1
|
Luo J, An J, Jia R, Liu C, Zhang Y. Identification and Verification of Metabolism-related Immunotherapy Features and Prognosis in Lung Adenocarcinoma. Curr Med Chem 2025; 32:1423-1441. [PMID: 38500277 DOI: 10.2174/0109298673293414240314043529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Lung cancer is a frequent malignancy with a poor prognosis. Extensive metabolic alterations are involved in carcinogenesis and could, therefore, serve as a reliable prognostic phenotype. AIMS Our study aimed to develop a prognosis signature and explore the relationship between metabolic characteristic-related signature and immune infiltration in lung adenocarcinoma (LUAD). OBJECTIVE TCGA-LUAD and GSE31210 datasets were used as a training set and a validation set, respectively. METHODS A total of 513 LUAD samples collected from The Cancer Genome Atlas database (TCGA-LUAD) were used as a training dataset. Molecular subtypes were classified by consensus clustering, and prognostic genes related to metabolism were analyzed based on Differentially Expressed Genes (DEGs), Protein-Protein Interaction (PPI) network, the univariate/multivariate- and Lasso- Cox regression analysis. RESULTS Two molecular subtypes with significant survival differences were divided by the metabolism gene sets. The DEGs between the two subtypes were identified by integrated analysis and then used to develop an 8-gene signature (TTK, TOP2A, KIF15, DLGAP5, PLK1, PTTG1, ECT2, and ANLN) for predicting LUAD prognosis. Overexpression of the 8 genes was significantly correlated with worse prognostic outcomes. RiskScore was an independent factor that could divide LUAD patients into low- and high-risk groups. Specifically, high-risk patients had poorer prognoses and higher immune escape. The Receiver Operating Characteristic (ROC) curve showed strong performance of the RiskScore model in estimating 1-, 3- and 5-year survival in both training and validation sets. Finally, an optimized nomogram model was developed and contributed the most to the prognostic prediction in LUAD. CONCLUSION The current model could help effectively identify high-risk patients and suggest the most effective drug and treatment candidates for patients with LUAD.
Collapse
Affiliation(s)
- Junfang Luo
- Department of Geriatric Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinlu An
- Department of Geriatric Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Rongyan Jia
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Cong Liu
- Department of Geriatric Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Zhang
- Department of Geriatric Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
2
|
Fu Y, Chen B, Gao T, Wang Z. CircSLC25A16 facilitates the development of non-small-cell lung cancer through the miR-335-5p/CISD2 axis. Thorac Cancer 2024; 15:1490-1501. [PMID: 38803052 PMCID: PMC11219286 DOI: 10.1111/1759-7714.15163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) is a common malignancy with high morbidity and mortality. Circular RNAs are widely involved in NSCLC progression. However, the mechanism of circSLC25A16 in NSCLC has not been reported. METHODS The expressions of circSLC25A16, microRNA-335-5p (miR-335-5p), and CDGSH iron-sulfur domain-containing protein 2 (CISD2) were monitored by quantitative real-time fluorescence polymerase chain reaction. Western blot was also carried out to measure the protein levels of CISD2, hexokinase 2 (HK2), and lactate dehydrogenase A (LDHA). For functional analysis, cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine, flow cytometry, transwell, and wound healing assays were utilized to examine cell proliferation, apoptosis, and migration. Glucose uptake and lactate production were detected using commercial kits. The relationship between miR-335-5p and circSLC25A16 or CISD2 was verified by dual-luciferase reporter and RNA immunoprecipitation assays. Furthermore, tumor xenograft was established to explore the function of circSLC25A16 in vivo. RESULTS CircSLC25A16 and CISD2 were overexpressed in NSCLC, but miR-335-5p was downregulated. CircSLC25A16 acted as a miR-335-5p sponge, and silencing of circSLC25A16 arrested cell proliferation, migration, and glycolysis, and promoted apoptosis, but these impacts were resumed by miR-335-5p inhibition. CISD2 was a miR-335-5p target, and overexpression of CISD2 abolished the suppressive function of miR-335-5p mimic on the malignant behavior of NSCLC cells. CircSLC25A16 could adsorb miR-335-5p to mediate CISD2 expression. Additionally, silencing circSLC25A16 restrained the growth of NSCLC tumor xenograft in vivo. CONCLUSION CircSLC25A16 facilitated NSCLC progression via the miR-335-5p/CISD2 axis, implying that circSLC25A16 may serve as a novel biomarker for NSCLC treatment.
Collapse
Affiliation(s)
- Yu Fu
- Department of Respiratory MedicineYiwu Fuyuan Private HospitalYiwu CityChina
| | - Bin Chen
- Department of PharmacyYiwu Fuyuan Private HospitalYiwu CityChina
| | - Tao Gao
- Department of Respiratory MedicineYiwu Fuyuan Private HospitalYiwu CityChina
| | - Zhenglong Wang
- Department of Respiratory MedicineYiwu Fuyuan Private HospitalYiwu CityChina
| |
Collapse
|
3
|
Lee JY, Bhandare RR, Boddu SHS, Shaik AB, Saktivel LP, Gupta G, Negi P, Barakat M, Singh SK, Dua K, Chellappan DK. Molecular mechanisms underlying the regulation of tumour suppressor genes in lung cancer. Biomed Pharmacother 2024; 173:116275. [PMID: 38394846 DOI: 10.1016/j.biopha.2024.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Tumour suppressor genes play a cardinal role in the development of a large array of human cancers, including lung cancer, which is one of the most frequently diagnosed cancers worldwide. Therefore, extensive studies have been committed to deciphering the underlying mechanisms of alterations of tumour suppressor genes in governing tumourigenesis, as well as resistance to cancer therapies. In spite of the encouraging clinical outcomes demonstrated by lung cancer patients on initial treatment, the subsequent unresponsiveness to first-line treatments manifested by virtually all the patients is inherently a contentious issue. In light of the aforementioned concerns, this review compiles the current knowledge on the molecular mechanisms of some of the tumour suppressor genes implicated in lung cancer that are either frequently mutated and/or are located on the chromosomal arms having high LOH rates (1p, 3p, 9p, 10q, 13q, and 17p). Our study identifies specific genomic loci prone to LOH, revealing a recurrent pattern in lung cancer cases. These loci, including 3p14.2 (FHIT), 9p21.3 (p16INK4a), 10q23 (PTEN), 17p13 (TP53), exhibit a higher susceptibility to LOH due to environmental factors such as exposure to DNA-damaging agents (carcinogens in cigarette smoke) and genetic factors such as chromosomal instability, genetic mutations, DNA replication errors, and genetic predisposition. Furthermore, this review summarizes the current treatment landscape and advancements for lung cancers, including the challenges and endeavours to overcome it. This review envisages inspired researchers to embark on a journey of discovery to add to the list of what was known in hopes of prompting the development of effective therapeutic strategies for lung cancer.
Collapse
Affiliation(s)
- Jia Yee Lee
- School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Richie R Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates.
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada, Chebrolu, Guntur, Andhra Pradesh 522212, India; Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Lakshmana Prabu Saktivel
- Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Tiruchirappalli 620024, India
| | - Gaurav Gupta
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan 302017, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University, PO Box 9, Solan, Himachal Pradesh 173229, India
| | - Muna Barakat
- Department of Clinical Pharmacy & Therapeutics, Applied Science Private University, Amman-11937, Jordan
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
4
|
Jiang J, Li X, Zhang C, Wang J, Li J. Anti-cancer effects of Coix seed extract through KCTD9-mediated ubiquitination of TOP2A in lung adenocarcinoma. Cell Div 2024; 19:6. [PMID: 38374109 PMCID: PMC10877835 DOI: 10.1186/s13008-024-00112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/16/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Coix seed extract (CSE), a traditional Chinese medicine, has been reported as an adjunctive therapy in cancers. However, the molecular targets are largely unclear. The study is designed to unveil its function in lung adenocarcinoma (LUAD) and the possible molecular mechanism. METHODS The HERB database was utilized to predict the molecular targets of the Coix seed, followed by prognostic value prediction in the Kaplan-Meier Plotter database. LUAD cells were infected with sh-KCTD9 after co-culture with CSE, and cell viability, growth, proliferation, and apoptosis were determined. The substrates of KCTD9 were predicted using a protein-protein interaction network and verified. The expression of PD-L1, the contents of TNF-α, IFN-γ, CXCL10, and CXCL9 in the co-culture system of LUAD cells and T cells and the proliferation of T cells were evaluated to study the immune escape of LUAD cells in response to CSE and sh-KCTD9. Lastly, tumor growth and immune escape were observed in tumor-bearing mice. RESULTS CSE inhibited malignant behavior and immune escape of LUAD cells, and the reduction of KCTD9 reversed the inhibitory effect of CSE on malignant behavior and immune escape of LUAD cells. Knockdown of KCTD9 expression inhibited ubiquitination modification of TOP2A, and knockdown of TOP2A suppressed immune escape of LUAD cells in the presence of knockdown of KCTD9. CSE exerted anticancer effects in mice, but the reduction of KCTD9 partially compromised the anticancer effect of CSE. CONCLUSION CSE inhibits immune escape and malignant progression of LUAD through KCTD9-mediated ubiquitination modification of TOP2A.
