, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany.
| |
Collapse
|
9
|
Genome Editing to Abrogate Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:157-176. [DOI: 10.1007/978-981-19-5642-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
10
|
Panda G, Ray A. Decrypting the mechanistic basis of CRISPR/Cas9 protein. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 172:60-76. [PMID: 35577099 DOI: 10.1016/j.pbiomolbio.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/14/2022] [Accepted: 05/10/2022] [Indexed: 12/25/2022]
Abstract
CRISPR/Cas system, a newly but extensively investigated genome-editing method, harbors practical solutions for various genetic problems. It relies on short guide RNAs (gRNAs) to recruit the Cas9 protein, a DNA cleaving enzyme, to its genomic target DNAs. The Cas9 enzyme exhibits some unique properties, like the ability to differentiate self vs. non-self - DNA strands using the base-pairing potential of crRNA, i.e., only CRISPR DNA is entirely complementary to the CRISPR repeat sequences at the crRNA whereas the presence of mismatches in the upstream region of the spacer permit CRISPR interference which is inhibited in case of CRISPR-DNA, allosteric regulation in its domains, and domain reorientation on sgRNA binding. Several groups have contributed their efforts in understanding the functioning of the CRISPR/Cas system, but even then, there is a lot more to explore in this area. The structural and sequence-based understanding of the whole CRISPR-associated bacterial ortholog family landscape is still ambiguous. A better understanding of the underlying energetics of the CRISPR/Cas9 system should reveal critical parameters to design better CRISPR/Cas9s.
Collapse
Affiliation(s)
- Gayatri Panda
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Arjun Ray
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.
| |
Collapse
|
11
|
Bhattacharjee R, Das Roy L, Choudhury A. Understanding on CRISPR/Cas9 mediated cutting-edge approaches for cancer therapeutics. Discov Oncol 2022; 13:45. [PMID: 35674844 PMCID: PMC9174617 DOI: 10.1007/s12672-022-00509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022] Open
Abstract
The research focus on CRISPR/Cas9 has gained substantial concentration since the discovery of 'an unusual repeat sequence' reported by Ishino et al. (J Bacteriol 169:5429-5433, 1987) and the journey comprises the recent Nobel Prize award (2020), conferred to Emmanuelle Charpentier and Jennifer Doudna. Cumulatively, the CRISPR has a short, compact, and most discussed success of its application in becoming one of the most versatile and paradigm shifting technologies of Biological Research. Today, the CRISPR/Cas9 genome editing system is almost ubiquitously utilized in many facets of biological research where its tremendous gene manipulation capability has been harnessed to create miracles. From 2012, the CRISPR/Cas 9 system has been showcased in almost 15,000 research articles in the PubMed database, till date. Backed by some strong molecular evidence, the CRISPR system has been utilized in a few clinical trials targeted towards various pathologies. While the area covered by CRISPR is cosmic, this review will focus mostly on the utilization of CRISPR/Cas9 technology in the field of cancer therapy.
Collapse
Affiliation(s)
- Rudrarup Bhattacharjee
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5000, Australia
| | | | | |
Collapse
|
12
|
Lo Presti V, Cutilli A, Dogariu Y, Müskens KF, Dünnebach E, van den Beemt DAMH, Cornel AM, Plantinga M, Nierkens S. Gene Editing of Checkpoint Molecules in Cord Blood-Derived Dendritic Cells and CD8 + T Cells Using CRISPR-Cas9. CRISPR J 2022; 5:435-444. [PMID: 35686979 DOI: 10.1089/crispr.2021.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Immunotherapies targeting checkpoint inhibition and cell therapies are considered breakthroughs for cancer therapy. However, only a part of patients benefit from these treatments and resistance has been observed. Combining both approaches can potentially further enhance their efficacy. With the advent of gene editing techniques, such as clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9 (CRISPR-Cas9), the elimination of checkpoint molecules became available as an option in good manufacturing practice conditions to improve persistence and efficacy. However, no data of CRISPR-Cas9 application have been reported in cord blood (CB)-derived immune cells, potentially usable for allogeneic cell therapy purposes. In this article, we describe the optimization of a protocol to deplete checkpoint molecules at the genomic level using CRISPR-Cas9 technology from CB-dendritic cells (DCs) and CB-CD8+ T cells. The protocol is based on the electroporation of a ribonucleoprotein complex, easily translatable to clinical settings. In both cell types, the knock-out (KO) was successful and did not affect cell viability. CB-DCs showed a decrease in expression of the targeted protein ranging from 50% to 95%, while CB-CD8+ T cells showed a reduction in the range of 25-45%. The procedure did not affect the stimulatory function of the CB-DCs or the response of CB-CD8+ T cells (proliferation or TNF-α production). In conclusion, we optimized a protocol to eliminate checkpoint molecules from CB-derived DCs and CD8+ T cells, with the aim to further implement allogeneic cell therapies for cancer.
Collapse
Affiliation(s)
- Vania Lo Presti
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Alessandro Cutilli
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Yvonne Dogariu
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Konradin F Müskens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Ester Dünnebach
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | | | - Annelisa M Cornel
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Maud Plantinga
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
13
|
Jurić D, Zlatin M, Marušić A. Inadequate reporting quality of registered genome editing trials: an observational study. BMC Med Res Methodol 2022; 22:131. [PMID: 35501706 PMCID: PMC9063127 DOI: 10.1186/s12874-022-01574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background To assess registration completeness and safety data of trials on human genome editing (HGE) reported in primary registries and published in journals, as HGE has safety and ethical problems, including the risk of undesirable and unpredictable outcomes. Registration transparency has not been evaluated for clinical trials using these novel and revolutionary techniques in human participants. Methods Observational study of trials involving engineered site-specific nucleases and long-term follow-up observations, identified from the WHO ICTRP HGE Registry in November 2020 and two comprehensive reviews published in the same year. Registration and adverse events (AEs) information were collected from public registries and matching publications. Published data were extracted in May 2021. Results Among 81 eligible trials, most were recruiting (51.9%) phase 1 trials (45.7%). Five trials were withdrawn. Most trials investigated CAR T cells therapies (45.7%) and used CRISPR/Cas9 (35.8%) ex vivo (88.9%). Among 12 trials with protocols both registered and published, eligibility criteria, sample size, and secondary outcome measures were consistently reported for less than a half. Three trials posted results in ClinicalTrials.gov, and one reported serious AEs. Conclusions Incomplete registration and published data give emphasis to the need to increase the transparency of HGE trials. Further improvements in registration requirements, including phase 1 trials, and a more controlled publication procedure, are needed to augment the implementation of this promising technology. Supplementary Information The online version contains supplementary material available at 10.1186/s12874-022-01574-0.
