1
|
Thapa B, Kato S, Nishizaki D, Miyashita H, Lee S, Nesline MK, Previs RA, Conroy JM, DePietro P, Pabla S, Kurzrock R. OX40/OX40 ligand and its role in precision immune oncology. Cancer Metastasis Rev 2024; 43:1001-1013. [PMID: 38526805 PMCID: PMC11300540 DOI: 10.1007/s10555-024-10184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Immune checkpoint inhibitors have changed the treatment landscape for various malignancies; however, their benefit is limited to a subset of patients. The immune machinery includes both mediators of suppression/immune evasion, such as PD-1, PD-L1, CTLA-4, and LAG-3, all of which can be inhibited by specific antibodies, and immune-stimulatory molecules, such as T-cell co-stimulatory receptors that belong to the tumor necrosis factor receptor superfamily (TNFRSF), including OX40 receptor (CD134; TNFRSF4), 4-1BB (CD137; TNFRSF9), and glucocorticoid-induced TNFR-related (GITR) protein (CD357; TNFRSF18). In particular, OX40 and its binding ligand OX40L (CD134L; TNFSF4; CD252) are critical for immunoregulation. When OX40 on activated T cells binds OX40L on antigen-presenting cells, T-cell activation and immune stimulation are initiated via enhanced T-cell survival, proliferation and cytotoxicity, memory T-cell formation, and abrogation of regulatory T cell (Treg) immunosuppressive functions. OX40 agonists are in clinical trials both as monotherapy and in combination with other immunotherapy agents, in particular specific checkpoint inhibitors, for cancer treatment. To date, however, only a minority of patients respond. Transcriptomic profiling reveals that OX40 and OX40L expression vary between and within tumor types, and that only ~ 17% of cancer patients have high OX40 and low OX40L, one of the expression patterns that might be theoretically amenable to OX40 agonist enhancement. Taken together, the data suggest that the OX40/OX40L machinery is a critical part of the immune stimulatory system and that understanding endogenous expression patterns of these molecules and co-existing checkpoints merits further investigation in the context of a precision immunotherapy strategy for cancer therapy.
Collapse
Affiliation(s)
- Bicky Thapa
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Shumei Kato
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | - Daisuke Nishizaki
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | | | - Suzanna Lee
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | | | | | | | | | | | - Razelle Kurzrock
- MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
2
|
Al-Danakh A, Safi M, Jian Y, Yang L, Zhu X, Chen Q, Yang K, Wang S, Zhang J, Yang D. Aging-related biomarker discovery in the era of immune checkpoint inhibitors for cancer patients. Front Immunol 2024; 15:1348189. [PMID: 38590525 PMCID: PMC11000233 DOI: 10.3389/fimmu.2024.1348189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/29/2024] [Indexed: 04/10/2024] Open
Abstract
Older patients with cancer, particularly those over 75 years of age, often experience poorer clinical outcomes compared to younger patients. This can be attributed to age-related comorbidities, weakened immune function, and reduced tolerance to treatment-related adverse effects. In the immune checkpoint inhibitors (ICI) era, age has emerged as an influential factor impacting the discovery of predictive biomarkers for ICI treatment. These age-linked changes in the immune system can influence the composition and functionality of tumor-infiltrating immune cells (TIICs) that play a crucial role in the cancer response. Older patients may have lower levels of TIICs infiltration due to age-related immune senescence particularly T cell function, which can limit the effectivity of cancer immunotherapies. Furthermore, age-related immune dysregulation increases the exhaustion of immune cells, characterized by the dysregulation of ICI-related biomarkers and a dampened response to ICI. Our review aims to provide a comprehensive understanding of the mechanisms that contribute to the impact of age on ICI-related biomarkers and ICI response. Understanding these mechanisms will facilitate the development of treatment approaches tailored to elderly individuals with cancer.