Collapse
Affiliation(s)
- Jiuyang Jiang
- Department of Thoracic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Xue Li
- Department of Internal Medicine, Daoli District People's Hospital, Harbin, 150016, Heilongjiang, People's Republic of China
| | - Chun Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Jiafu Wang
- Department of PET-CT, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Jin Li
- Department of Traditional Chinese Medicine, The Fourth Affiliated Hospital of Harbin Medical University Songbei, No. 766, Xiang'an North Street, Songbei District, Harbin, 150070, Heilongjiang, People's Republic of China.
| |
Collapse
|
5
|
Cui A, Li X, Ma X, Song Z, Wang X, Wang C, Xia Y. Quantitative transcriptomic and proteomic analysis reveals corosolic acid inhibiting bladder cancer via suppressing cell cycle and inducing mitophagy in vitro and in vivo. Toxicol Appl Pharmacol 2023; 480:116749. [PMID: 37939859 DOI: 10.1016/j.taap.2023.116749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/03/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
Corosolic acid (CA) is a plant-derived terpenoid compound with many health benefits. However, the anti-tumor effects of CA in bladder cancer remain unexplored. Here, we found that CA inhibited bladder tumor both in vitro and in vivo, and had no significant toxicity in mice. With the aid of transcriptomics and proteomics, we elucidated the regulatory network mechanism of CA inhibiting bladder cancer. Through cell viability detection, cell fluorescence staining and flow cytometry, we discovered that CA inhibited bladder cancer mainly through blocking cell cycle. Interestingly, CA played anticancer roles by distinct mechanisms at different concentrations: low concentrations (<7.0 μg/ml) of CA mainly inhibited DNA synthesis by downregulating TOP2A and LIG1, and diminished mitosis by downregulating CCNA2, CCNB1, CDC20, and RRM2; high concentrations (≥7.0 μg/ml) of CA induced cell death through triggering mitophagy via upregulating NBR1, TAXBP1, SQSTM1/P62, and UBB. CA, as a natural molecule of homology of medicine and food, is of great significance for the prevention and treatment of cancer patients following clarifying its anti-cancer mechanism. This study provides a comprehensive understanding of the pharmacological mechanism of CA inhibition in bladder cancer, which is helpful for the development of new anti-tumor drugs based on CA.
Collapse
Affiliation(s)
- Anfang Cui
- College of Basic Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Xiangling Li
- College of Basic Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Xiaolei Ma
- College of Basic Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Zhigang Song
- College of Basic Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Xiao Wang
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Chao Wang
- Department of Urology, Shandong First Medical University Affiliated Jining First People's Hospital, Jining 272106, China.
| | - Yong Xia
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, China.
| |
Collapse
|
6
|
Liu Y, Yang Y, Ni F, Tai G, Yu C, Jiang X, Wang D. Research on radiotherapy related genes and prognostic target identification of rectal cancer based on multi-omics. J Transl Med 2023; 21:856. [PMID: 38012642 PMCID: PMC10680259 DOI: 10.1186/s12967-023-04753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Radiosensitivity of rectal cancer is related to the radiotherapy efficacy and prognosis of patients with rectal cancer, and the genes and molecular mechanisms related to radiosensitivity of rectal cancer have not been clarified. We explored the radiosensitivity related genes of rectal cancer at a multi omics level. METHODS mRNA expression data and rectum adenocarcinoma (READ) data were obtained from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus Database (GEO) (GSE150082, GSE60331, GSE46862, GSE46862). Differentially expressed genes between radiotherapy sensitive group and radiotherapy insensitive group were screened. GO analysis and KEGG pathway analysis were performed for differentially expressed genes. Among the differentially expressed genes, five core genes associated with rectal cancer prognosis were selected using random survival forest analysis. For these five core genes, drug sensitivity analysis, immune cell infiltration analysis, TISIDB database immune gene correlation analysis, GSEA enrichment analysis, construction of Nomogram prediction model, transcriptional regulatory network analysis, and qRT-PCR validation was performed on human rectal adenocarcinoma tissue. RESULTS We found that 600 up-regulated genes and 553 down-regulated genes were significantly different between radiotherapy sensitive group and radiotherapy insensitive group in rectal cancer. Five key genes, TOP2A, MATR3, APOL6, JOSD1, and HOXC6, were finally screened by random survival forest analysis. These five key genes were associated with different immune cell infiltration, immune-related genes, and chemosensitivity. A comprehensive transcriptional regulatory network was constructed based on these five core genes. qRT-PCR revealed that MATR3 expression was different in rectal cancer tissues and adjacent non-cancerous tissues, while APOL6, HOXC6, JOSD1, and TOP2A expression was not different. CONCLUSION Five radiosensitivity-related genes related to the prognosis of rectal cancer: TOP2A, MATR3, APOL6, JOSD1, HOXC6, are involved in multiple processes such as immune cell infiltration, immune-related genes, chemosensitivity, signaling pathways and transcriptional regulatory networks and may be potential biomarkers for radiotherapy of rectal cancer.
Collapse
Affiliation(s)
- Yi Liu
- Department of Radiotherapy, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Yanguang Yang
- Department of Radiotherapy, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Feng Ni
- Department of Radiotherapy, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Guomei Tai
- Department of Radiotherapy, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Cenming Yu
- Department of Radiotherapy, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Xiaohui Jiang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China.
| | - Ding Wang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China.
| |
Collapse
|
7
|
Feng J, Wei X, Liu Y, Zhang Y, Li G, Xu Y, Zhou P, Zhang J, Han X, Zhang C, Zhang Y, Wang G. Identification of topoisomerase 2A as a novel bone metastasis-related gene in liver hepatocellular carcinoma. Aging (Albany NY) 2023; 15:13010-13040. [PMID: 37980167 PMCID: PMC10713393 DOI: 10.18632/aging.205216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/17/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Bone is the second most frequent site of metastasis for Liver hepatocellular carcinoma (LIHC), which leads to an extremely poor prognosis. Identifying novel biomarkers and therapeutic targets for LIHC patients with bone metastasis is urgently needed. METHODS In this study, we used multiple databases for comprehensive bioinformatics analysis, including TCGA, GEO, ICGC, GTEx, TISIDB, and TIMER, to identify key genes related to bone metastasis of LIHC. Clinical tissues and tissue microarray were adopted to assess the expression of TOP2A through qRT-PCR and immunohistochemistry analyses in LIHC. Gene enrichment analysis, DNA methylation, gene mutation, prognosis, and tumor immunity associated with TOP2A in LIHC were investigated. In vitro and in vivo experiments were performed to explore the functional role of TOP2A in LIHC bone metastasis. RESULTS We identified that TOP2A was involved in LIHC bone metastasis. Clinically, TOP2A was highly expressed in LIHC tumoral specimens, with the highest level in the bone metastasis lesions. TOP2A was an independent prognostic factor that higher expression of TOP2A was markedly associated with poorer prognosis in LIHC. Moreover, the abnormal expression of TOP2A might be related to DNA hypomethylation, often accompanied by TP53 mutation, immune escape and immunotherapy failure. Enrichment analysis and validation experiments unveiled that TOP2A stimulated the Hippo-YAP signaling pathway in LIHC. Functional assays confirmed that TOP2A could promote bone-specific metastatic potential and tumor-induced osteolysis in LIHC. CONCLUSIONS These findings unveil that TOP2A might be a novel prognostic biomarker and therapeutic target for LIHC bone metastasis.