Collapse
Affiliation(s)
- Diana Jurić
- Department of Pharmacology, School of Medicine, University of Split, Šoltanska 2, 21000, Split, Croatia.
| | - Michael Zlatin
- School of Medicine, University of Split, Šoltanska 2, 21000, Split, Croatia
| | - Ana Marušić
- Department of Research in Biomedicine and Health, School of Medicine, University of Split, Šoltanska 2, 21000, Split, Croatia
| |
Collapse
|
14
|
Hussain Y, Khan H, Ahmad I, Efferth T, Alam W. Nanoscale delivery of phytochemicals targeting CRISPR/Cas9 for cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153830. [PMID: 34775359 DOI: 10.1016/j.phymed.2021.153830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND With growing global prevalence, cancer is a major cause of disease-related deaths. The understanding of the fundamental tumor pathology has contributed to the development of agents targeting oncogenic signaling pathways. Although these agents have increased survival for defined cancers, the therapeutic choices are still limited due to the development of drug resistance. CRISPR/Cas9 is a powerful new technology in cancer therapy by facilitating the identification of novel treatment targets and development of cell-based treatment strategies. PURPOSE We focused on applications of the CRISPR/Cas9 system in cancer therapy and discuss nanoscale delivery of cytotoxic phytochemical targeting the CRISPR/Cas9 system. RESULTS Genome engineering has been significantly accelerated by the advancement of the CRISPR/Cas9 technique. Phytochemicals play a key role in treating cancer by targeting various mechanisms and pathways. CONCLUSIONS The use of CRISPR/Cas9 for nanoscale delivery of phytochemicals opens new avenues in cancer therapy. One of the main obstacles in the clinical application of CRISPR/Cas9 is safe and efficient delivery. As viral delivery methods have certain drawbacks, there is an urgent need to develop non-viral delivery systems for therapeutic applications.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Haroon Khan
- Department of Pharmacy, Abasyn University, Peshawar, Pakistan.
| | - Imad Ahmad
- Department of Pharmacy, Abasyn University, Peshawar, Pakistan
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Waqas Alam
- Department of Pharmacy, Abasyn University, Peshawar, Pakistan
| |
Collapse
|
15
|
Baptista B, Carapito R, Laroui N, Pichon C, Sousa F. mRNA, a Revolution in Biomedicine. Pharmaceutics 2021; 13:2090. [PMID: 34959371 PMCID: PMC8707022 DOI: 10.3390/pharmaceutics13122090] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/23/2022] Open
Abstract
The perspective of using messenger RNA (mRNA) as a therapeutic molecule first faced some uncertainties due to concerns about its instability and the feasibility of large-scale production. Today, given technological advances and deeper biomolecular knowledge, these issues have started to be addressed and some strategies are being exploited to overcome the limitations. Thus, the potential of mRNA has become increasingly recognized for the development of new innovative therapeutics, envisioning its application in immunotherapy, regenerative medicine, vaccination, and gene editing. Nonetheless, to fully potentiate mRNA therapeutic application, its efficient production, stabilization and delivery into the target cells are required. In recent years, intensive research has been carried out in this field in order to bring new and effective solutions towards the stabilization and delivery of mRNA. Presently, the therapeutic potential of mRNA is undoubtedly recognized, which was greatly reinforced by the results achieved in the battle against the COVID-19 pandemic, but there are still some issues that need to be improved, which are critically discussed in this review.
Collapse
Affiliation(s)
- Bruno Baptista
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (B.B.); (R.C.)
| | - Rita Carapito
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (B.B.); (R.C.)
| | - Nabila Laroui
- Centre de Biophysique Moléculaire (CBM), UPR 4301 CNRS, University of Orléans, 45071 Orléans, France;
| | - Chantal Pichon
- Centre de Biophysique Moléculaire (CBM), UPR 4301 CNRS, University of Orléans, 45071 Orléans, France;
| | - Fani Sousa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (B.B.); (R.C.)
| |
Collapse
|
16
|
Püschel J, Dubrovska A, Gorodetska I. The Multifaceted Role of Aldehyde Dehydrogenases in Prostate Cancer Stem Cells. Cancers (Basel) 2021; 13:4703. [PMID: 34572930 PMCID: PMC8472046 DOI: 10.3390/cancers13184703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) are the only tumor cells possessing self-renewal and differentiation properties, making them an engine of tumor progression and a source of tumor regrowth after treatment. Conventional therapies eliminate most non-CSCs, while CSCs often remain radiation and drug resistant, leading to tumor relapse and metastases. Thus, targeting CSCs might be a powerful tool to overcome tumor resistance and increase the efficiency of current cancer treatment strategies. The identification and isolation of the CSC population based on its high aldehyde dehydrogenase activity (ALDH) is widely accepted for prostate cancer (PCa) and many other solid tumors. In PCa, several ALDH genes contribute to the ALDH activity, which can be measured in the enzymatic assay by converting 4, 4-difluoro-4-bora-3a, 4a-diaza-s-indacene (BODIPY) aminoacetaldehyde (BAAA) into the fluorescent product BODIPY-aminoacetate (BAA). Although each ALDH isoform plays an individual role in PCa biology, their mutual functional interplay also contributes to PCa progression. Thus, ALDH proteins are markers and functional regulators of CSC properties, representing an attractive target for cancer treatment. In this review, we discuss the current state of research regarding the role of individual ALDH isoforms in PCa development and progression, their possible therapeutic targeting, and provide an outlook for the future advances in this field.
Collapse
Affiliation(s)
- Jakob Püschel
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany;
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany;
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ielizaveta Gorodetska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany;
| |
Collapse
|
17
|
Balla B, Tripon F, Banescu C. From Descriptive to Functional Genomics of Leukemias Focusing on Genome Engineering Techniques. Int J Mol Sci 2021; 22:10065. [PMID: 34576226 PMCID: PMC8470190 DOI: 10.3390/ijms221810065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022] Open
Abstract
Genome engineering makes the precise manipulation of DNA sequences possible in a cell. Therefore, it is essential for understanding gene function. Meganucleases were the start of genome engineering, and it continued with the discovery of Zinc finger nucleases (ZFNs), followed by Transcription activator-like effector nucleases (TALENs). They can generate double-strand breaks at a desired target site in the genome, and therefore can be used to knock in mutations or knock out genes in the same way. Years later, genome engineering was transformed by the discovery of clustered regularly interspaced short palindromic repeats (CRISPR). Implementation of CRISPR systems involves recognition guided by RNA and the precise cleaving of DNA molecules. This property proves its utility in epigenetics and genome engineering. CRISPR has been and is being continuously successfully used to model mutations in leukemic cell lines and control gene expression. Furthermore, it is used to identify targets and discover drugs for immune therapies. The descriptive and functional genomics of leukemias is discussed in this study, with an emphasis on genome engineering methods. The CRISPR/Cas9 system's challenges, viewpoints, limits, and solutions are also explored.
Collapse
Affiliation(s)
- Beata Balla
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania
| | - Florin Tripon
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania
| | - Claudia Banescu
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania
- Clinical and Emergency County Hospital of Târgu Mureș, Strada Gheorghe Marinescu 50, 540136 Târgu Mureș, Romania
| |
Collapse
|
18
|
Zhi L, Su X, Yin M, Zhang Z, Lu H, Niu Z, Guo C, Zhu W, Zhang X. Genetical engineering for NK and T cell immunotherapy with CRISPR/Cas9 technology: Implications and challenges. Cell Immunol 2021; 369:104436. [PMID: 34500148 DOI: 10.1016/j.cellimm.2021.104436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/07/2021] [Accepted: 08/25/2021] [Indexed: 12/23/2022]
Abstract
Immunotherapy has become one of the most promising strategies in cancer therapies. Among the therapeutic alternatives, genetically engineered NK/T cell therapies have emerged as powerful and innovative therapeutic modalities for cancer patients with precise targeting and impressive efficacy. Nonetheless, this approach still faces multiple challenges, such as immunosuppressive tumor microenvironment, exhaustion of immune effector cells in tumors, off-target effects manufacturing complexity, and poor infiltration of effector cells, all of which need to be overcome for further utilization to cancers. Recently, CRISPR/Cas9 genome editing technology, with the goal of enhancing the efficacy and increasing the availability of engineered effector cell therapies, has shown considerable potential in the novel strategies and options to overcome these limitations. Here we review the current progress of the applications of CRISPR in cancer immunotherapy. Furthermore, we discuss issues related to the NK/T cell applications, gene delivery methods, efficiency, challenges, and implications of CRISPR/Cas9.
