1
|
Wang J, Deng X, Li M, Liu X, Liu Q. Mesoporous polydopamine nanoparticles coated with metal-polyphenol networks for demethylation therapy of lung cancer. Med Oncol 2025; 42:147. [PMID: 40169434 DOI: 10.1007/s12032-025-02681-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/11/2025] [Indexed: 04/03/2025]
Abstract
The treatment of lung cancer with azacitidine (AZA) is urgently in need of a novel delivery material due to its limitations, including a short half-life, high cytotoxicity, and poor tumor targeting. To overcome these limitations, the coordination of Gallic acid-catechin-gallate with Fe3+ and its encapsulation on the surface of mPDA loaded with AZA (mA@EF) was prepared. mA@EF exhibited a uniform distribution of regular spherical particles with good stability and drug release properties. In cell experiments, mA@EF effectively inhibited cell viability, promoted cellular uptake, and downregulated the expression of DNA methyltransferases. Moreover, mA@EF demonstrated good biosafety. In animal experiments, mA@EF showed strong tumor-targeting and retention activity, and significantly inhibited the growth of tumor. This discovery provided a feasible dosing regimen for AZA treatment in lung cancer patients.
Collapse
Affiliation(s)
- Jingsi Wang
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xufeng Deng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Manyuan Li
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xiaobing Liu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Quanxing Liu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing, China.
| |
Collapse
|
2
|
Zhang Y, Cao W, Wang S, Zhang L, Li X, Zhang Z, Xie Y, Li M. Epigenetic modification of hepatitis B virus infection and related hepatocellular carcinoma. Virulence 2024; 15:2421231. [PMID: 39460469 PMCID: PMC11583590 DOI: 10.1080/21505594.2024.2421231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Hepatitis B virus (HBV) infection poses a challenge to global public health. Persistent liver infection with HBV is associated with an increased risk of developing severe liver disease. The complex interaction between the virus and the host is the reason for the persistent presence of HBV and the risk of tumor development. Chronic liver inflammation, integration of viral genome with host genome, expression of HBx protein, and viral genotype are all key participants in the pathogenesis of hepatocellular carcinoma (HCC). Epigenetic regulation in HBV-associated HCC involves complex interactions of molecular mechanisms that control gene expression and function without altering the underlying DNA sequence. These epigenetic modifications can significantly affect the onset and progression of HCC. This review summarizes recent research on the epigenetic regulation of HBV persistent infection and HBV-HCC development, including DNA methylation, histone modification, RNA modification, non-coding RNA, etc. Enhanced knowledge of these mechanisms will offer fresh perspectives and potential targets for intervention tactics in HBV-HCC.
Collapse
Affiliation(s)
- Yaqin Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Weihua Cao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shiyu Wang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinxin Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ziyu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
3
|
Żychowska J, Ćmil M, Skórka P, Olejnik-Wojciechowska J, Plewa P, Bakinowska E, Kiełbowski K, Pawlik A. The Role of Epigenetic Mechanisms in the Pathogenesis of Hepatitis C Infection. Biomolecules 2024; 14:986. [PMID: 39199374 PMCID: PMC11352264 DOI: 10.3390/biom14080986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Hepatitis C virus (HCV) is a hepatotropic virus that can be transmitted through unsafe medical procedures, such as injections, transfusions, and dental treatment. The infection may be self-limiting or manifest as a chronic form that induces liver fibrosis, cirrhosis, or progression into hepatocellular carcinoma (HCC). Epigenetic mechanisms are major regulators of gene expression. These mechanisms involve DNA methylation, histone modifications, and the activity of non-coding RNAs, which can enhance or suppress gene expression. Abnormal activity or the dysregulated expression of epigenetic molecules plays an important role in the pathogenesis of various pathological disorders, including inflammatory diseases and malignancies. In this review, we summarise the current evidence on epigenetic mechanisms involved in HCV infection and progression to HCC.