Collapse
Affiliation(s)
- Jinyan Feng
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xianfu Wei
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yongheng Liu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yanting Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Guanghao Li
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yao Xu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Peng Zhou
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Orthopedics, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Jin Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xiuxin Han
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Chao Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yan Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Guowen Wang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
8
|
Gui Z, Du J, Wu N, Shen N, Yang Z, Yang H, Wang X, Zhao N, Zeng Z, Wei R, Ma W, Wang C. Immune regulation and prognosis indicating ability of a newly constructed multi-genes containing signature in clear cell renal cell carcinoma. BMC Cancer 2023; 23:649. [PMID: 37438709 DOI: 10.1186/s12885-023-11150-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/04/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common renal malignancy, although newly developing targeted therapy and immunotherapy have been showing promising effects in clinical treatment, the effective biomarkers for immune response prediction are still lacking. The study is to construct a gene signature according to ccRCC immune cells infiltration landscape, thus aiding clinical prediction of patients response to immunotherapy. METHODS Firstly, ccRCC transcriptome expression profiles from Gene Expression Omnibus (GEO) database as well as immune related genes information from IMMPORT database were combine applied to identify the differently expressed meanwhile immune related candidate genes in ccRCC comparing to normal control samples. Then, based on protein-protein interaction network (PPI) and following module analysis of the candidate genes, a hub gene cluster was further identified for survival analysis. Further, LASSO analysis was applied to construct a signature which was in succession assessed with Kaplan-Meier survival, Cox regression and ROC curve analysis. Moreover, ccRCC patients were divided as high and low-risk groups based on the gene signature followed by the difference estimation of immune treatment response and exploration of related immune cells infiltration by TIDE and Cibersort analysis respectively among the two groups of patients. RESULTS Based on GEO and IMMPORT databases, a total of 269 differently expressed meanwhile immune related genes in ccRCC were identified, further PPI network and module analysis of the 269 genes highlighted a 46 genes cluster. Next step, Kaplan-Meier and Cox regression analysis of the 46 genes identified 4 genes that were supported to be independent prognosis indicators, and a gene signature was constructed based on the 4 genes. Furthermore, after assessing its prognosis indicating ability by both Kaplan-Meier and Cox regression analysis, immune relation of the signature was evaluated including its association with environment immune score, Immune checkpoint inhibitors expression as well as immune cells infiltration. Together, immune predicting ability of the signature was preliminary explored. CONCLUSIONS Based on ccRCC genes expression profiles and multiple bioinformatic analysis, a 4 genes containing signature was constructed and the immune regulation of the signature was preliminary explored. Although more detailed experiments and clinical trials are needed before potential clinical use of the signature, the results shall provide meaningful insight into further ccRCC immune researches.
Collapse
Affiliation(s)
- Ziwei Gui
- Department of Pathology, Second Clinical Medical College of ShanXi Medical University, Tai Yuan City, ShanXi Province, China
| | - Juan Du
- Department of Pathology, Second Clinical Medical College of ShanXi Medical University, Tai Yuan City, ShanXi Province, China
| | - Nan Wu
- Department of Anesthesiology, Second Hospital of ShanXi Medical University, Tai Yuan, ShanXi Province, China
| | - Ningning Shen
- Department of Pathology, Second Hospital of ShanXi Medical University, No.382 Wuyi Road, Tai Yuan, ShanXi Province, 030000, China
| | - Zhiqing Yang
- Department of Pathology, Second Hospital of ShanXi Medical University, No.382 Wuyi Road, Tai Yuan, ShanXi Province, 030000, China
| | - Huijun Yang
- Department of Pathology, Second Clinical Medical College of ShanXi Medical University, Tai Yuan City, ShanXi Province, China
| | - Xuzhi Wang
- Department of Pathology, Second Clinical Medical College of ShanXi Medical University, Tai Yuan City, ShanXi Province, China
| | - Na Zhao
- Department of Pathology, Second Hospital of ShanXi Medical University, No.382 Wuyi Road, Tai Yuan, ShanXi Province, 030000, China
| | - Zixin Zeng
- Department of Pathology, Second Clinical Medical College of ShanXi Medical University, Tai Yuan City, ShanXi Province, China
| | - Rong Wei
- Department of Pathology, Second Hospital of ShanXi Medical University, No.382 Wuyi Road, Tai Yuan, ShanXi Province, 030000, China
| | - Wenxia Ma
- Department of Pathology, Second Hospital of ShanXi Medical University, No.382 Wuyi Road, Tai Yuan, ShanXi Province, 030000, China.
| | - Chen Wang
- Department of Pathology, Second Hospital of ShanXi Medical University, No.382 Wuyi Road, Tai Yuan, ShanXi Province, 030000, China.
| |
Collapse
|
9
|
Carbone K, Gervasi F, Kozhamzharova L, Altybaeva N, Sönmez Gürer E, Sharifi-Rad J, Hano C, Calina D. Casticin as potential anticancer agent: recent advancements in multi-mechanistic approaches. Front Mol Biosci 2023; 10:1157558. [PMID: 37304067 PMCID: PMC10250667 DOI: 10.3389/fmolb.2023.1157558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Plants, with their range of pharmacologically active molecules, represent the most promising source for the production of new anticancer drugs and for the formulation of adjuvants in chemotherapy treatments to reduce drug content and/or counteract the side effects of chemotherapy. Casticin is a major bioactive flavonoid isolated from several plants, mainly from the Vitex species. This compound is well known for its anti-inflammatory and antioxidant properties, which are mainly exploited in traditional medicine. Recently, the antineoplastic potential of casticin has attracted the attention of the scientific community for its ability to target multiple cancer pathways. The purpose of this review is, therefore, to present and critically analyze the antineoplastic potential of casticin, highlighting the molecular pathways underlying its antitumor effects. Bibliometric data were extracted from the Scopus database using the search strings "casticin" and "cancer" and analyzed using VOSviewer software to generate network maps to visualize the results. Overall, more than 50% of the articles were published since 2018 and even more recent studies have expanded the knowledge of casticin's antitumor activity by adding interesting new mechanisms of action as a topoisomerase IIα inhibitor, DNA methylase 1 inhibitor, and an upregulator of the onco-suppressive miR-338-3p. Casticin counteracts cancer progression through the induction of apoptosis, cell cycle arrest, and metastasis arrest, acting on several pathways that are generally dysregulated in different types of cancer. In addition, they highlight that casticin can be considered as a promising epigenetic drug candidate to target not only cancer cells but also cancer stem-like cells.
Collapse
Affiliation(s)
- Katya Carbone
- CREA—Research Centre for Olive, Fruit and Citrus Crops, Rome, Italy
| | - Fabio Gervasi
- CREA—Research Centre for Olive, Fruit and Citrus Crops, Rome, Italy
| | - Latipa Kozhamzharova
- Department of Scientific Works and International Relations, International Taraz Innovative Institute Named After Sherkhan Murtaza, Taraz, Kazakhstan
| | - Nazgul Altybaeva
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Al-frabi, Kazakhstan
| | - Eda Sönmez Gürer
- Department of Pharmacognosy, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | | | - Christophe Hano
- Department of Biological Chemistry, Université ď Orléans, Orléans, France
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
10
|
Hasan MAM, Maniruzzaman M, Shin J. Differentially expressed discriminative genes and significant meta-hub genes based key genes identification for hepatocellular carcinoma using statistical machine learning. Sci Rep 2023; 13:3771. [PMID: 36882493 PMCID: PMC9992474 DOI: 10.1038/s41598-023-30851-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common lethal malignancy of the liver worldwide. Thus, it is important to dig the key genes for uncovering the molecular mechanisms and to improve diagnostic and therapeutic options for HCC. This study aimed to encompass a set of statistical and machine learning computational approaches for identifying the key candidate genes for HCC. Three microarray datasets were used in this work, which were downloaded from the Gene Expression Omnibus Database. At first, normalization and differentially expressed genes (DEGs) identification were performed using limma for each dataset. Then, support vector machine (SVM) was implemented to determine the differentially expressed discriminative genes (DEDGs) from DEGs of each dataset and select overlapping DEDGs genes among identified three sets of DEDGs. Enrichment analysis was performed on common DEDGs using DAVID. A protein-protein interaction (PPI) network was constructed using STRING and the central hub genes were identified depending on the degree, maximum neighborhood component (MNC), maximal clique centrality (MCC), centralities of closeness, and betweenness criteria using CytoHubba. Simultaneously, significant modules were selected using MCODE scores and identified their associated genes from the PPI networks. Moreover, metadata were created by listing all hub genes from previous studies and identified significant meta-hub genes whose occurrence frequency was greater than 3 among previous studies. Finally, six key candidate genes (TOP2A, CDC20, ASPM, PRC1, NUSAP1, and UBE2C) were determined by intersecting shared genes among central hub genes, hub module genes, and significant meta-hub genes. Two independent test datasets (GSE76427 and TCGA-LIHC) were utilized to validate these key candidate genes using the area under the curve. Moreover, the prognostic potential of these six key candidate genes was also evaluated on the TCGA-LIHC cohort using survival analysis.
Collapse
Affiliation(s)
- Md Al Mehedi Hasan
- School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima, 965-8580, Japan.,Department of Computer Science and Engineering, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh
| | - Md Maniruzzaman
- School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima, 965-8580, Japan.,Statistics Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Jungpil Shin
- School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima, 965-8580, Japan.
| |
Collapse
|
11
|
An integrated multi-omics analysis of topoisomerase family in pan-cancer: Friend or foe? PLoS One 2022; 17:e0274546. [PMID: 36288358 PMCID: PMC9604985 DOI: 10.1371/journal.pone.0274546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/29/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Topoisomerases are nuclear enzymes that get to the bottom of topological troubles related with DNA all through a range of genetic procedures. More and more studies have shown that topoisomerase-mediated DNA cleavage plays crucial roles in tumor cell death and carcinogenesis. There is however still a lack of comprehensive multi-omics studies related to topoisomerase family genes from a pan-cancer perspective. METHODS In this study, a multiomics pan-cancer analysis of topoisomerase family genes was conducted by integrating over 10,000 multi-dimensional cancer genomic data across 33 cancer types from The Cancer Genome Atlas (TCGA), 481 small molecule drug response data from cancer therapeutics response portal (CTRP) as well as normal tissue data from Genotype-Tissue Expression (GTEx). Finally, overall activity-level analyses of topoisomerase in pan-cancers were performed by gene set variation analysis (GSVA), together with differential expression, clinical relevancy, immune cell infiltration and regulation of cancer-related pathways. RESULTS Dysregulated gene expression of topoisomerase family were related to genomic changes and abnormal epigenetic modifications. The expression levels of topoisomerase family genes could significantly impact cancer progression, intratumoral heterogeneity, alterations in the immunological condition and regulation of the cancer marker-related pathways, which in turn caused the differences in potential drugs sensitivity and the distinct prognosis of patients. CONCLUSION It was anticipated that topoisomerase family genes would become novel prognostic biomarkers for cancer patients and provide new insights for the diagnosis and treatment of tumors.