Collapse
Affiliation(s)
- Abdullah Al-Danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mohammed Safi
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yuli Jian
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Linlin Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xinqing Zhu
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qiwei Chen
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Kangkang Yang
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, Liaoning, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Surgery, Healinghands Clinic, Dalian, Liaoning, China
| |
Collapse
|
3
|
Luo Y, Ni R, Jin X, Feng P, Dai C, Jiang L, Chen P, Yang L, Zhu Y. FOXD1 expression-based prognostic model for uveal melanoma. Heliyon 2023; 9:e21333. [PMID: 38027647 PMCID: PMC10651470 DOI: 10.1016/j.heliyon.2023.e21333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
FOXD1, a new member of the FOX transcription factor family, serves as a mediator and biomarker for cell reprogramming. But its contribution to prognosis of uveal melanoma (UVM) is unclear. This study demonstrated that FOXD1 might promote tumor growth and invasion, because FOXD1 expression was negatively correlated with overall survival, progression-free survival, and disease-specific survival in UVM patients. This conjecture was verified in cell culture with human uveal melanoma cell line (MUM2B) as model cells. Additionally, the biological mechanisms of FOXD1 based on FOXD1-related genomic spectrum, molecular pathways, tumor microenvironment, and drug treatment sensitivity were examined using The Cancer Genome Atlas (TCGA) database, aiming to reasonably explain why FOXD1 leads to poor prognosis of UVM. On these bases, a novel tumor prognostic model was established using the FOXD1-related immunomodulators TMEM173, TNFRSF4, TNFSF13, and ULBP1, which will enable the stratification of disease seriousness and clinical treatment for patients.
Collapse
Affiliation(s)
- Yang Luo
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Renhao Ni
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Xiaojun Jin
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Peipei Feng
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Centre Lihuili Hospital, Ningbo, 315000, China
| | - Chenyi Dai
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Lingjing Jiang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | | | - Lu Yang
- The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
4
|
Guo Y, Wang Z, Tian Y, Li L, Dong J. A Ferroptosis-Related lncRNAs Signature Predicts Prognosis of Colon Adenocarcinoma. Life (Basel) 2023; 13:1557. [PMID: 37511932 PMCID: PMC10381171 DOI: 10.3390/life13071557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Ferroptosis is a type of cellular death caused by lipid-dependent iron peroxide, which plays a major role in cancer. Long noncoding RNAs (lncRNAs) are increasingly recognized as key regulating substances in ferroptosis; (2) RNA sequencing expressions and clinical data of 519 patients with colon adenocarcinoma (COAD) were downloaded from The Cancer Genome Atlas (TCGA) database. The expression levels of lncRNAs related to ferroptosis were screened with Pearson correlation analysis. Differential genes were enriched with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. LncRNAs related to ferroptosis were determined with univariate Cox regression and multivariate Cox regression analyses, and patients with COAD were classified into high- and low-risk subgroups according to their median risk score. The prognostic value was further examined, and the association between ferroptosis-related lncRNAs (frlncRNAs) and survival in patients with high and low risks of COAD was validated. A TCGA-COAD data set was used for receiver operating characteristic (ROC) analysis and detrended correspondence analysis (DCA) to assess prediction accuracy. Finally, a nomogram was constructed to predict survival probability; (3) We obtained a model consisting of a five-frlncRNAs signature comprising AP003555.1, AP001469.3, ITGB1-DT, AC129492.1, and AC010973.2 for determining the overall survival (OS) of patients with COAD. The survival analysis and ROC curves showed that the model had good robustness and predictive performance on the TCGA training set; (4) We found that a five-frlncRNAs signature may play a potential role in anti-COAD immunity. Risk characteristics based on frlncRNAs can accurately predict the prognosis and immunotherapy response of patients with COAD.
Collapse
Affiliation(s)
- Ying Guo
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zehao Wang
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ye Tian
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Lin Li
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jing Dong
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
5
|
Marconato M, Kauer J, Salih HR, Märklin M, Heitmann JS. Expression of the immune checkpoint modulator OX40 indicates poor survival in acute myeloid leukemia. Sci Rep 2022; 12:15856. [PMID: 36151238 PMCID: PMC9508266 DOI: 10.1038/s41598-022-19972-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Despite therapeutic advances, mortality of Acute Myeloid Leukemia (AML) is still high. Currently, the determination of prognosis which guides treatment decisions mainly relies on genetic markers. Besides molecular mechanisms, the ability of malignant cells to evade immune surveillance influences the disease outcome and, among others, the expression of checkpoints modulators contributes to this. In AML, functional expression of the checkpoint molecule OX40 was reported, but the prognostic relevance of OX40 and its ligand OX40L axis has so far not been investigated. Here we described expression and prognostic relevance of the checkpoint modulators OX40 and OX40L, analyzed on primary AML cells obtained from 92 therapy naïve patients. Substantial expression of OX40 and OX40L on AML blasts was detected in 29% and 32% of the investigated subjects, respectively, without correlation between the expression of the receptor and its ligand. Whereas OX40L expression was not associated with different survival, patients with high expression levels of the receptor (OX40high) on AML blasts survived significantly shorter than OX40low patients (p = 0.009, HR 0.46, 95% CI 0.24–0.86), which identifies OX40 as novel prognostic marker and a potential therapeutic target in AML patients.