Collapse
Affiliation(s)
- Justyna Żychowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | - Maciej Ćmil
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | - Patryk Skórka
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | | | - Paulina Plewa
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| |
Collapse
|
4
|
Lee AV, Nestler KA, Chiappinelli KB. Therapeutic targeting of DNA methylation alterations in cancer. Pharmacol Ther 2024; 258:108640. [PMID: 38570075 DOI: 10.1016/j.pharmthera.2024.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
DNA methylation is a critical component of gene regulation and plays an important role in the development of cancer. Hypermethylation of tumor suppressor genes and silencing of DNA repair pathways facilitate uncontrolled cell growth and synergize with oncogenic mutations to perpetuate cancer phenotypes. Additionally, aberrant DNA methylation hinders immune responses crucial for antitumor immunity. Thus, inhibiting dysregulated DNA methylation is a promising cancer therapy. Pharmacologic inhibition of DNA methylation reactivates silenced tumor suppressors and bolster immune responses through induction of viral mimicry. Now, with the advent of immunotherapies and discovery of the immune-modulatory effects of DNA methylation inhibitors, there is great interest in understanding how targeting DNA methylation in combination with other therapies can enhance antitumor immunity. Here, we describe the role of aberrant DNA methylation in cancer and mechanisms by which it promotes tumorigenesis and modulates immune responses. Finally, we review the initial discoveries and ongoing efforts to target DNA methylation as a cancer therapeutic.
Collapse
Affiliation(s)
- Abigail V Lee
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Kevin A Nestler
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
5
|
Rashid S, Sun Y, Ali Khan Saddozai U, Hayyat S, Munir MU, Akbar MU, Khawar MB, Ren Z, Ji X, Ihsan Ullah Khan M. Circulating tumor DNA and its role in detection, prognosis and therapeutics of hepatocellular carcinoma. Chin J Cancer Res 2024; 36:195-214. [PMID: 38751441 PMCID: PMC11090798 DOI: 10.21147/j.issn.1000-9604.2024.02.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is considered the fifth most prevalent cancer among all types of cancers and has the third most morbidity value. It has the most frequent duplication time and a high recurrence rate. Recently, the most unique technique used is liquid biopsies, which carry many markers; the most prominent is circulating tumor DNA (ctDNA). Varied methods are used to investigate ctDNA, including various forms of polymerase chain reaction (PCR) [emulsion PCR (ePCR), digital PCR (dPCR), and bead, emulsion, amplification, magnetic (BEAMing) PCR]. Hence ctDNA is being recognized as a potential biomarker that permits early cancer detection, treatment monitoring, and predictive data on tumor burden are subjective to therapy or surgery. Numerous ctDNA biomarkers have been investigated based on their alterations such as 1) single nucleotide variations (either insertion or deletion of a nucleotide) markers including TP53, KRAS, and CCND1; 2) copy number variations which include markers such as CDK6, EFGR, MYC and BRAF; 3) DNA methylation (RASSF1A, SEPT9, KMT2C and CCNA2); 4) homozygous mutation includes ctDNA markers as CDKN2A, AXIN1; and 5) gain or loss of function of the genes, particularly for HCC. Various researchers have conducted many studies and gotten fruitful results. Still, there are some drawbacks to ctDNA namely low quantity, fragment heterogeneity, less stability, limited mutant copies and standards, and differential sensitivity. However, plenty of investigations demonstrate ctDNA's significance as a polyvalent biomarker for cancer and can be viewed as a future diagnostic, prognostic and therapeutic agent. This article overviews many conditions in genetic changes linked to the onset and development of HCC, such as dysregulated signaling pathways, somatic mutations, single-nucleotide polymorphisms, and genomic instability. Additionally, efforts are also made to develop treatments for HCC that are molecularly targeted and to unravel some of the genetic pathways that facilitate its early identification.