Collapse
|
12
|
Personalized Prescription of Chemotherapy Based on Assessment of mRNA Expression of BRCA1, RRM1, ERCC1, TOP1, TOP2α, TUBβ3, TYMS, and GSTP1 Genes in Tumors Compared to Standard Chemotherapy in the Treatment of Non-Small-Cell Lung Cancer. J Pers Med 2022; 12:jpm12101647. [PMID: 36294786 PMCID: PMC9605448 DOI: 10.3390/jpm12101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives: A growing body of evidence suggests the important role of chemosensitive gene expression in the prognosis of patients with lung cancer. However, studies on combined gene expression assessments for personalized prescriptions of chemotherapy regimens in patients have not yet been conducted. The aim of this work was to conduct a prospective study on the appointment of personalized chemotherapy in patients with non-small-cell lung cancer. Materials and methods: The present study analyzed 85 patients with lung cancer (stage IIB-IIIB). Within this group, 48 patients received individualized chemotherapy, and 37 patients received classical chemotherapy. In the individualized chemotherapy group, the mRNA expression levels of ERCC1, RRM1, TUBB3, TYMS, TOP1, TOP2α, BRCA1, and GSTP1 in lung tissues were measured by quantitative real-time PCR (qPCR), and an individual chemotherapy regimen was developed for each patient according to the results. Patients in the classical chemotherapy group received the vinorelbine/carboplatin regimen. Survival analyses were performed using the Kaplan−Meier method. Prognostic factors of metastasis-free survival (MFS) and overall survival (OS) of patients were identified via Cox’s proportional hazards regression model. Results: MFS and OS were significantly better in the personalized chemotherapy group compared to the classic chemotherapy group (MFS, 46.22 vs. 22.9 months, p = 0.05; OS, 58.6 vs. 26.9 months, p < 0.0001). Importantly, the best metastasis-free survival rates in the group with personalized ACT were achieved in patients treated with the paclitaxel/carboplatin regimen. Based on an assessment of chemosensitivity gene expression in the tumors, the classical chemotherapy strategy also increased the risk of death (HR = 14.82; 95% CI: 3.33−65.86; p < 0.000) but not metastasis (HR = 1.95; 95% CI: 0.96−3.98; p = 0.06) compared to the group of patients with chemotherapy. Conclusions: The use of combined ERCC1, RRM1, TUBB3, TYMS, TOP1, TOP2α, BRCA1, and GSTP1 gene expression results for personalized chemotherapy can improve treatment efficacy and reduce unnecessary toxicity.
Collapse
|
13
|
Wang Z, Zhu Q, Li X, Ren X, Li J, Zhang Y, Zeng S, Xu L, Dong X, Zhai B. TOP2A inhibition reverses drug resistance of hepatocellular carcinoma to regorafenib. Am J Cancer Res 2022; 12:4343-4360. [PMID: 36225636 PMCID: PMC9548008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death attributed to high frequency of metastasis and multiple drug resistance. We aim to examine the underlying molecular mechanism and to seek potential strategies to reverse primary/acquired resistance to regorafenib. Topoisomerase IIα (TOP2A) is critical for tumorigenesis and carcinogenesis. Clinically, high-TOP2A expression was correlated to shorter overall survival (OS) of patients, but its role in drug resistance of HCC remains unknown. Here, we screened the expression profiling of TOP2A in HCC and identified TOP2A as an upregulated gene involved in the resistance to regorafenib. Sustained exposure of HCC cells to regorafenib could upregulate the expression of TOP2A. Silencing TOP2A enhanced HCC cells' sensitivity to regorafenib. TOP2A inhibition by doxorubicin or epirubicin synergized with regorafenib to suppress the growth of sorafenib-resistant HCC tumors that possessed the sorafenib-resistant features both in vitro and in vivo. Thus, targeting TOP2A may be a promising therapeutic strategy to alleviate resistance to regorafenib and thus improving the efficacy of HCC treatment.
Collapse
Affiliation(s)
- Zongwen Wang
- Department of Surgical Oncology and Hepatobiliary Surgery, The Fourth Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Qiankun Zhu
- Department of Surgical Oncology and Hepatobiliary Surgery, The Fourth Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Xiaodong Li
- Department of Surgical Oncology and Hepatobiliary Surgery, The Fourth Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Xiaohang Ren
- Department of Surgical Oncology and Hepatobiliary Surgery, The Fourth Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Jingtao Li
- Department of Surgical Oncology and Hepatobiliary Surgery, The Fourth Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Yao Zhang
- Department of Surgical Oncology and Hepatobiliary Surgery, The Fourth Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Shicong Zeng
- Department of Surgical Oncology and Hepatobiliary Surgery, The Fourth Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Lishan Xu
- Department of Surgical Oncology and Hepatobiliary Surgery, The Fourth Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Xiaoqun Dong
- The Liver Research Center of Rhode Island Hospital/Lifespan; Department of Medicine, The Warren Alpert Medical School of Brown UniversityProvidence, RI 02903, USA
| | - Bo Zhai
- Department of Surgical Oncology and Hepatobiliary Surgery, The Fourth Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| |
Collapse
|
14
|
Zhang Y, Yang H, Wang L, Zhou H, Zhang G, Xiao Z, Xue X. TOP2A correlates with poor prognosis and affects radioresistance of medulloblastoma. Front Oncol 2022; 12:918959. [PMID: 35912241 PMCID: PMC9337862 DOI: 10.3389/fonc.2022.918959] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/27/2022] [Indexed: 12/05/2022] Open
Abstract
Radiotherapy remains the standard treatment for medulloblastoma (MB), and the radioresistance contributes to tumor recurrence and poor clinical outcomes. Nuclear DNA topoisomerase II-alpha (TOP2A) is a key catalytic enzyme that initiates DNA replication, and studies have shown that TOP2A is closely related to the therapeutic effects of radiation. In this study, we found that TOP2A was significantly upregulated in MB, and high expression of TOP2A related to poor prognosis of MB patients. Knockdown of TOP2A inhibited MB cell proliferation, migration, and invasion, whereas overexpression of TOP2A enhanced the proliferative and invasive ability of MB cells. Moreover, si-TOP2A transfection in combination with irradiation (IR) significantly reduced the tumorigenicity of MB cells, compared with those transfected with si-TOP2A alone. Cell survival curve analysis revealed that the survival fraction of MB cells was significantly reduced upon TOP2A downregulation and that si-TOP2A-transfected cells had decreased D0, Dq, and SF2 values, indicating that TOP2A knockdown suppresses the resistance to radiotherapy in MB cells. In addition, western blot analysis demonstrated that the activity of Wnt/β-catenin signaling pathway was inhibited after TOP2A downregulation alone or in combination with IR treatment, whereas overexpression of TOP2A exhibited the opposite effects. Gene set enrichment analysis also revealed that Wnt/β-catenin signaling pathway is enriched in TOP2A high-expression phenotypes. Collectively, these data indicate that high expression of TOP2A leads to poor prognosis of MB, and downregulation of TOP2A inhibits the malignant behaviour as well as the radioresistance of MB cells. The Wnt/β-catenin signaling pathway may be involved in the molecular mechanisms of TOP2A mediated reduced tumorigenicity and radioresistance of MB cells.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haiyan Yang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liwen Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ge Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiqing Xiao
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Xiaoying Xue,
| |
Collapse
|
15
|
Zhuang Z, Zhong X, Chen Q, Chen H, Liu Z. Bioinformatics and System Biology Approach to Reveal the Interaction Network and the Therapeutic Implications for Non-Small Cell Lung Cancer Patients With COVID-19. Front Pharmacol 2022; 13:857730. [PMID: 35721149 PMCID: PMC9201692 DOI: 10.3389/fphar.2022.857730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/28/2022] [Indexed: 01/17/2023] Open
Abstract
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the leading cause of coronavirus disease-2019 (COVID-19), is an emerging global health crisis. Lung cancer patients are at a higher risk of COVID-19 infection. With the increasing number of non-small-cell lung cancer (NSCLC) patients with COVID-19, there is an urgent need of efficacious drugs for the treatment of COVID-19/NSCLC. Methods: Based on a comprehensive bioinformatic and systemic biological analysis, this study investigated COVID-19/NSCLC interactional hub genes, detected common pathways and molecular biomarkers, and predicted potential agents for COVID-19 and NSCLC. Results: A total of 122 COVID-19/NSCLC interactional genes and 21 interactional hub genes were identified. The enrichment analysis indicated that COVID-19 and NSCLC shared common signaling pathways, including cell cycle, viral carcinogenesis, and p53 signaling pathway. In total, 10 important transcription factors (TFs) and 44 microRNAs (miRNAs) participated in regulations of 21 interactional hub genes. In addition, 23 potential candidates were predicted for the treatment of COVID-19 and NSCLC. Conclusion: This study increased our understanding of pathophysiology and screened potential drugs for COVID-19 and NSCLC.