Collapse
Affiliation(s)
- Maddalena Marconato
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,DFG Cluster of Excellence 2180 'Image-Guided and Functional Instructed Tumor Therapy' (IFIT), University of Tübingen, Tübingen, Germany
| | - Joseph Kauer
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Department of Oncology and Hematology, University Clinic Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,DFG Cluster of Excellence 2180 'Image-Guided and Functional Instructed Tumor Therapy' (IFIT), University of Tübingen, Tübingen, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany. .,DFG Cluster of Excellence 2180 'Image-Guided and Functional Instructed Tumor Therapy' (IFIT), University of Tübingen, Tübingen, Germany.
| | - Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,DFG Cluster of Excellence 2180 'Image-Guided and Functional Instructed Tumor Therapy' (IFIT), University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Qian L, Ni T, Fei B, Sun H, Ni H. An immune-related lncRNA pairs signature to identify the prognosis and predict the immune landscape of laryngeal squamous cell carcinoma. BMC Cancer 2022; 22:545. [PMID: 35568824 PMCID: PMC9107277 DOI: 10.1186/s12885-022-09524-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 04/08/2022] [Indexed: 01/13/2023] Open
Abstract
Background
Laryngeal squamous cell carcinoma (LSCC) is the most common squamous cell carcinoma. Though significant effort has been focused on molecular pathogenesis, development, and recurrence of LSCC, little is known about its relationship with the immune-related long non-coding RNA (lncRNA) pairs. Methods After obtaining the transcriptome profiling data sets and the corresponding clinical characteristics of LSCC patients and normal samples from The Cancer Genome Atlas (TCGA) database, a series of bioinformatic analysis was conducted to select the differently expressed immune-related lncRNAs and build a signature of immune-related lncRNA pairs. Then, the effectiveness of the signature was validated. Results A total of 111 LSCC patients and 12 normal samples’ transcriptome profiling data sets were retrieved from TCGA. 301 differently expressed immune-related lncRNAs were identified and 35,225 lncRNA pairs were established. After univariate Cox analysis, LASSO regression and multivariate Cox analysis, 7 lncRNA pairs were eventually selected to construct a signature. The riskscore was computed using the following formula: Riskscore = 0.95 × (AL133330.1|AC132872.3) + (-1.23) × (LINC01094|LINC02154) + 0.65 × (LINC02575|AC122685.1) + (-1.15) × (MIR9-3HG|LINC01748) + 1.45 × (AC092687.3|SNHG12) + (-0.87) × (AC090204.1|AL158166.1) + 0.64 × (LINC01063|Z82243.1). Patients were classified into the high-risk group (> 1.366) and the low-risk group (< 1.366) according to the cutoff value (1.366), which is based on the 5-year riskscore ROC curve. The survival analysis showed that the low-risk group had a better prognosis (P < 0.001). The riskscore was better than other clinical characteristics in prognostic prediction and the area under the curves (AUCs) for the 1-, 3-, and 5-year survivals were 0.796, 0.946, and 0.895, respectively. Combining age, gender, grade, stage, and riskscore, a nomograph was developed to predict survival probability in LSCC patients. Then, the riskscore was confirmed to be related with the content of tumor-infiltration immune cells and the model could serve as a potential predictor for chemosensitivity. Conclusion We successfully established a more stable signature of 7 immune-related lncRNA pairs, which has demonstrated a better prognostic ability for LSCC patients and may assist clinicians to precisely prescribe chemo drugs. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09524-1.