Collapse
Affiliation(s)
- Lingtong Zhi
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Xin Su
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Meichen Yin
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Zikang Zhang
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Hui Lu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Zhiyuan Niu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Changjiang Guo
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Wuling Zhu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China.
| | - Xuan Zhang
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, PR China.
| |
Collapse
|
19
|
Shahriar SA, Islam MN, Chun CNW, Rahim MA, Paul NC, Uddain J, Siddiquee S. Control of Plant Viral Diseases by CRISPR/Cas9: Resistance Mechanisms, Strategies and Challenges in Food Crops. PLANTS (BASEL, SWITZERLAND) 2021; 10:1264. [PMID: 34206201 PMCID: PMC8309070 DOI: 10.3390/plants10071264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022]
Abstract
Protecting food crops from viral pathogens is a significant challenge for agriculture. An integral approach to genome-editing, known as CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR associated protein 9), is used to produce virus-resistant cultivars. The CRISPR/Cas9 tool is an essential part of modern plant breeding due to its attractive features. Advances in plant breeding programs due to the incorporation of Cas9 have enabled the development of cultivars with heritable resistance to plant viruses. The resistance to viral DNA and RNA is generally provided using the Cas9 endonuclease and sgRNAs (single-guide RNAs) complex, targeting particular virus and host plant genomes by interrupting the viral cleavage or altering the plant host genome, thus reducing the replication ability of the virus. In this review, the CRISPR/Cas9 system and its application to staple food crops resistance against several destructive plant viruses are briefly described. We outline the key findings of recent Cas9 applications, including enhanced virus resistance, genetic mechanisms, research strategies, and challenges in economically important and globally cultivated food crop species. The research outcome of this emerging molecular technology can extend the development of agriculture and food security. We also describe the information gaps and address the unanswered concerns relating to plant viral resistance mediated by CRISPR/Cas9.
Collapse
Affiliation(s)
- Saleh Ahmed Shahriar
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - M. Nazrul Islam
- Laboratory of Plant Pathology and Microbiology, Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada;
| | - Charles Ng Wai Chun
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Md. Abdur Rahim
- Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Narayan Chandra Paul
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea;
| | - Jasim Uddain
- Department of Horticulture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Shafiquzzaman Siddiquee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
20
|
Gupta PK, Saxena A. HIV/AIDS: Current Updates on the Disease, Treatment and Prevention. ACTA ACUST UNITED AC 2021; 91:495-510. [PMID: 33907349 PMCID: PMC8063169 DOI: 10.1007/s40011-021-01237-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/08/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022]
Abstract
CCR5-delta 32 homozygous stem cell transplantation for HIV-infected individuals is being treated as a milestone in the global AIDS epidemic. Since 2008, when the second Berlin patient was cured from HIV after undergoing transplantation from a donor with delta-32 mutation, scientists are aiming for a long-term cure for the wider population. In 2019, a London patient became the second person to be free of HIV and came off the antiretroviral drugs completely. CCR5 gene is now being treated as a viable target for HIV treatment. It can be used in the treatment of HIV either through administration of drugs that bind to CCR5 and stop the receptor from working or through gene therapy to alter the CCR5 gene using CRISPR/Cas9 and prevent protein production. This review article aims to identify the obstacles and the need to overcome them in order to bridge the gap between current research and future potential cures for HIV.
Collapse
Affiliation(s)
- Praveen Kumar Gupta
- Department of Biotechnology, R.V College of Engineering, Bangalore, 560059 India
| | - Apoorva Saxena
- Department of Biotechnology, R.V College of Engineering, Bangalore, 560059 India
| |
Collapse
|
21
|
Simna SP, Han Z. Prospects Of Non-Coding Elements In Genomic Dna Based Gene Therapy. Curr Gene Ther 2021; 22:89-103. [PMID: 33874871 DOI: 10.2174/1566523221666210419090357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/22/2022]
Abstract
Gene therapy has made significant development since the commencement of the first clinical trials a few decades ago and has remained a dynamic area of research regardless of obstacles such as immune response and insertional mutagenesis. Progression in various technologies like next-generation sequencing (NGS) and nanotechnology has established the importance of non-coding segments of a genome, thereby taking gene therapy to the next level. In this review, we have summarized the importance of non-coding elements, highlighting the advantages of using full-length genomic DNA loci (gDNA) compared to complementary DNA (cDNA) or minigene, currently used in gene therapy. The focus of this review is to provide an overview of the advances and the future of potential use of gDNA loci in gene therapy, expanding the therapeutic repertoire in molecular medicine.
Collapse
Affiliation(s)
- S P Simna
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599. United States
| | - Zongchao Han
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599. United States
| |
Collapse
|
22
|
Yang Y, Xu J, Ge S, Lai L. CRISPR/Cas: Advances, Limitations, and Applications for Precision Cancer Research. Front Med (Lausanne) 2021; 8:649896. [PMID: 33748164 PMCID: PMC7965951 DOI: 10.3389/fmed.2021.649896] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is one of the most leading causes of mortalities worldwide. It is caused by the accumulation of genetic and epigenetic alterations in 2 types of genes: tumor suppressor genes (TSGs) and proto-oncogenes. In recent years, development of the clustered regularly interspaced short palindromic repeats (CRISPR) technology has revolutionized genome engineering for different cancer research ranging for research ranging from fundamental science to translational medicine and precise cancer treatment. The CRISPR/CRISPR associated proteins (CRISPR/Cas) are prokaryote-derived genome editing systems that have enabled researchers to detect, image, manipulate and annotate specific DNA and RNA sequences in various types of living cells. The CRISPR/Cas systems have significant contributions to discovery of proto-oncogenes and TSGs, tumor cell epigenome normalization, targeted delivery, identification of drug resistance mechanisms, development of high-throughput genetic screening, tumor models establishment, and cancer immunotherapy and gene therapy in clinics. Robust technical improvements in CRISPR/Cas systems have shown a considerable degree of efficacy, specificity, and flexibility to target the specific locus in the genome for the desired applications. Recent developments in CRISPRs technology offers a significant hope of medical cure against cancer and other deadly diseases. Despite significant improvements in this field, several technical challenges need to be addressed, such as off-target activity, insufficient indel or low homology-directed repair (HDR) efficiency, in vivo delivery of the Cas system components, and immune responses. This study aims to overview the recent technological advancements, preclinical and perspectives on clinical applications of CRISPR along with their advantages and limitations. Moreover, the potential applications of CRISPR/Cas in precise cancer tumor research, genetic, and other precise cancer treatments discussed.