Collapse
Affiliation(s)
- Zhenjie Zhuang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoying Zhong
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qianying Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiqi Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhanhua Liu
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Fu C, Zhang K, Wang M, Qiu F. Casticin and chrysosplenol D from Artemisia annua L. induce apoptosis by inhibiting topoisomerase IIα in human non-small-cell lung cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154095. [PMID: 35398735 DOI: 10.1016/j.phymed.2022.154095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/12/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Artemisia annua L. (A. annua) and its active components exhibit antitumour effects in many cancer cells. However, the biological processes and mechanisms involved are not well understood, especially for the treatment of non-small-cell lung cancer (NSCLC). PURPOSE This study aimed to comprehensively explore the biological processes of A. annua and its active components in NSCLC cells and to identify the mechanism by which these compounds induce apoptosis. STUDY DESIGNS/METHODS Cell viability and flow cytometry assays were used to evaluate the cytotoxicity of A. annua active components casticin (CAS) and chrysosplenol D (CHD) in A. annua in NSCLC cells. After treatment with CAS and CHD, A549 cells were subjected to RNA sequencing (RNA-seq) analysis, differentially expressed genes (DEGs) were screened and subjected to functional enrichment analysis (KEGG and GO analysis) as well as protein interaction network analysis. The key targets associated with apoptosis induction in A549 cells were screened by Cytoscape, and the screened DEGs were validated by qRT-PCR. Immunoblotting, immunofluorescence, and molecular docking assays were used to determine whether CAS and/or CHD could induce apoptosis in NSCLC cells by inducing DNA damage through down-regulation of topoisomerase IIα (topo IIα) expression. The same experiments were verified again in the H1299 lung cancer cell line. RESULTS CAS and CHD inhibited NSCLC cells proliferation in a time- and dose-dependent manner, and significantly induced apoptosis. A total of 115 co-upregulated DEGs and 277 co-downregulated DEGs were identified in A549 cells following treatment with CAS and CHD. Comprehensive and systematic data about biological processes and mechanisms were obtained. DNA damage pathways and topo IIα targets were screened to study the apoptosis effects of CAS and CHD on NSCLC cells. CAS and CHD may be able to induce DNA damage by binding to topo IIα-DNA and reducing topo IIα activity. CONCLUSION This study suggested that CAS and CHD may reduce topo IIα activity by binding to topo IIα-DNA, affecting the replication of DNA, triggering DNA damage, and inducing apoptosis. It described a novel mechanism associated with topo IIα inhibition to reveal a novel role for CAS and CHD in A. annua as potential anticancer agents and/or adjuvants in NSCLC cells.
Collapse
Affiliation(s)
- Chunqing Fu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Keyu Zhang
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Manyuan Wang
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Feng Qiu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
17
|
Yin J, Che G, Jiang K, Zhou Z, Wu L, Xu M, Liu J, Yan S. Ciclopirox Olamine Exerts Tumor-Suppressor Effects via Topoisomerase II Alpha in Lung Adenocarcinoma. Front Oncol 2022; 12:791916. [PMID: 35251970 PMCID: PMC8894728 DOI: 10.3389/fonc.2022.791916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background Globally, lung cancer is one of the most malignant tumors, of which lung adenocarcinoma (LUAD) is the most common subtype, with a particularly poor prognosis. Ciclopirox olamine (CPX) is an antifungal drug and was recently identified as a potential antitumor agent. However, how CPX and its mechanism of action function during LUAD remain unclear. Methods The effects of CPX on cell proliferation, cell cycle, reactive oxygen species (ROS) levels, and apoptosis were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, colony formation, western blotting, flow cytometry assays, and immunohistochemistry. Global gene expression levels were compared between control and CPX-treated LUAD cells. A LUAD xenograft mouse model was used to evaluate the potential in vivo effects of CPX. Results We observed that CPX displayed strong antitumorigenic properties in LUAD cells, inhibited LUAD proliferation, induced ROS production, caused DNA damage, and activated the ATR-CHK1-P53 pathway. Topoisomerase II alpha (TOP2A) is overexpressed in LUAD and associated with a poor prognosis. By analyzing differentially expressed genes (DEGs), TOP2A was significantly down-regulated in CPX-treated LUAD cells. Furthermore, CPX treatment substantially inhibited in vivo LUAD xenograft growth without toxicity or side effects to the hematological system and internal organs. Conclusions Collectively, for the first time, we showed that CPX exerted tumor-suppressor effects in LUAD via TOP2A, suggesting CPX could potentially function as a promising chemotherapeutic for LUAD treatment.
Collapse
Affiliation(s)
- Jie Yin
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Che
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kan Jiang
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziyang Zhou
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingyun Wu
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengyou Xu
- Department of Medical Oncology, Peking University Cancer Hospital, Beijing, China
| | - Jian Liu
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jian Liu, ; Senxiang Yan,
| | - Senxiang Yan
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jian Liu, ; Senxiang Yan,
| |
Collapse
|
18
|
Deng B, Chen X, Xu L, Zheng L, Zhu X, Shi J, Yang L, Wang D, Jiang D. Chordin-like 1 is a novel prognostic biomarker and correlative with immune cell infiltration in lung adenocarcinoma. Aging (Albany NY) 2022; 14:389-409. [PMID: 35021154 PMCID: PMC8791215 DOI: 10.18632/aging.203814] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022]
Abstract
Chordin-like 1 (CHRDL1), an inhibitor of bone morphogenetic proteins(BMPs), has been recently reported to participate in the progression of numerous tumors, however, its role in lung adenocarcinoma (LUAD) remains unclear. Our study aimed to demonstrate relationship between CHRDL1 and LUAD based on data from The Cancer Genome Atlas (TCGA). Among them, CHRDL1 expression revealed promising power for distinguishing LUAD tissues form normal sample. Low CHRDL1 was correlated with poor clinicopathologic features, including high T stage (OR=0.45, P<0.001), high N stage (OR=0.57, P<0.003), bad treatment effect (OR=0.64, P=0.047), positive tumor status (OR=0.63, P=0.018), and TP53 mutation (OR=0.49, P<0.001). The survival curve illustrated that low CHRDL1 was significantly correlative with a poor overall survival (HR=0.60, P<0.001). At multivariate Cox regression analysis, CHRDL1 remained independently correlative with overall survival. GSEA identified that the CHRDL1 expression was related to cell cycle and immunoregulation. Immune infiltration analysis suggested that CHRDL1 was significantly correlative with 7 kinds of immune cells. Immunohistochemical validation showed that CHRDL1 was abnormally elevated and negatively correlated with Th2 cells in LUAD tissues. In conclusion, CHRDL1 might become a novel prognostic biomarker and therapy target in LUAD. Moreover, CHRDL1 may improve the effectiveness of immunotherapy by regulating immune infiltration.
Collapse
Affiliation(s)
- Bing Deng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaorui Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingfang Xu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zheng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqian Zhu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junwei Shi
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Yang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dian Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Depeng Jiang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Liu Y, Ma J, Song JS, Zhou HY, Li JH, Luo C, Geng X, Zhao HX. DNA topoisomerase II alpha promotes the metastatic characteristics of glioma cells by transcriptionally activating β-catenin. Bioengineered 2022; 13:2207-2216. [PMID: 35012441 PMCID: PMC8974225 DOI: 10.1080/21655979.2021.2023985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
DNA topoisomerase II alpha (TOP2A) reportedly plays a crucial role in several cancers, however, the precise regulatory role of TOP2A in metastatic characteristics of glioma is still poorly understood. Herein, we sought to elucidate the mechanisms by which TOP2A affects the metastatic phenotypes of glioma. We observed that a high level of TOP2A expression was dramatically linked with inferior survival in glioma patients while silencing of TOP2A impaired glioma cell proliferation and aggressiveness. TOP2A was found to directly interact with β-catenin and facilitated its translocation into the nucleus. Mechanistically, TOP2A effectively induced glioma cell growth and invasion in a β-catenin-dependent manner. Overall, we pinpoint TOP2A as a critical activator of the Wnt/β-catenin pathway in glioma, promoting cell growth, migration, and invasion.