Collapse
Affiliation(s)
- Lvsheng Qian
- Department of Otolaryngology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Tingting Ni
- Department of Oncology, Nantong Tumor Hospital, Nantong, 226001, Jiangsu, China
| | - Bing Fei
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, Jiangsu, China
| | - Hui Sun
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Haosheng Ni
- Department of Otolaryngology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
7
|
Aru B, Soltani M, Pehlivanoglu C, Gürlü E, Ganjalikhani-Hakemi M, Yanikkaya Demirel G. Comparison of Laboratory Methods for the Clinical Follow Up of Checkpoint Blockade Therapies in Leukemia: Current Status and Challenges Ahead. Front Oncol 2022; 12:789728. [PMID: 35155232 PMCID: PMC8829140 DOI: 10.3389/fonc.2022.789728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023] Open
Abstract
The development of immune checkpoint inhibitors, the monoclonal antibodies that modulate the interaction between immune checkpoint molecules or their ligands on the immune cells or tumor tissue has revolutionized cancer treatment. While there are various studies proving their efficacy in hematological malignancies, there is also a body of accumulating evidence indicating that immune checkpoint inhibitors' clinical benefits are limited in such diseases. In addition, due to their regulatory nature that balances the immune responses, blockade of immune checkpoints may lead to toxic side effects and autoimmune responses, and even primary or acquired resistance mechanisms may restrict their success. Thus, the need for laboratory biomarkers to identify and monitor patient populations who are more likely respond to this type of therapy and the management of side effects seem critical. However, guidelines regarding the use of immune checkpoint inhibitors in hematological cancers and during follow-up are limited while there is no consensus on the laboratory parameters to be investigated for safety and efficacy of the treatment. This review aims to provide an insight into recent information on predictive and prognostic value of biomarkers and laboratory tests for the clinical follow up of hematological malignancies, with an emphasis on leukemia.
Collapse
Affiliation(s)
- Basak Aru
- Department of Immunology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Mojdeh Soltani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Cemil Pehlivanoglu
- Department of Emergency Medicine, Hatay Training and Research Hospital, Antakya, Turkey
| | - Ege Gürlü
- Faculty of Medicine 4Year Student, Yeditepe University, Istanbul, Turkey
| | | | | |
Collapse
|
8
|
Razi Soofiyani S, Ahangari H, Soleimanian A, Babaei G, Ghasemnejad T, Safavi SE, Eyvazi S, Tarhriz V. The role of circadian genes in the pathogenesis of colorectal cancer. Gene 2021; 804:145894. [PMID: 34418469 DOI: 10.1016/j.gene.2021.145894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/07/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most frequent cancer in human beings and is also the major cause of death among the other gastrointestinal cancers. The exact mechanisms of CRC development in most patients remains unclear. So far, several genetically, environmental and epigenetically risk factors have been identified for CRC development. The circadian rhythm is a 24-h rhythm that drives several biologic processes. The circadian system is guided by a central pacemaker which is located in the suprachiasmatic nucleus (SCN) in the hypothalamus. Circadian rhythm is regulated by circadian clock genes, cytokines and hormones like melatonin. Disruptions in biological rhythms are known to be strongly associated with several diseases, including cancer. The role of the different circadian genes has been verified in various cancers, however, the pathways of different circadian genes in the pathogenesis of CRC are less investigated. Identification of the details of the pathways in CRC helps researchers to explore new therapies for the malignancy.
Collapse
Affiliation(s)
- Saiedeh Razi Soofiyani
- Clinical Research Development Unit of Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Soleimanian
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ghader Babaei
- Department of Clinical Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Esmaeil Safavi
- Faculty of Veternary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Shirin Eyvazi
- Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Chen P, Wang H, Zhao L, Guo H, Zhang L, Zhang W, Sun C, Zhao S, Li W, Zhu J, Yu J, Wu C, He Y. Immune Checkpoints OX40 and OX40L in Small-Cell Lung Cancer: Predict Prognosis and Modulate Immune Microenvironment. Front Oncol 2021; 11:713853. [PMID: 34900670 PMCID: PMC8652148 DOI: 10.3389/fonc.2021.713853] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
Background OX40 and OX40 ligand (OX40L), as essential immune checkpoint (IC) modulators, are highly correlated with cancer immunity regulation as well as tumor microenvironment (TME). Immunotherapy showed outstanding advantages in small-cell lung cancer (SCLC) therapy. However, functions and clinical significance of OX40 and OX40L in SCLC were not clear yet. Materials and Methods SCLC samples of 143 patients were collected for immunohistochemistry (IHC) or whole-exome sequencing (WES). We comprehensively explored the expression and mutation of OX40/OX40L in SCLC, and systematically linked OX40/OX40L with TME. Results The expression of OX40/OX40L on tumor cells and tumor-infiltrating lymphocytes (TILs) was found in the IHC cohort and verified in other cohorts with SCLC tissues and cell lines. The results showed co-expression patterns among OX40/OX40L, other ICs, and T-cell markers. The WES data suggested that OX40/OX40L mutation is rare in SCLC (<5%). Patients with positive OX40 protein expression on TILs showed substantially higher recurrence-free survival than those with negative expression (p=0.009). The external dataset also indicated that high OX40/OX40L expression was correlated with better prognosis [overall survival: OX40, p<0.001; OX40L, p=0.019]. Importantly, activation of immunity and high infiltration of CD4(+) and CD8(+) T cells were observed in the high OX40/OX40L expression group. Conclusions Collectively, this work highlighted the significance of OX40 and OX40L in prognosis and TME cell infiltration characterization of SCLC. Evaluating the OX40/OX40L-expression levels of individual patients with SCLC might contribute to guiding more precise therapy.