Collapse
Affiliation(s)
- Yue Yang
- Department of Pathology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jin Xu
- Department of Otolaryngology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Shuyu Ge
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Liqin Lai
- Department of Pathology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
23
|
Hillary VE, Ceasar SA. Genome engineering in insects for the control of vector borne diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 179:197-223. [PMID: 33785177 DOI: 10.1016/bs.pmbts.2020.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Insects cause many vector-borne infectious diseases and have become a major threat to human health. Although many control measures are undertaken, some insects are resistant to it, exacerbated by environmental changes which is a major challenge for control measures. Genetic studies by targeting the genomes of insects may offer an alternative strategy. Developments with novel genome engineering technologies have stretched our ability to target and modify any genomic sequence in Eukaryotes including insects. Genome engineering tools such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and most recently discovered, clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) systems hold the potential to control the vector-borne diseases. In this chapter, we review the vector control strategy undertaken by employing three major genome engineering tools (ZFNs, TALENs, and CRISPR/Cas9) and discuss the future prospects of this system to control insect vectors. Finally, we also discuss the CRISPR-based gene drive system and its concerns due to ecological impacts.
Collapse
Affiliation(s)
- V Edwin Hillary
- Division of Biotechnology, Entomology Research Institute, Loyola College, University of Madras, Chennai, Tamil Nadu, India
| | - S Antony Ceasar
- Division of Biotechnology, Entomology Research Institute, Loyola College, University of Madras, Chennai, Tamil Nadu, India; Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kalamassery, Kochi, India.
| |
Collapse
|
24
|
Kuang Y, Kang J, Li H, Liu B, Zhao X, Li L, Jin X, Li Q. Multiple functions of p21 in cancer radiotherapy. J Cancer Res Clin Oncol 2021; 147:987-1006. [PMID: 33547489 DOI: 10.1007/s00432-021-03529-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/10/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Greater than half of cancer patients experience radiation therapy, for both radical and palliative objectives. It is well known that researches on radiation response mechanisms are conducive to improve the efficacy of cancer radiotherapy. p21 was initially identified as a widespread inhibitor of cyclin-dependent kinases, transcriptionally modulated by p53 and a marker of cellular senescence. It was once considered that p21 acts as a tumour suppressor mainly to restrain cell cycle progression, thereby resulting in growth suppression. With the deepening researches on p21, p21 has been found to regulate radiation responses via participating in multiple cellular processes, including cell cycle arrest, apoptosis, DNA repair, senescence and autophagy. Hence, a comprehensive summary of the p21's functions in radiation response will provide a new perspective for radiotherapy against cancer. METHODS We summarize the recent pertinent literature from various electronic databases, including PubMed and analyzed several datasets from Gene Expression Omnibus database. This review discusses how p21 influences the effect of cancer radiotherapy via involving in multiple signaling pathways and expounds the feasibility, barrier and risks of using p21 as a biomarker as well as a therapeutic target of radiotherapy. CONCLUSION p21's complicated and important functions in cancer radiotherapy make it a promising therapeutic target. Besides, more thorough insights of p21 are needed to make it a safe therapeutic target.
Collapse
Affiliation(s)
- Yanbei Kuang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Kang
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Bingtao Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueshan Zhao
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Linying Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
25
|
Mukhopadhyay S, Bhutia SK. Trends in CRISPR-Cas9 technology application in cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 178:175-192. [PMID: 33685596 DOI: 10.1016/bs.pmbts.2020.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The evolution of the CRISPR-Cas9 technology in cancer research has tremendous potential to shape the future of oncology. Although this gene-editing tool's pre-clinical progress is into its nascent stage, there are many unanswered questions regarding health benefits and therapy precision using CRISPR. The application of CRISPR is highly specific, economically sustainable, and is a high throughput technique, but on the other hand, its application involves measured risk of countering the toxic immune response of Cas protein, off-target effects, limitation of delivering the edited cells back into cancer patients. The current chapter highlights the possibilities and perils of the present-day CRISPR engineering in cancer that should highlight CRISPR translation to therapy.
Collapse
Affiliation(s)
- Subhadip Mukhopadhyay
- Department of Radiation Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Medical School, New York, NY, United States.
| | - Sujit Kumar Bhutia
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
26
|
Görücü Yilmaz S. Genome editing technologies: CRISPR, LEAPER, RESTORE, ARCUT, SATI, and RESCUE. EXCLI JOURNAL 2021; 20:19-45. [PMID: 33510590 PMCID: PMC7838830 DOI: 10.17179/excli2020-3070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022]
Abstract
Genome editing technologies include techniques used for desired genetic modifications and allow the insertion, modification or deletion of specific DNA fragments. Recent advances in genome biology offer unprecedented promise for interdisciplinary collaboration and applications in gene editing. New genome editing technologies enable specific and efficient genome modifications. The sources that inspire these modifications and already exist in the genome are DNA degradation enzymes and DNA repair pathways. Six of these recent technologies are the clustered regularly interspaced short palindromic repeats (CRISPR), leveraging endogenous ADAR for programmable editing of RNA (LEAPER), recruiting endogenous ADAR to specific transcripts for oligonucleotide-mediated RNA editing (RESTORE), chemistry-based artificial restriction DNA cutter (ARCUT), single homology arm donor mediated intron-targeting integration (SATI), RNA editing for specific C-to-U exchange (RESCUE). These technologies are widely used from various biomedical researches to clinics, agriculture, and allow you to rearrange genomic sequences, create cell lines and animal models to solve human diseases. This review emphasizes the characteristics, superiority, limitations, also whether each technology can be used in different biological systems and the potential application of these systems in the treatment of several human diseases.
Collapse
Affiliation(s)
- Senay Görücü Yilmaz
- Department of Nutrition and Dietetics, Gaziantep University, Gaziantep, Turkey 27310
| |
Collapse
|
27
|
Ballarino R, Bouwman BAM, Crosetto N. Genome-Wide CRISPR Off-Target DNA Break Detection by the BLISS Method. Methods Mol Biol 2021; 2162:261-281. [PMID: 32926388 DOI: 10.1007/978-1-0716-0687-2_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Clustered regularly interspaced palindromic repeat (CRISPR) systems are revolutionizing many areas of biology and medicine, where they are increasingly utilized as therapeutic tools for correcting disease-causing mutations. From a clinical perspective, unintended off-target (OT) DNA double-strand break (DSB) induction by CRISPR nucleases represents a major concern. Therefore, in recent years considerable effort has been dedicated to developing methods for assessing the OT activity of CRISPR nucleases, which in turn can be used to guide engineering of nucleases with minimal OT activity. Here we describe a detailed protocol for quantifying OT DSBs genome-wide in cultured cells transfected with CRISPR enzymes, based on the breaks labeling in situ and sequencing (BLISS) method that we have previously developed. CRISPR-BLISS is versatile and scalable, and allows assessment of multiple guide RNAs in different cell types and time points following cell transfection or transduction.