Collapse
Affiliation(s)
- Sana Rashid
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54590, Pakistan
| | - Yingchuan Sun
- Department of Internal Oncology (Section I), Xuchang Municipal Central Hospital, Xuchang 461000, China
| | - Umair Ali Khan Saddozai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Sikandar Hayyat
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54590, Pakistan
| | - Muhammad Usman Munir
- Australian Institute for Bioengineering & Nanotechnology, the University of Queensland, Brisbane 4072, Australia
| | - Muhammad Usman Akbar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan
| | - Muhammad Babar Khawar
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54590, Pakistan
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal Punjab 51600, Pakistan
| | - Zhiguang Ren
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xinying Ji
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou 450064, China
- Department of Medicine, Huaxian County People’s Hospital, Huaxian 456400, China
| | - Malik Ihsan Ullah Khan
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54590, Pakistan
| |
Collapse
|
6
|
Friedemann M, Jandeck C, Tautz L, Gutewort K, von Rein L, Sukocheva O, Fuessel S, Menschikowski M. Blood-Based DNA Methylation Analysis by Multiplexed OBBPA-ddPCR to Verify Indications for Prostate Biopsies in Suspected Prostate Cancer Patients. Cancers (Basel) 2024; 16:1324. [PMID: 38611002 PMCID: PMC11010987 DOI: 10.3390/cancers16071324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Current prostate carcinoma (PCa) biomarkers, including total prostate-specific antigen (tPSA), have unsatisfactory diagnostic sensitivity and specificity resulting in overdiagnosis and overtreatment. Previously, we described an optimised bias-based preamplification-digital droplet PCR (OBBPA-ddPCR) technique, which detects tumour DNA in blood-derived cell-free DNA (cfDNA) of cancer patients. The current study investigated the performance of newly developed OBBPA-ddPCR-based biomarkers. Blood plasma samples from healthy individuals (n = 90, controls) and PCa (n = 39) and benign prostatic hyperplasia patients (BPH, n = 40) were analysed. PCa and BPH patients had tPSA values within a diagnostic grey area of 2-15 ng/mL, for whom further diagnostic validation is most crucial. Methylation levels of biomarkers RASSF1A, MIR129-2, NRIP3, and SOX8 were found significantly increased in PCa patients compared to controls. By combining classical PCa risk factors (percentage of free PSA compared to tPSA (QfPSA) and patient's age) with cfDNA-based biomarkers, we developed PCa risk scores with improved sensitivity and specificity compared to established tPSA and QfPSA single-marker analyses. The diagnostic specificity was increased to 70% with 100% sensitivity for clinically significant PCa patients. Thus, prostate biopsies could be avoided for 28 out of 40 BPH patients. In conclusion, the newly developed risk scores may help to confirm the clinical decision and prevent unnecessary prostate biopsy.
Collapse
Affiliation(s)
- Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307 Dresden, Germany; (C.J.); (K.G.); (L.v.R.)
| | - Carsten Jandeck
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307 Dresden, Germany; (C.J.); (K.G.); (L.v.R.)
| | - Lars Tautz
- Joint Practice of Urology “Am Blauen Wunder”, Schillerplatz 2, 01309 Dresden, Germany
| | - Katharina Gutewort
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307 Dresden, Germany; (C.J.); (K.G.); (L.v.R.)
| | - Lisa von Rein
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307 Dresden, Germany; (C.J.); (K.G.); (L.v.R.)
| | - Olga Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Port Rd., Adelaide, SA 5000, Australia;
| | - Susanne Fuessel
- Clinic of Urology, Carl Gustav Carus University Hospital, TUD Dresden University of Technology, Fetscherstr. 74, 01307 Dresden, Germany;
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307 Dresden, Germany; (C.J.); (K.G.); (L.v.R.)
| |
Collapse
|
7
|
Zhu Z, Zhou Q, Sun Y, Lai F, Wang Z, Hao Z, Li G. MethMarkerDB: a comprehensive cancer DNA methylation biomarker database. Nucleic Acids Res 2024; 52:D1380-D1392. [PMID: 37889076 PMCID: PMC10767949 DOI: 10.1093/nar/gkad923] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
DNA methylation plays a crucial role in tumorigenesis and tumor progression, sparking substantial interest in the clinical applications of cancer DNA methylation biomarkers. Cancer-related whole-genome bisulfite sequencing (WGBS) data offers a promising approach to precisely identify these biomarkers with differentially methylated regions (DMRs). However, currently there is no dedicated resource for cancer DNA methylation biomarkers with WGBS data. Here, we developed a comprehensive cancer DNA methylation biomarker database (MethMarkerDB, https://methmarkerdb.hzau.edu.cn/), which integrated 658 WGBS datasets, incorporating 724 curated DNA methylation biomarker genes from 1425 PubMed published articles. Based on WGBS data, we documented 5.4 million DMRs from 13 common types of cancer as candidate DNA methylation biomarkers. We provided search and annotation functions for these DMRs with different resources, such as enhancers and SNPs, and developed diagnostic and prognostic models for further biomarker evaluation. With the database, we not only identified known DNA methylation biomarkers, but also identified 781 hypermethylated and 5245 hypomethylated pan-cancer DMRs, corresponding to 693 and 2172 genes, respectively. These novel potential pan-cancer DNA methylation biomarkers hold significant clinical translational value. We hope that MethMarkerDB will help identify novel cancer DNA methylation biomarkers and propel the clinical application of these biomarkers.