Collapse
Affiliation(s)
- Peixin Chen
- School of Medicine, Tongji University, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Wang
- School of Medicine, Tongji University, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lishu Zhao
- School of Medicine, Tongji University, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haoyue Guo
- School of Medicine, Tongji University, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liping Zhang
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Zhang
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chenglong Sun
- School of Medicine, Tongji University, Shanghai, China.,Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Sha Zhao
- School of Medicine, Tongji University, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Li
- School of Medicine, Tongji University, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Zhu
- School of Medicine, Tongji University, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia Yu
- School of Medicine, Tongji University, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yayi He
- School of Medicine, Tongji University, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Guo C, Gao YY, Ju QQ, Zhang CX, Gong M, Li ZL. The landscape of gene co-expression modules correlating with prognostic genetic abnormalities in AML. J Transl Med 2021; 19:228. [PMID: 34051812 PMCID: PMC8164775 DOI: 10.1186/s12967-021-02914-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Background The heterogenous cytogenetic and molecular variations were harbored by AML patients, some of which are related with AML pathogenesis and clinical outcomes. We aimed to uncover the intrinsic expression profiles correlating with prognostic genetic abnormalities by WGCNA. Methods We downloaded the clinical and expression dataset from BeatAML, TCGA and GEO database. Using R (version 4.0.2) and ‘WGCNA’ package, the co-expression modules correlating with the ELN2017 prognostic markers were identified (R2 ≥ 0.4, p < 0.01). ORA detected the enriched pathways for the key co-expression modules. The patients in TCGA cohort were randomly assigned into the training set (50%) and testing set (50%). The LASSO penalized regression analysis was employed to build the prediction model, fitting OS to the expression level of hub genes by ‘glmnet’ package. Then the testing and 2 independent validation sets (GSE12417 and GSE37642) were used to validate the diagnostic utility and accuracy of the model. Results A total of 37 gene co-expression modules and 973 hub genes were identified for the BeatAML cohort. We found that 3 modules were significantly correlated with genetic markers (the ‘lightyellow’ module for NPM1 mutation, the ‘saddlebrown’ module for RUNX1 mutation, the ‘lightgreen’ module for TP53 mutation). ORA revealed that the ‘lightyellow’ module was mainly enriched in DNA-binding transcription factor activity and activation of HOX genes. The ‘saddlebrown’ module was enriched in immune response process. And the ‘lightgreen’ module was predominantly enriched in mitosis cell cycle process. The LASSO- regression analysis identified 6 genes (NFKB2, NEK9, HOXA7, APRC5L, FAM30A and LOC105371592) with non-zero coefficients. The risk score generated from the 6-gene model, was associated with ELN2017 risk stratification, relapsed disease, and prior MDS history. The 5-year AUC for the model was 0.822 and 0.824 in the training and testing sets, respectively. Moreover, the diagnostic utility of the model was robust when it was employed in 2 validation sets (5-year AUC 0.743–0.79). Conclusions We established the co-expression network signature correlated with the ELN2017 recommended prognostic genetic abnormalities in AML. The 6-gene prediction model for AML survival was developed and validated by multiple datasets. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02914-2.
Collapse
Affiliation(s)
- Chao Guo
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Ya-Yue Gao
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Qian-Qian Ju
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Chun-Xia Zhang
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Ming Gong
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Zhen-Ling Li
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China.
| |
Collapse
|