Collapse
Affiliation(s)
- Roberto Ballarino
- Science for Life Laboratory (SciLifeLab), Research Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Britta A M Bouwman
- Science for Life Laboratory (SciLifeLab), Research Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nicola Crosetto
- Science for Life Laboratory (SciLifeLab), Research Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
28
|
Hazafa A, Mumtaz M, Farooq MF, Bilal S, Chaudhry SN, Firdous M, Naeem H, Ullah MO, Yameen M, Mukhtiar MS, Zafar F. CRISPR/Cas9: A powerful genome editing technique for the treatment of cancer cells with present challenges and future directions. Life Sci 2020; 263:118525. [PMID: 33031826 PMCID: PMC7533657 DOI: 10.1016/j.lfs.2020.118525] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
Cancer is one of the most leading causes of death and a major public health problem, universally. According to accumulated data, annually, approximately 8.5 million people died because of the lethality of cancer. Recently, a novel RNA domain-containing endonuclease-based genome engineering technology, namely the clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein-9 (Cas9) have been proved as a powerful technique in the treatment of cancer cells due to its multifunctional properties including high specificity, accuracy, time reducing and cost-effective strategies with minimum off-target effects. The present review investigates the overview of recent studies on the newly developed genome-editing strategy, CRISPR/Cas9, as an excellent pre-clinical therapeutic option in the reduction and identification of new tumor target genes in the solid tumors. Based on accumulated data, we revealed that CRISPR/Cas9 significantly inhibited the robust tumor cell growth (breast, lung, liver, colorectal, and prostate) by targeting the oncogenes, tumor-suppressive genes, genes associated to therapies by inhibitors, genes associated to chemotherapies drug resistance, and suggested that CRISPR/Cas9 could be a potential therapeutic target in inhibiting the tumor cell growth by suppressing the cell-proliferation, metastasis, invasion and inducing the apoptosis during the treatment of malignancies in the near future. The present review also discussed the current challenges and barriers, and proposed future recommendations for a better understanding.
Collapse
Affiliation(s)
- Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Muhammad Mumtaz
- Department of Chemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Fras Farooq
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shahid Bilal
- Department of Agronomy, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sundas Nasir Chaudhry
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Musfira Firdous
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Huma Naeem
- Department of Computer Science, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Obaid Ullah
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Yameen
- Department of Biochemistry, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Muhammad Shahid Mukhtiar
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Fatima Zafar
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
29
|
Jia B, Dong Z, Wu D, Zhao J, Wu M, An T, Wang Y, Zhuo M, Li J, Wang Y, Zhang J, Zhao X, Li S, Li J, Ma M, Chen C, Yang X, Zhong J, Chen H, Wang J, Chi Y, Zhai X, Cui S, Zhang R, Ma Q, Fang J, Wang Z. Prediction of the VeriStrat test in first-line therapy of pemetrexed-based regimens for advanced lung adenocarcinoma patients. Cancer Cell Int 2020; 20:590. [PMID: 33298069 PMCID: PMC7724790 DOI: 10.1186/s12935-020-01662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although advanced non-squamous non-small cell lung cancer (NSCLC) patients have significantly better survival outcomes after pemetrexed based treatment, a subset of patients still show intrinsic resistance and progress rapidly. Therefore we aimed to use a blood-based protein signature (VeriStrat, VS) to analyze whether VS could identify the subset of patients who had poor efficacy on pemetrexed therapy. METHODS This study retrospectively analysed 72 advanced lung adenocarcinoma patients who received first-line pemetrexed/platinum or combined with bevacizumab treatment. RESULTS Plasma samples from these patients were analysed using VS and classified into the Good (VS-G) or Poor (VS-P) group. The relationship between efficacy and VS status was further investigated. Of the 72 patients included in this study, 35 (48.6%) were treated with pemetrexed plus platinum and 37 (51.4%) were treated with pemetrexed/platinum combined with bevacizumab. Among all patients, 60 (83.3%) and 12 (16.7%) patients were classified as VS-G and VS-P, respectively. VS-G patients had significantly better median progression-free survival (PFS) (Unreached vs. 4.2 months; P < 0.001) than VS-P patients. In addition, the partial response (PR) rate was higher in the VS-G group than that in the VS-P group (46.7% vs. 25.0%, P = 0.212). Subgroup analysis showed that PFS was also significantly longer in the VS-G group than that in the VS-P group regardless of whether patients received chemotherapy alone or chemotherapy plus bevacizumab. CONCLUSIONS Our study indicated that VS might be considered as a novel and valid method to predict the efficacy of pemetrexed-based therapy and identify a subset of advanced lung adenocarcinoma patients who had intrinsic resistance to pemetrexed based regimens. However, larger sample studies are still needed to further confirm this result.
Collapse
Affiliation(s)
- Bo Jia
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Zhi Dong
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of GI Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Di Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, 100142, Beijing, China
| | - Jun Zhao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Meina Wu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Tongtong An
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Yuyan Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Minglei Zhuo
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Jianjie Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Yang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, 100142, Beijing, China
| | - Jie Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, 100142, Beijing, China
| | - Xinghui Zhao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Sheng Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Junfeng Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Menglei Ma
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Chen Chen
- Center for Clinical Laboratory Medicine, Chinese PLA General Hospital, The First Medical Center), Beijing, China
| | - Xue Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Jia Zhong
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Hanxiao Chen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Jingjing Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Yujia Chi
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xiaoyu Zhai
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Song Cui
- Bioyong Technologies Inc, Beijing, China
| | - Rong Zhang
- Bioyong Technologies Inc, Beijing, China
| | - Qingwei Ma
- Bioyong Technologies Inc, Beijing, China
| | - Jian Fang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, 100142, Beijing, China.
| | - Ziping Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
30
|
Gene Augmentation and Editing to Improve TCR Engineered T Cell Therapy against Solid Tumors. Vaccines (Basel) 2020; 8:vaccines8040733. [PMID: 33287413 PMCID: PMC7761868 DOI: 10.3390/vaccines8040733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022] Open
Abstract
Recent developments in gene engineering technologies have drastically improved the therapeutic treatment options for cancer patients. The use of effective chimeric antigen receptor T (CAR-T) cells and recombinant T cell receptor engineered T (rTCR-T) cells has entered the clinic for treatment of hematological malignancies with promising results. However, further fine-tuning, to improve functionality and safety, is necessary to apply these strategies for the treatment of solid tumors. The immunosuppressive microenvironment, the surrounding stroma, and the tumor heterogeneity often results in poor T cell reactivity, functionality, and a diminished infiltration rates, hampering the efficacy of the treatment. The focus of this review is on recent advances in rTCR-T cell therapy, to improve both functionality and safety, for potential treatment of solid tumors and provides an overview of ongoing clinical trials. Besides selection of the appropriate tumor associated antigen, efficient delivery of an optimized recombinant TCR transgene into the T cells, in combination with gene editing techniques eliminating the endogenous TCR expression and disrupting specific inhibitory pathways could improve adoptively transferred T cells. Armoring the rTCR-T cells with specific cytokines and/or chemokines and their receptors, or targeting the tumor stroma, can increase the infiltration rate of the immune cells within the solid tumors. On the other hand, clinical “off-tumor/on-target” toxicities are still a major potential risk and can lead to severe adverse events. Incorporation of safety switches in rTCR-T cells can guarantee additional safety. Recent clinical trials provide encouraging data and emphasize the relevance of gene therapy and gene editing tools for potential treatment of solid tumors.