Collapse
Affiliation(s)
- Yi Liu
- Department II of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jun Ma
- Department II of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jiu-Shan Song
- Pediatric Department, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hai-Ying Zhou
- Department II of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jing-Hui Li
- Department II of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Cheng Luo
- Department II of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xin Geng
- Department II of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - He-Xiang Zhao
- Department II of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
20
|
Li X, Wang Q, Wu Z, Zheng J, Ji L. Integrated Bioinformatics Analysis for Identification of the Hub Genes Linked with Prognosis of Ovarian Cancer Patients. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5113447. [PMID: 35047055 PMCID: PMC8763496 DOI: 10.1155/2022/5113447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND One of the most usual gynecological state of tumor is ovarian cancer and is a major reason of gynecological tumor-related global mortality rate. There have been multiple risk elements related to ovarian cancer like the background of past cases associated with breast cancer or ovarian cancer, or excessive body weight issues, case history of smoking, and untimely menstruation or menopause. Because of unclear expressions, more than 70% of the ovarian cancer patient cases are determined during the early stage. Material and Methods. GSE38666, GSE40595, and GSE66957 were the three microarray datasets which were analyzed using GEO2R for screening the differentially expressed genes. GO, Kyoto Encyclopedia of Genes, and protein expression studies were performed for analysis of hub genes. Then, survival analysis was performed for all the hub genes. RESULTS From the dataset, a total of 199 differentially expressed genes (DEGs) were identified. Through the KEGG pathway study, it was noted that the DEGs are mainly linked with the AGE-RAGE signaling pathway, central carbon metabolism, and human papillomavirus infection. The survival analysis showed 4 highly expressed hub genes COL4A1, SDC1, CDKN2A, and TOP2A which correlated with overall survival in ovarian cancer patients. Moreover, the expression of the 4 hub genes was validated by the GEPIA database and the Human Protein Atlas. CONCLUSION The results have shown that all 4 hub genes were found to be upregulated in ovarian cancer tissues which predict poor prognosis in patients with ovarian cancer.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qiu Wang
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhicheng Wu
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | | | - Ling Ji
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
21
|
Nair G, Hema Sree GNS, Saraswathy GR, Marise VLP, Krishna Murthy TP. Application of comprehensive bioinformatics approaches to reconnoiter crucial genes and pathways underpinning hepatocellular carcinoma: a drug repurposing endeavor. Med Oncol 2021; 38:145. [PMID: 34687371 DOI: 10.1007/s12032-021-01576-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common neoplasm in the world. Chronic inflammation of liver and associated wound healing processes collectively contribute to the development of cirrhosis which further progresses to dysplastic nodule and then to HCC. Etiological mediators and ongoing manipulations at cellular level in HCC are well established; however, key protein interactions and genetic alterations involved in stepwise hepatocarcinogenic pathways are seldom explored. This study aims to unravel novel targets of HCC and repurpose the FDA-approved drugs against the same. Genetic data pertinent to different stages of HCC were retrieved from GSE6764 dataset and analyzed via GEO2R. Subsequently, protein-protein interaction network analysis of differentially expressed genes was performed to identify the hub genes with significant interaction. Hub genes displaying higher interactions were considered as potential HCC targets and were validated thorough UALCAN and GEPIA databases. These targets were screened against FDA-approved drugs through molecular docking and dynamics simulation studies to capture the drugs with potential activity against HCC. Finally, cytotoxicity of the shortlisted drug was confirmed in vitro by MTT assay. CDC20 was identified as potential druggable target. Docking, binding energy calculations, and dynamic studies revealed significant interaction exhibited by Labetalol with CDC20. Further, in MTT assay, Labetalol demonstrated an IC50 of 200.29 µg/ml in inhibiting the cell growth of HepG2 cell line. In conclusion, this study discloses a series of key genetic underpinnings of HCC and recommends the pertinence of labetalol as a potential repurposable drug against HCC.
Collapse
Affiliation(s)
- Gouri Nair
- Department of Pharmacology, Faculty of Pharmacy, M. S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India.
| | - G N S Hema Sree
- Department of Pharmacy Practice, Faculty of Pharmacy, M. S. Ramaiah University of Applied Sciences, Bangalore, India, Karnataka
| | - Ganesan Rajalekshmi Saraswathy
- Department of Pharmacy Practice, Faculty of Pharmacy, M. S. Ramaiah University of Applied Sciences, Bangalore, India, Karnataka
| | - V Lakshmi Prasanna Marise
- Department of Pharmacy Practice, Faculty of Pharmacy, M. S. Ramaiah University of Applied Sciences, Bangalore, India, Karnataka
| | - T P Krishna Murthy
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, Karnataka, 560054, India
| |
Collapse
|
22
|
Wang Y, Wang P, Liu M, Zhang X, Si Q, Yang T, Ye H, Song C, Shi J, Wang K, Wang X, Zhang J, Dai L. Identification of tumor-associated antigens of lung cancer: SEREX combined with bioinformatics analysis. J Immunol Methods 2021; 492:112991. [PMID: 33587914 DOI: 10.1016/j.jim.2021.112991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 11/26/2022]
Abstract
The aim of this study is to identify novel tumor-associated antigens (TAAs) of lung cancer by using serological analysis of recombinant cDNA expression library (SEREX) and bioinformatics analysis as well as to explore their humoral immune response. SEREX and pathway enrichment analysis were used to immunoscreen TAAs of lung cancer and elaborate their function in biological pathways, respectively. Subsequently, the sera level of autoantibodies against the selected TAAs (TOP2A, TRIM37, HSP90AB1, EEF1G and TPP1) was detected by immunoserological analysis to explore the immune response of these antigens. The Gene Expression Profiling Interactive Analysis (GEPIA) and Human Protein Atlas (HPA) database were applied to explore the mRNA and protein expression level of TOP2A, TRIM37 and HSP90AB1 in tissues, respectively. Seventy positive clones were identified by SEREX which contain 63 different genes, and 35 genes of them have been reported. These 35 genes were mainly related to regulation of different transcription factor and performed enrichment in legionellosis, RNA transport, IL-17 signaling pathway via enrichment analysis. Additionally, the positive rate of autoantibodies against TOP2A, TRIM37 and HSP90AB1 in lung cancer patients were typically higher than normal control (NC; P < 0.05). Moreover, the combination of the autoantibodies against TOP2A, TRIM37 and HSP90AB1 possessed an excellent diagnostic performance with sensitivity of 84% and specificity of 60%. The mRNA expression level of TOP2A was obviously unregulated in squamous cell carcinoma (SCC) tissues and adenocarcinoma (ADC) tissues compared to normal tissues (P < 0.05). In addition, TRIM37 and HSP90AB1 also showed a significant difference between SCC and NC at the mRNA expression level (P < 0.05). This study combining comprehensive autoantibody and gene expression assays has added to the growing list of lung cancer antigens, which may aid the development of diagnostic and immunotherapeutic targets for lung cancer patients.