Collapse
Affiliation(s)
- Zhixian Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Key Laboratory of Smart Farming for Agricultural Animals, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiangwei Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Key Laboratory of Smart Farming for Agricultural Animals, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanhui Sun
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Key Laboratory of Smart Farming for Agricultural Animals, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Fuming Lai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Key Laboratory of Smart Farming for Agricultural Animals, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenji Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Key Laboratory of Smart Farming for Agricultural Animals, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhigang Hao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Key Laboratory of Smart Farming for Agricultural Animals, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Key Laboratory of Smart Farming for Agricultural Animals, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Rayginia TP, Keerthana CK, Shifana SC, Pellissery MJ, Abhishek A, Anto RJ. Phytochemicals as Potential Lead Molecules against Hepatocellular Carcinoma. Curr Med Chem 2024; 31:5199-5221. [PMID: 38213177 DOI: 10.2174/0109298673275501231213063902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 01/13/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent form of liver cancer, accounting for 85-90% of liver cancer cases and is a leading cause of cancer-related mortality worldwide. The major risk factors for HCC include hepatitis C and B viral infections, along with chronic liver diseases, such as cirrhosis, fibrosis, and non-alcoholic steatohepatitis associated with metabolic syndrome. Despite the advancements in modern medicine, there is a continuous rise in the annual global incidence rate of HCC, and it is estimated to reach >1 million cases by 2025. Emerging research in phytomedicine and chemotherapy has established the anti-cancer potential of phytochemicals, owing to their diverse biological activities. In this review, we report the major phytochemicals that have been explored in combating hepatocellular carcinoma and possess great potential to be used as an alternative or in conjunction with the existing HCC treatment modalities. An overview of the pre-clinical observations, mechanism of action and molecular targets of some of these phytochemicals is also incorporated.
Collapse
Affiliation(s)
- Tennyson Prakash Rayginia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, 695011, India
| | - Chenicheri Kizhakkeveettil Keerthana
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, 695011, India
| | | | - Maria Joy Pellissery
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Ajmani Abhishek
- Molecular Bioassay Laboratory, Institute of Advanced Virology, Thiruvananthapuram, Kerala, 695317, India
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Molecular Bioassay Laboratory, Institute of Advanced Virology, Thiruvananthapuram, Kerala, 695317, India
| |
Collapse
|
9
|
Aalami AH, Aalami F, Aliabadi EK, Amirabadi A, Sahebkar A. Detection of Circulating Cell-free DNA to Diagnose Hepatocellular Carcinoma in Chinese Population: A Systematic Review and Meta-analysis. Curr Med Chem 2024; 31:3345-3359. [PMID: 37349993 DOI: 10.2174/0929867330666230622114235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/12/2023] [Accepted: 05/12/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Cell-free circulating DNA has been known for many years, but this knowledge has not been beneficial for diagnosis. In this meta-analysis, we examine the diagnostic role of circulating cell-free DNA in HCC patients to find a reliable biomarker for the early detection of HCC. MATERIALS AND METHODS We performed a systematic literature search using Science Direct, Web of Science, PubMed/Medline, Scopus, Google Scholar, and Embase, up to April 1st, 2022. Meta-Disc V.1.4 and Comprehensive Meta-Analysis V.3.3 software calculated the pooled specificity, sensitivity, area under the curve (AUC), diagnostic odds ratio (DOR), positive likelihood ratio (PLR), negative likelihood ratio (NLR) Q*index, and summary receiver-- operating characteristic (SROC) for the role of cfDNA as a biomarker for HCC patients. Moreover, the subgroup analyses have been performed based on sample types (serum/plasma) and detection methods (MS-PCR/methylation). RESULTS A total of 7 articles (9 studies) included 697 participants (485 cases and 212 controls). The overall pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) were 0.706 (95% CI: 0.671 - 0.739), 0.905 (95% CI: 0.865 - 0.937), 6.66 (95% CI: 4.36 - 10.18), 0.287 (95% CI: 0.185 - 0.445), 28.40 (95% CI: 13.01 - 62.0), and 0.93, respectively. We conducted a subgroup analysis of diagnostic value, which showed that the plasma sample had a better diagnostic value compared to the serum. CONCLUSION This meta-analysis showed that cfDNA could be a fair biomarker for diagnosing HCC patients.