Collapse
|
31
|
Rushworth LK, Harle V, Repiscak P, Clark W, Shaw R, Hall H, Bushell M, Leung HY, Patel R. In vivo CRISPR/Cas9 knockout screen: TCEAL1 silencing enhances docetaxel efficacy in prostate cancer. Life Sci Alliance 2020; 3:e202000770. [PMID: 33033111 PMCID: PMC7556750 DOI: 10.26508/lsa.202000770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 01/03/2023] Open
Abstract
Docetaxel chemotherapy in metastatic prostate cancer offers only a modest survival benefit because of emerging resistance. To identify candidate therapeutic gene targets, we applied a murine prostate cancer orthograft model that recapitulates clinical invasive prostate cancer in a genome-wide CRISPR/Cas9 screen under docetaxel treatment pressure. We identified 17 candidate genes whose suppression may enhance the efficacy of docetaxel, with transcription elongation factor A-like 1 (Tceal1) as the top candidate. TCEAL1 function is not fully characterised; it may modulate transcription in a promoter dependent fashion. Suppressed TCEAL1 expression in multiple human prostate cancer cell lines enhanced therapeutic response to docetaxel. Based on gene set enrichment analysis from transcriptomic data and flow cytometry, we confirmed that loss of TCEAL1 in combination with docetaxel leads to an altered cell cycle profile compared with docetaxel alone, with increased subG1 cell death and increased polyploidy. Here, we report the first in vivo genome-wide treatment sensitisation CRISPR screen in prostate cancer, and present proof of concept data on TCEAL1 as a candidate for a combinational strategy with the use of docetaxel.
Collapse
Affiliation(s)
- Linda K Rushworth
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Victoria Harle
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Peter Repiscak
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Robin Shaw
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Holly Hall
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Martin Bushell
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Hing Y Leung
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | |
Collapse
|
32
|
Li Z, Fei T. Improving Cancer Immunotherapy with CRISPR-Based Technology. ACTA ACUST UNITED AC 2020; 4:e1900253. [PMID: 33245213 DOI: 10.1002/adbi.201900253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/29/2019] [Indexed: 12/19/2022]
Abstract
The rapidly evolving field of immunotherapy has attracted great attention in the field of cancer research and already revolutionized the clinical practice standard for treating cancer. Genetically engineered T cells expressing either T cell receptors or chimeric antigen receptors represent novel treatment modalities and are considered powerful weapons to fight cancer. The immune checkpoint blockade, which harnesses the negative control signaling behind the anti-tumor immune response with therapeutic antibodies by blocking cytotoxic T lymphocyte-associated protein 4 or the programmed cell death 1 pathways are another mainstream direction for cancer immunotherapy. In addition to cytotoxic T cells, other immune cell types such as nature killer cells and macrophages also possess the ability to eradicate cancer cells, which may serve as the basis to develop novel cancer immunotherapies. The advent of cutting-edge genome editing technology, especially clustered regularly interspaced palindromic repeats (CRISPR)-based tools, has greatly expedited many biomedical research areas, including cancer immunology and immunotherapy. In this review, the contribution of current CRISPR techniques to basic and translational cancer immunology research is discussed, and the future for cancer immunotherapy in the age of CRISPR is predicted.
Collapse
Affiliation(s)
- Zexu Li
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P. R. China.,Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, P. R. China
| | - Teng Fei
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P. R. China.,Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, P. R. China
| |
Collapse
|
33
|
Zhang D, Hussain A, Manghwar H, Xie K, Xie S, Zhao S, Larkin RM, Qing P, Jin S, Ding F. Genome editing with the CRISPR-Cas system: an art, ethics and global regulatory perspective. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1651-1669. [PMID: 32271968 PMCID: PMC7336378 DOI: 10.1111/pbi.13383] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/22/2020] [Accepted: 03/19/2020] [Indexed: 05/18/2023]
Abstract
Over the last three decades, the development of new genome editing techniques, such as ODM, TALENs, ZFNs and the CRISPR-Cas system, has led to significant progress in the field of plant and animal breeding. The CRISPR-Cas system is the most versatile genome editing tool discovered in the history of molecular biology because it can be used to alter diverse genomes (e.g. genomes from both plants and animals) including human genomes with unprecedented ease, accuracy and high efficiency. The recent development and scope of CRISPR-Cas system have raised new regulatory challenges around the world due to moral, ethical, safety and technical concerns associated with its applications in pre-clinical and clinical research, biomedicine and agriculture. Here, we review the art, applications and potential risks of CRISPR-Cas system in genome editing. We also highlight the patent and ethical issues of this technology along with regulatory frameworks established by various nations to regulate CRISPR-Cas-modified organisms/products.
Collapse
Affiliation(s)
- Debin Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Public AdministrationHuazhong Agricultural UniversityWuhanChina
| | - Amjad Hussain
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Hakim Manghwar
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Kabin Xie
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationWuhanChina
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationWuhanChina
| | - Robert M. Larkin
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Ping Qing
- College of Public AdministrationHuazhong Agricultural UniversityWuhanChina
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Fang Ding
- Hubei Key Laboratory of Plant PathologyCollege of Plant Sciences and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
34
|
Rahman MA, Nasrin F, Bhattacharjee S, Nandi S. Hallmarks of Splicing Defects in Cancer: Clinical Applications in the Era of Personalized Medicine. Cancers (Basel) 2020; 12:cancers12061381. [PMID: 32481522 PMCID: PMC7352608 DOI: 10.3390/cancers12061381] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing promotes proteome diversity by using limited number of genes, a key control point of gene expression. Splicing is carried out by large macromolecular machineries, called spliceosome, composed of small RNAs and proteins. Alternative splicing is regulated by splicing regulatory cis-elements in RNA and trans-acting splicing factors that are often tightly regulated in a tissue-specific and developmental stage-specific manner. The biogenesis of ribonucleoprotein (RNP) complexes is strictly regulated to ensure that correct complements of RNA and proteins are coordinated in the right cell at the right time to support physiological functions. Any perturbations that impair formation of functional spliceosomes by disrupting the cis-elements, or by compromising RNA-binding or function of trans-factors can be deleterious to cells and result in pathological consequences. The recent discovery of oncogenic mutations in splicing factors, and growing evidence of the perturbed splicing in multiple types of cancer, underscores RNA processing defects as a critical driver of oncogenesis. These findings have resulted in a growing interest in targeting RNA splicing as a therapeutic approach for cancer treatment. This review summarizes our current understanding of splicing alterations in cancer, recent therapeutic efforts targeting splicing defects in cancer, and future potentials to develop novel cancer therapies.
Collapse
|
35
|
Mohammadzadeh I, Qujeq D, Yousefi T, Ferns GA, Maniati M, Vaghari-Tabari M. CRISPR/Cas9 gene editing: A new therapeutic approach in the treatment of infection and autoimmunity. IUBMB Life 2020; 72:1603-1621. [PMID: 32344465 DOI: 10.1002/iub.2296] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022]
Abstract
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein9) may be viewed as an adaptive bacterial immune system. When a virus infects a bacterium, a fragment of the virus genome is inserted into the CRISPR sequence of the bacterial genome as a memory. When the bacterium becomes infected again with the same virus, an RNA molecule that is a transcript of the memory sequence, directs Cas9, an endonuclease, to the complementary region of the virus genome, and Cas9 disables the virus by a double-strand break. In recent years, studies have shown that by designing synthetic RNA molecules and delivering them along with Cas9 into eukaryotic cells, different regions of the cell's genome can be targeted and manipulated. These findings have drawn much attention to this new technology and it has been shown that CRISPR/Cas9 gene editing can be used to treat some human diseases. These include infectious diseases and autoimmune diseases. In this review article, in addition to a brief overview of the biology of the CRISPR/Cas9 system, we collected the most recent findings on the applications of CRISPR/Cas9 technology for better investigation of the pathogenesis and treatment of viral infections (human immunodeficiency virus infection, hepatitis virus infections, and onco-virus infections), non-viral infections (parasitic, fungal, and bacterial infections), and autoimmune diseases.