Collapse
MESH Headings
- Adenocarcinoma of Lung/blood
- Adenocarcinoma of Lung/diagnosis
- Adenocarcinoma of Lung/genetics
- Adenocarcinoma of Lung/immunology
- Adult
- Aged
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Autoantibodies/blood
- Autoantibodies/immunology
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/immunology
- Carcinoma, Squamous Cell/blood
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/immunology
- Case-Control Studies
- Computational Biology
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/immunology
- Datasets as Topic
- Diagnosis, Differential
- Female
- Gene Expression Profiling
- Gene Library
- HSP90 Heat-Shock Proteins/genetics
- HSP90 Heat-Shock Proteins/immunology
- Healthy Volunteers
- Humans
- Lung Neoplasms/blood
- Lung Neoplasms/diagnosis
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Male
- Middle Aged
- Poly-ADP-Ribose Binding Proteins/genetics
- Poly-ADP-Ribose Binding Proteins/immunology
- Sensitivity and Specificity
- Serologic Tests/methods
- Tripartite Motif Proteins/genetics
- Tripartite Motif Proteins/immunology
- Tripeptidyl-Peptidase 1
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/immunology
- Young Adult
Collapse
Affiliation(s)
- Yulin Wang
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Peng Wang
- Department of Epidemiology and Biostatistics in School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Man Liu
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xue Zhang
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Qiufang Si
- BGI, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Ting Yang
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; BGI, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hua Ye
- Department of Epidemiology and Biostatistics in School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Chunhua Song
- Department of Epidemiology and Biostatistics in School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jianxiang Shi
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; BGI, Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Kaijuan Wang
- Department of Epidemiology and Biostatistics in School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xiao Wang
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jianying Zhang
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Epidemiology and Biostatistics in School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Liping Dai
- School of Basic Medical Sciences & Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China; BGI, Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
23
|
Du X, Xue Z, Lv J, Wang H. Expression of the Topoisomerase II Alpha (TOP2A) Gene in Lung Adenocarcinoma Cells and the Association with Patient Outcomes. Med Sci Monit 2020; 26:e929120. [PMID: 33361736 PMCID: PMC7774312 DOI: 10.12659/msm.929120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background This study was carried out to analyze TOP2A expression in lung adenocarcinoma (LUAD) and to assess its value in clinical diagnosis and prognosis. Material/Methods The Cancer Genome Atlas (TCGA) database was used to study the relationship of TOP2A expression with the progression and prognosis of LUAD. For a further elucidation of the value of TOP2A in LUAD, the effect of TOP2A knockout on cell viability and related protein expression of LUAD cell line A549 in vitro was investigated by using RNA interference, MTT, flow cytometry, RT-PCR, and western blot analysis. Results According to the results of database analysis, TOP2A expression in LUAD was higher than that in normal lung tissues. There was a strong correlation of TOP2A expression with clinicopathological and epidemiological parameters of LUAD. The survival rate of LUAD patients with high TOP2A expression was lower than that of patients with low expression (P<0.001). The expression of TOP2A in A549 cells was higher than that in Beas-2B cells. After decreased expression of TOP2A in A549 cells, the proliferation of A549 cells was downregulated and the apoptosis rate was increased. It was further verified that TOP2A low expression exerts a role in LUAD through activation of the ERK/JNK/p-P38/CHOP signaling pathway. Conclusions The findings from this study showed that TOP2A expression was upregulated in a human lung adenocarcinoma cell line, and this finding was supported by bioinformatics analysis. Further studies are required to determine whether TOP2A expression is a prognostic biomarker and potential therapeutic target in patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiaomei Du
- Respiratory and Critical Care Department, Xi'an XD Group Hospital, Xi'an, Shanxi, China (mainland)
| | - Zhiwen Xue
- Respiratory and Critical Care Department, Xi'an XD Group Hospital, Xi'an, Shanxi, China (mainland)
| | - Jianning Lv
- Respiratory and Critical Care Department, Xi'an XD Group Hospital, Xi'an, Shanxi, China (mainland)
| | - Heidou Wang
- Infectious Diseases Department, The Eighth Hospital of Xi'an, Xi'an, Shanxi, China (mainland)
| |
Collapse
|
24
|
Zhao W, Wang J, Luo Q, Peng W, Li B, Wang L, Zhang C, Duan C. Identification of LINC02310 as an enhancer in lung adenocarcinoma and investigation of its regulatory network via comprehensive analyses. BMC Med Genomics 2020; 13:185. [PMID: 33308216 PMCID: PMC7731780 DOI: 10.1186/s12920-020-00834-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma (LADC) is a major subtype of non-small cell lung cancer and has one of the highest mortality rates. An increasing number of long non-coding RNAs (LncRNAs) were reported to be associated with the occurrence and progression of LADC. Thus, it is necessary and reasonable to find new prognostic biomarkers for LADC among LncRNAs. METHODS Differential expression analysis, survival analysis, PCR experiments and clinical feature analysis were performed to screen out the LncRNA which was significantly related to LADC. Its role in LADC was verified by CCK-8 assay and colony. Furthermore, competing endogenous RNA (ceRNA) regulatory network construction, enrichment analysis and protein-protein interaction (PPI) network construction were performed to investigate the downstream regulatory network of the selected LncRNA. RESULTS A total of 2431 differentially expressed LncRNAs (DELncRNAs) and 2227 differentially expressed mRNAs (DEmRNAs) were from The Cancer Genome Atlas database. Survival analysis results indicated that lnc-YARS2-5, lnc-NPR3-2 and LINC02310 were significantly related to overall survival. Their overexpression indicated poor prognostic. PCR experiments and clinical feature analysis suggested that LINC02310 was significantly correlated with TNM-stage and T-stage. CCK-8 assay and colony formation assay demonstrated that LINC02310 acted as an enhancer in LADC. In addition, 3 targeted miRNAs of LINC02310 and 414 downstream DEmRNAs were predicted. The downstream DEmRNAs were then enriched in 405 Gene Ontology terms and 11 Kyoto Encyclopedia of Genes and Genomes pathways, which revealed their potential functions and mechanisms. The PPI network showed the interactions among the downstream DEmRNAs. CONCLUSIONS This study verified LINC02310 as an enhancer in LADC and performed comprehensive analyses on its downstream regulatory network, which might benefit LADC prognoses and therapies.
Collapse
Affiliation(s)
- Wenyuan Zhao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jun Wang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Qingxi Luo
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Wei Peng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Bin Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lei Wang
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
25
|
Feltes BC, Poloni JDF, Nunes IJG, Faria SS, Dorn M. Multi-Approach Bioinformatics Analysis of Curated Omics Data Provides a Gene Expression Panorama for Multiple Cancer Types. Front Genet 2020; 11:586602. [PMID: 33329726 PMCID: PMC7719697 DOI: 10.3389/fgene.2020.586602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022] Open
Abstract
Studies describing the expression patterns and biomarkers for the tumoral process increase in number every year. The availability of new datasets, although essential, also creates a confusing landscape where common or critical mechanisms are obscured amidst the divergent and heterogeneous nature of such results. In this work, we manually curated the Gene Expression Omnibus using rigorous filtering criteria to select the most homogeneous and highest quality microarray and RNA-seq datasets from multiple types of cancer. By applying systems biology approaches, combined with machine learning analysis, we investigated possible frequently deregulated molecular mechanisms underlying the tumoral process. Our multi-approach analysis of 99 curated datasets, composed of 5,406 samples, revealed 47 differentially expressed genes in all analyzed cancer types, which were all in agreement with the validation using TCGA data. Results suggest that the tumoral process is more related to the overexpression of core deregulated machinery than the underexpression of a given gene set. Additionally, we identified gene expression similarities between different cancer types not described before and performed an overall survival analysis using 20 cancer types. Finally, we were able to suggest a core regulatory mechanism that could be frequently deregulated.
Collapse
Affiliation(s)
- Bruno César Feltes
- Laboratory of Structural Bioinformatics and Computational Biology, Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Joice de Faria Poloni
- Laboratory of Structural Bioinformatics and Computational Biology, Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Sara Socorro Faria
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Marcio Dorn
- Laboratory of Structural Bioinformatics and Computational Biology, Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- National Institute of Science and Technology - Forensic Science, Porto Alegre, Brazil
| |
Collapse
|
26
|
Reale A, Khong T, Mithraprabhu S, Savvidou I, Hocking J, Bergin K, Ramachandran M, Chen M, Dammacco F, Ria R, Silvestris F, Vacca A, Reynolds J, Spencer A. TOP2A expression predicts responsiveness to carfilzomib in myeloma and informs novel combinatorial strategies for enhanced proteasome inhibitor cell killing. Leuk Lymphoma 2020; 62:337-347. [PMID: 33131357 DOI: 10.1080/10428194.2020.1832659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Microarray was utilized to determine if a genetic signature associated with resistance to carfilzomib (CFZ) could be identified. Twelve human myeloma (MM) cell lines (HMCLs) were treated with CFZ and a cell-viability profile was assessed categorizing HMCLs as sensitive or resistant to CFZ. The gene expression profiles (GEP) of untreated resistant versus sensitive HMCLs revealed 29 differentially expressed genes. TOP2A, an enzyme involved in cell cycle and proliferation, was overexpressed in carfilzomib-resistant HMCLs. TOP2A protein expression levels, evaluated utilizing trephine biopsy specimens acquired prior to treatment with proteasome inhibitors, were higher in patients failing to achieve a response when compared to responding patients. Logistic-regression analysis confirmed that TOP2A protein expression was a highly significant predictor of response to PIs (AUC 0.738). Further, the combination of CFZ with TOP2A inhibitors, demonstrated synergistic cytotoxic effects in vitro, providing a rationale for combining topoisomerase inhibitors with CFZ to overcome resistance in MM.