Collapse
Affiliation(s)
- Iraj Mohammadzadeh
- Non-Communicable Pediatric Diseases Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Gordon A Ferns
- Department of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Liu F, Huang W, Hong J, Cai C, Zhang W, Zhang J, Kang Z. Long noncoding RNA LINC00630 promotes radio‐resistance by regulating
BEX1
gene methylation in colorectal cancer cells. IUBMB Life 2020; 72:1404-1414. [PMID: 32119177 DOI: 10.1002/iub.2263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/13/2020] [Accepted: 02/17/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Feng Liu
- Department of Radiation OncologyThe First Affiliated Hospital of Fujian Medical University Fuzhou Fujian China
| | - Weifeng Huang
- Department of Radiation OncologyZhangzhou Affiliated Hospital of Fujian Medical University Zhangzhou China
| | - Jinsheng Hong
- Department of Radiation OncologyThe First Affiliated Hospital of Fujian Medical University Fuzhou Fujian China
| | - Chuanshu Cai
- Department of Radiation OncologyThe First Affiliated Hospital of Fujian Medical University Fuzhou Fujian China
| | - Weijian Zhang
- Department of Radiation OncologyThe First Affiliated Hospital of Fujian Medical University Fuzhou Fujian China
| | - Jianrong Zhang
- Department of AnesthesiologyThe First Affiliated Hospital of Fujian Medical University Fuzhou Fujian China
| | - Zhenming Kang
- Department of AnesthesiologyQuanzhou First Hospital Affiliated to Fujian Medical University Quanzhou Fujian China
| |
Collapse
|
37
|
Satheesh NJ, Samuel SM, Büsselberg D. Combination Therapy with Vitamin C Could Eradicate Cancer Stem Cells. Biomolecules 2020; 10:biom10010079. [PMID: 31947879 PMCID: PMC7022456 DOI: 10.3390/biom10010079] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer remains one of the most feared and dreaded diseases in this era of modern medicine, claiming the lives of many, and affecting the quality of life of several others around the globe despite major advances in the diagnosis, treatment, palliative care and the immense resources invested into cancer research. While research in cancer has largely focused on the neoplasm/tumor and the cancerous cells that make up the tumor, more recently, the existence, proliferation, differentiation, migration and invasion of cancer stem cells (CSCs) and the role that CSCs play in tumor initiation, progression, metastasis, drug resistance and relapse/recurrence of the disease has gained widespread interest in cancer research. Although the conventional therapeutic approaches such as surgery, chemotherapy and radiation therapy are effective cancer treatments, very often these treatment modalities fail to target the CSCs, which then later become the source of disease recurrence. A majority of the anti-cancer agents target rapidly dividing cancer cells and normal cells and hence, have side effects that are not expected. Targeting CSCs remains a challenge due to their deviant nature with a low proliferation rate and increased drug resistance mechanism. Ascorbic acid/Vitamin C (Vit.C), a potent antioxidant, is a cofactor for several biosynthetic and gene regulatory enzymes and a vital contributor to immune defense of the body, and was found to be deficient in patients with advanced stages of cancer. Vit.C has gained importance in the treatment of cancer due to its ability to modulate the redox status of the cell and influence epigenetic modifications and significant roles in HIF1α signaling. Studies have reported that intravenous administration of Vit.C at pharmacological doses selectively kills tumor cells and targets CSCs when administered along with chemotherapeutic drugs. In the current article, we provide an in-depth review of how Vit.C plays an important role in targeting CSCs and its possible use as an adjuvant, neoadjuvant or co-treatment in the treatment of cancers.
Collapse
|
38
|
Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 2020; 5:1. [PMID: 32296011 PMCID: PMC6946647 DOI: 10.1038/s41392-019-0089-y] [Citation(s) in RCA: 1030] [Impact Index Per Article: 206.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 09/21/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023] Open
Abstract
Based on engineered or bacterial nucleases, the development of genome editing technologies has opened up the possibility of directly targeting and modifying genomic sequences in almost all eukaryotic cells. Genome editing has extended our ability to elucidate the contribution of genetics to disease by promoting the creation of more accurate cellular and animal models of pathological processes and has begun to show extraordinary potential in a variety of fields, ranging from basic research to applied biotechnology and biomedical research. Recent progress in developing programmable nucleases, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas-associated nucleases, has greatly expedited the progress of gene editing from concept to clinical practice. Here, we review recent advances of the three major genome editing technologies (ZFNs, TALENs, and CRISPR/Cas9) and discuss the applications of their derivative reagents as gene editing tools in various human diseases and potential future therapies, focusing on eukaryotic cells and animal models. Finally, we provide an overview of the clinical trials applying genome editing platforms for disease treatment and some of the challenges in the implementation of this technology.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yang Yang
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P. R. China
| | - Mengyuan Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P. R. China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China.
| |
Collapse
|
39
|
Chen YS, Hung TW, Su SC, Lin CL, Yang SF, Lee CC, Yeh CF, Hsieh YH, Tsai JP. MTA2 as a Potential Biomarker and Its Involvement in Metastatic Progression of Human Renal Cancer by miR-133b Targeting MMP-9. Cancers (Basel) 2019; 11:cancers11121851. [PMID: 31771219 PMCID: PMC6966675 DOI: 10.3390/cancers11121851] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Metastasis-associated protein 2 (MTA2) was previously known as a requirement to maintain malignant potentials in several human cancers. However, the role of MTA2 in the progression of renal cell carcinoma (RCC) has not yet been delineated. In this study, MTA2 expression was significantly increased in RCC tissues and cell lines. Increased MTA2 expression was significantly associated with tumour grade (p = 0.002) and was an independent prognostic factor for overall survival with a high RCC tumour grade. MTA2 knockdown inhibited the migration, invasion, and in vivo metastasis of RCC cells without effects on cell proliferation. Regarding molecular mechanisms, MTA2 knockdown reduced the activity, protein level, and mRNA expression of matrix metalloproteinase-9 (MMP-9) in RCC cells. Further analyses demonstrated that patients with lower miR-133b expression had poorer survival rates than those with higher expression from The Cancer Genome Atlas database. Moreover, miR-133b modulated the 3′untranslated region (UTR) of MMP-9 promoter activities and subsequently the migratory and invasive abilities of these dysregulated expressions of MTA2 in RCC cells. The inhibition of MTA2 could contribute to human RCC metastasis by regulating the expression of miR-133b targeting MMP-9 expression.
Collapse
Affiliation(s)
- Yong-Syuan Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-S.C.); (C.-L.L.); (C.-F.Y.)
| | - Tung-Wei Hung
- Division of Nephrology, Department of Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou 24451, Taiwan
| | - Chia-Liang Lin
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-S.C.); (C.-L.L.); (C.-F.Y.)