Collapse
Affiliation(s)
- Antonia Reale
- Myeloma Research Group, Australian Centre for Blood Diseases, The Alfred Hospital/Monash University, Melbourne, Australia
| | - Tiffany Khong
- Myeloma Research Group, Australian Centre for Blood Diseases, The Alfred Hospital/Monash University, Melbourne, Australia
| | - Sridurga Mithraprabhu
- Myeloma Research Group, Australian Centre for Blood Diseases, The Alfred Hospital/Monash University, Melbourne, Australia
| | - Ioanna Savvidou
- Myeloma Research Group, Australian Centre for Blood Diseases, The Alfred Hospital/Monash University, Melbourne, Australia
| | - Jay Hocking
- Myeloma Research Group, Australian Centre for Blood Diseases, The Alfred Hospital/Monash University, Melbourne, Australia.,Department of Clinical Haematology, Box Hill, Melbourne, Australia.,Myeloma Clinic, The Alfred Centre, Melbourne, Australia
| | - Krystal Bergin
- Myeloma Research Group, Australian Centre for Blood Diseases, The Alfred Hospital/Monash University, Melbourne, Australia
| | - Malarmathy Ramachandran
- Myeloma Research Group, Australian Centre for Blood Diseases, The Alfred Hospital/Monash University, Melbourne, Australia
| | - Maoshan Chen
- Myeloma Research Group, Australian Centre for Blood Diseases, The Alfred Hospital/Monash University, Melbourne, Australia
| | - Francesco Dammacco
- Department of Internal Medicine and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Roberto Ria
- Department of Internal Medicine and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Francesco Silvestris
- Department of Internal Medicine and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Angelo Vacca
- Department of Internal Medicine and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - John Reynolds
- Biostatistics Consulting Platform, Faculty of Medicine, Nursing and Health Sciences, Monash University, The Alfred Centre, Melbourne, Australia
| | - Andrew Spencer
- Myeloma Research Group, Australian Centre for Blood Diseases, The Alfred Hospital/Monash University, Melbourne, Australia.,Malignant Haematology and Stem Cell Transplantation, The Alfred Hospital, Melbourne, Australia.,Department of Clinical Haematology, Monash University, Melbourne, Australia
| |
Collapse
|
27
|
Interactive Verification Analysis of Multiple Sequencing Data for Identifying Potential Biomarker of Lung Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8931419. [PMID: 33062704 PMCID: PMC7547331 DOI: 10.1155/2020/8931419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022]
Abstract
Background Lung adenocarcinoma (LUAD) comprises around 40% of all lung cancers, and in about 70% of patients, it has spread locally or systemically when first detected leading to a worse prognosis. Methods We filtered out differentially expressed genes (DEGs) based on the RNA sequencing data in the Gene Expression Omnibus database and verified and deeply analyzed screened DEGs using a combined bioinformatics approach. Results Expressions of 11,143 genes in 694 nontumor lung tissues and LUAD cases from 8 independent laboratories were analyzed; 188 mRNAs were identified as differentially expressed genes (DEGs). A PPI network constructed with 188 DEGs screened out 8 hub DEGs (CDH5, PECAM1, VWF, CLDN5, COL1A1, MMP9, SPP1, and IL6) which highly interconnected with other nodes. The expression levels of 8 hub genes in LUAD and control were assessed in the Oncomine database, and the results were consistent. The survival curves of 8 hub genes showed that their expressions are significantly related to the prognosis of lung cancer and LUAD patients except for IL6. Since the expression of IL6 is nonspecific and highly sensitive, we choose the other 7 hub genes we had verified to do the next analysis. Mutual exclusivity or cooccurrence analysis of 7 hub genes identified a tendency towards cooccurrence between CDH5, PECAM1, and VWF in LUAD. The coexpression profiles of CDH5 in LUAD were identified, and we found that PECAM1 and VWF coexpressed with CDH5. Immunohistochemistry and RT-PCR analysis showed that higher levels of CDH5, PECAM1, and VWF were expressed in normal lung tissues but a low or undetectable level was found in LUAD tissues. Conclusions Taken together, we speculate that CDH5, PECAM1, and VWF played an important role in LUAD.
Collapse
|
28
|
Wang B, Shen Y, Zou Y, Qi Z, Huang G, Xia S, Gao R, Li F, Huang Z. TOP2A Promotes Cell Migration, Invasion and Epithelial-Mesenchymal Transition in Cervical Cancer via Activating the PI3K/AKT Signaling. Cancer Manag Res 2020; 12:3807-3814. [PMID: 32547216 PMCID: PMC7251484 DOI: 10.2147/cmar.s240577] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/22/2020] [Indexed: 12/19/2022] Open
Abstract
Background/Objective Topoisomerases type IIA (TOP2A) was identified to present with a high-expression pattern in cervical cancer. However, TOP2A role in the progression of cervical cancer remains unknown. Here, we aimed to explore the effect and reveal the underlying mechanism of TOP2A in the migration, invasion and epithelial–mesenchymal transition (EMT) of cervical cancer. Materials and Methods The expression profiles of TOP2A in 20 paired cervical cancer tissues and the paracancerous normal tissues were detected by using Western blotting assay. Transwell chambers were used to test cell migration and invasion abilities. Cell morphology and the expressions of E-cadherin and N-cadherin were detected to assess cell EMT. LY294002 was used to inhibit the activation of PI3K/AKT signaling. Results Compared with the paracancerous normal tissues, TOP2A was overexpressed in 85% (17/20) cervical cancer tissues. Repression of TOP2A expression in SiHa cells significantly weakened cell migration and invasion abilities, reduced cell numbers in shuttle shape and increased E-cadherin expression while decreased E-cadherin expression. To the opposite, overexpression of TOP2A in Hela cells induced opposite results. In addition, the expression of p-AKT was increased when TOP2A was overexpressed in Hela cells, and p-AKT expression was decreased when TOP2A was silenced in SiHa cells. Moreover, suppression of the PI3K/AKT signaling with LY294002 treatment apparently rescued TOP2A-mediated promotions in cell migration, invasion and EMT in Hela cells. Conclusion This study reveals that TOP2A is abnormally overexpressed in cervical cancer tissues, and TOP2A overexpression leads to cell migration, invasion and EMT via activating PI3K/AKT signaling.
Collapse
Affiliation(s)
- Bi Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China.,Department of Paediatrics, Maternal and Child Health Hospital of Guiyang City, Guiyang, Guizhou, People's Republic of China
| | - Yaping Shen
- Department of Interventional Radiology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Yin Zou
- Department of Oncology, The Second Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Zhengjun Qi
- Department of Oncology, The Second Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Guijia Huang
- Department of Oncology, The Second Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Shan Xia
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Rui Gao
- Guiyang Customs Guizhou International Travel Healthcare Center, Guiyang, Guizhou, People's Republic of China
| | - Fenghu Li
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Zhi Huang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| |
Collapse
|
29
|
Kaushik AC, Mehmood A, Wei DQ, Dai X. Systems Biology Integration and Screening of Reliable Prognostic Markers to Create Synergies in the Control of Lung Cancer Patients. Front Mol Biosci 2020; 7:47. [PMID: 32318583 PMCID: PMC7154114 DOI: 10.3389/fmolb.2020.00047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/05/2020] [Indexed: 12/16/2022] Open
Abstract
This study aims to achieve a clearer and stronger understanding of all the mechanisms involved in the occurrence as well as in the progression of lung cancer along with discovering trustworthy prognostic markers. We combined four gene expression profiles (GSE19188, GSE19804, GSE101929, and GSE18842) from the GEO database and screened the commonly differentially expressed genes (CDEGs). We performed differentially expressed group analysis on CDEGs, alteration and mutational analysis, and expression level verification of core differential genes. Systems biology discoveries in our examination are predictable with past reports. Curiously, our examination revealed that screened biomarker adjustments, for the most part, coexist in lung cancer. After screening 952 CDEGs, we found that the up-regulation of neuromedin U (NMU) and GTSE1 in the case of lung cancer is related to poor prognosis. On the other hand, FOS CDKN1C expression is associated with poor prognosis and is responsible for the down-regulation of CDKN1C and FOS. Changes in these qualities are on free pathways to lung cancer and are not usually of combined quality variety. Even though biomarkers were related to both survival occasions in our examination, it gives us another point of view while playing out the investigation of hereditary changes and clinical highlights employing information mining. Based on our results, we found potential and prospective clinical applications in GTSE1, NMU, FOS, and CDKN1C to act as prognostic markers in case of lung cancer.
Collapse
Affiliation(s)
- Aman Chandra Kaushik
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Aamir Mehmood
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Qing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
30
|
Thymosin β4 Identified by Transcriptomic Analysis from HF Anagen to Telogen Promotes Proliferation of SHF-DPCs in Albas Cashmere Goat. Int J Mol Sci 2020; 21:ijms21072268. [PMID: 32218218 PMCID: PMC7177334 DOI: 10.3390/ijms21072268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 01/09/2023] Open
Abstract
Increasing cashmere yield is one of the important goals of cashmere goat breeding. To achieve this goal, we screened the key genes that can improve cashmere performance. In this study, we used the RNA raw datasets of the skin and dermal papilla cells of secondary hair follicle (SHF-DPCs) samples of hair follicle (HF) anagen and telogen of Albas cashmere goats and identified a set of significant differentially expressed genes (DEGs). To explore potential associations between gene sets and SHF growth features and to identify candidate genes, we detected functional enrichment and constructed protein-protein interaction (PPI) networks. Through comprehensive analysis, we selected Thymosin β4 (Tβ4), Rho GTPase activating protein 6 (ARHGAP6), ADAM metallopeptidase with thrombospondin type 1 motif 15, (ADAMTS15), Chordin (CHRD), and SPARC (Osteonectin), cwcv and kazal-like domains proteoglycan 1 (SPOCK1) as candidate genes. Gene set enrichment analysis (GSEA) for these genes revealed Tβ4 and ARHGAP6 have a close association with the growth and development of SHF-DPCs. However, the expression of Tβ4 in the anagen was higher than that in the telogen, so we finally chose Tβ4 as the ultimate research object. Overexpressing Tβ4 promoted and silencing Tβ4 inhibited the proliferation of SHF-DPCs. These findings suggest that Tβ4 can promote the growth and development of SHF-DPCs and indicate that this molecule may be a valuable target for increasing cashmere production.
Collapse
|