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Chu-Che Lee
- Department of Medicine Research, Buddhist Dalin Tzu Chi Hospital, Chiayi 62247, Taiwan;
| | - Chang-Fang Yeh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-S.C.); (C.-L.L.); (C.-F.Y.)
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-S.C.); (C.-L.L.); (C.-F.Y.)
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Clinical laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (Y.-H.H.); (J.-P.T.); Tel.: +886-0424730022 (Y.-H.H.); +886-052648000 (J.-P.T.)
| | - Jen-Pi Tsai
- School of Medicine, Tzu Chi University, Hualien 97010, Taiwan
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
- Correspondence: (Y.-H.H.); (J.-P.T.); Tel.: +886-0424730022 (Y.-H.H.); +886-052648000 (J.-P.T.)
| |
Collapse
|
40
|
Kim S, Jang JY, Koh J, Kwon D, Kim YA, Paeng JC, Ock CY, Keam B, Kim M, Kim TM, Heo DS, Chung DH, Jeon YK. Programmed cell death ligand-1-mediated enhancement of hexokinase 2 expression is inversely related to T-cell effector gene expression in non-small-cell lung cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:462. [PMID: 31718692 PMCID: PMC6852926 DOI: 10.1186/s13046-019-1407-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/02/2019] [Indexed: 12/21/2022]
Abstract
Background We investigated the role of PD-L1 in the metabolic reprogramming of non-small cell lung cancer (NSCLC). Methods Changes in glycolysis-related molecules and glycolytic activity were evaluated in PD-L1low and PD-L1high NSCLC cells after transfection or knockdown of PD-L1, respectively. Jurkat T-cell activation was assessed after co-culture with NSCLC cells. The association between PD-L1 and immune response-related molecules or glycolysis were analyzed in patients with NSCLC and The Cancer Genome Atlas (TCGA). Results Transfecting PD-L1 in PD-L1low cells enhanced hexokinase-2 (HK2) expression, lactate production, and extracellular acidification rates, but minimally altered GLUT1 and PKM2 expression and oxygen consumption rates. By contrast, knocking-down PD-L1 in PD-L1high cells decreased HK2 expression and glycolysis by suppressing PI3K/Akt and Erk pathways. Interferon-γ (IFNγ) secretion and activation marker expression was decreased in stimulated Jurkat T-cells when co-cultured with HK2-overexpressing vector-transfected tumor cells rather than empty vector-transfected tumor cells. Immunohistochemistry revealed that PD-L1 expression was positively correlated with HK2 expression in NSCLC (p < 0.001). In TCGA, HK2 exhibited a positive linear association with CD274 (PD-L1) expression (p < 0.001) but an inverse correlation with the expression of CD4, CD8A, and T-cell effector function-related genes in the CD274high rather than CD274low group. Consistently, there were fewer CD8+ T-cells in PD-L1positive/HK2high tumors compared to PD-L1positive/HK2low tumors in squamous cell carcinoma. Conclusions PD-L1 enhances glycolysis in NSCLC by upregulating HK2, which might dampen anti-tumor immunity. PD-L1 may contribute to NSCLC oncogenesis by inducing metabolic reprogramming and immune checkpoint.
Collapse
Affiliation(s)
- Sehui Kim
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji-Young Jang
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Bioinfra Life Science Inc., Seoul, Republic of Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dohee Kwon
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Young A Kim
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Pathology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Chan-Young Ock
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bhumsuk Keam
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Miso Kim
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Min Kim
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dae Seog Heo
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
41
|
Huilgol D, Venkataramani P, Nandi S, Bhattacharjee S. Transcription Factors That Govern Development and Disease: An Achilles Heel in Cancer. Genes (Basel) 2019; 10:E794. [PMID: 31614829 PMCID: PMC6826716 DOI: 10.3390/genes10100794] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Development requires the careful orchestration of several biological events in order to create any structure and, eventually, to build an entire organism. On the other hand, the fate transformation of terminally differentiated cells is a consequence of erroneous development, and ultimately leads to cancer. In this review, we elaborate how development and cancer share several biological processes, including molecular controls. Transcription factors (TF) are at the helm of both these processes, among many others, and are evolutionarily conserved, ranging from yeast to humans. Here, we discuss four families of TFs that play a pivotal role and have been studied extensively in both embryonic development and cancer-high mobility group box (HMG), GATA, paired box (PAX) and basic helix-loop-helix (bHLH) in the context of their role in development, cancer, and their conservation across several species. Finally, we review TFs as possible therapeutic targets for cancer and reflect on the importance of natural resistance against cancer in certain organisms, yielding knowledge regarding TF function and cancer biology.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| | | | - Saikat Nandi
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| | - Sonali Bhattacharjee
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| |
Collapse
|
42
|
Kreis NN, Louwen F, Yuan J. The Multifaceted p21 (Cip1/Waf1/ CDKN1A) in Cell Differentiation, Migration and Cancer Therapy. Cancers (Basel) 2019; 11:cancers11091220. [PMID: 31438587 PMCID: PMC6770903 DOI: 10.3390/cancers11091220] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022] Open
Abstract
Loss of cell cycle control is characteristic of tumorigenesis. The protein p21 is the founding member of cyclin-dependent kinase inhibitors and an important versatile cell cycle protein. p21 is transcriptionally controlled by p53 and p53-independent pathways. Its expression is increased in response to various intra- and extracellular stimuli to arrest the cell cycle ensuring genomic stability. Apart from its roles in cell cycle regulation including mitosis, p21 is involved in differentiation, cell migration, cytoskeletal dynamics, apoptosis, transcription, DNA repair, reprogramming of induced pluripotent stem cells, autophagy and the onset of senescence. p21 acts either as a tumor suppressor or as an oncogene depending largely on the cellular context, its subcellular localization and posttranslational modifications. In the present review, we briefly mention the general functions of p21 and summarize its roles in differentiation, migration and invasion in detail. Finally, regarding its dual role as tumor suppressor and oncogene, we highlight the potential, difficulties and risks of using p21 as a biomarker as well as a therapeutic target.
Collapse
Affiliation(s)
- Nina-Naomi Kreis
- Department of Gynecology and Obstetrics, University Hospital, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany.
| | - Frank Louwen
- Department of Gynecology and Obstetrics, University Hospital, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, University Hospital, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
43
|
Bhattacharjee S, Roche B, Martienssen RA. RNA-induced initiation of transcriptional silencing (RITS) complex structure and function. RNA Biol 2019; 16:1133-1146. [PMID: 31213126 DOI: 10.1080/15476286.2019.1621624] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heterochromatic regions of the genome are epigenetically regulated to maintain a heritable '"silent state"'. In fission yeast and other organisms, epigenetic silencing is guided by nascent transcripts, which are targeted by the RNA interference pathway. The key effector complex of the RNA interference pathway consists of small interfering RNA molecules (siRNAs) associated with Argonaute, assembled into the RNA-induced transcriptional silencing (RITS) complex. This review focuses on our current understanding of how RITS promotes heterochromatin formation, and in particular on the role of Argonaute-containing complexes in many other functions such as quelling, release of RNA polymerases, cellular quiescence and genome defense.
Collapse
Affiliation(s)
- Sonali Bhattacharjee
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| | - Benjamin Roche
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| | - Robert A Martienssen
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| |
Collapse
|