Collapse
Affiliation(s)
- Amir Hossein Aalami
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Farnoosh Aalami
- Student Research Committee, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ehsan Kargar Aliabadi
- Department of Chemistry, Faculty of Science, Biochemical Research Center, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Amirabadi
- Department of Internal Medicine, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Abou Zeid AA, El-Sayed ET, Ahdy JK, Tawfik MR. Ras Association Domain Family 1A Gene Promoter Methylation as a Biomarker for Chronic Viral Hepatitis C-related Hepatocellular Carcinoma. Cureus 2023; 15:e45687. [PMID: 37868533 PMCID: PMC10590080 DOI: 10.7759/cureus.45687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Background One of the most prevalent aberrant epigenetic modifications found in hepatocellular carcinoma (HCC) is abnormal DNA methylation. Our study aimed to evaluate serum Ras association domain family 1A (RASSF1A) gene promoter methylation in patients with chronic viral hepatitis C (HCV)-associated liver cirrhosis with and without HCC as a potential new marker for the early detection of HCC. Methodology The 60 participants who participated in the trial were divided into the following three groups: 20 patients with newly diagnosed primary HCC on top of HCV-related liver cirrhosis, 20 patients with HCV-related liver cirrhosis, and 20 age- and sex-matched healthy individuals as a control group. All participants underwent methylation-specific polymerase chain reaction testing to detect the blood level of the RASSF1A gene's methylated promoter. Results Methylated RASSF1A was found in 30% of patients with liver cirrhosis caused by HCV and in 65% of patients with HCC, but not in any of the controls. It was discovered that the serum methylation RASSF1A had an accuracy of 82.50% and an area under the curve (AUC) of 0.825 for separating HCC patients from healthy controls. With an AUC of 0.675 and an accuracy of 67.50%, it was able to differentiate patients with HCC from those with HCV-related liver cirrhosis. Additionally, there was no statistically significant association between RASSF1A methylation status and HCC mass size (p = 0.449). Conclusions Serum RASSF1A promoter methylation status detection could be useful for detecting HCC early, especially in high-risk individuals such as those with HCV.
Collapse
Affiliation(s)
- Abla A Abou Zeid
- Clinical and Chemical Pathology, Alexandria Faculty of Medicine, Alexandria University, Alexandria, EGY
| | - Eman T El-Sayed
- Clinical and Chemical Pathology, Alexandria Faculty of Medicine, Alexandria University, Alexandria, EGY
| | - Jylan K Ahdy
- Clinical and Chemical Pathology, Al Ramel Pediatric Hospital, Ministry of Health, Alexandria, EGY
| | - Marwa R Tawfik
- Hepatobiliary Unit, Internal Medicine Department, Alexandria Faculty of Medicine, Alexandria University, Alexandria, EGY
| |
Collapse
|
11
|
Kopystecka A, Patryn R, Leśniewska M, Budzyńska J, Kozioł I. The Use of ctDNA in the Diagnosis and Monitoring of Hepatocellular Carcinoma-Literature Review. Int J Mol Sci 2023; 24:ijms24119342. [PMID: 37298294 DOI: 10.3390/ijms24119342] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is one of the leading causes of cancer-related deaths worldwide. Despite advances in medicine, it is still a cancer with a very poor prognosis. Both imaging and liver biopsy still have important limitations, especially in very small nodules and those which show atypical imaging features. In recent years, liquid biopsy and molecular analysis of tumor breakdown products have become an attractive source of new biomarkers. Patients with liver and biliary malignancies, including hepatocellular carcinoma (HCC), may greatly benefit from ctDNA testing. These patients are often diagnosed at an advanced stage of the disease, and relapses are common. Molecular analysis may indicate the best cancer treatment tailored to particular patients with specific tumor DNA mutations. Liquid biopsy is a minimally invasive technique that facilitates the early detection of cancer. This review summarizes the knowledge of ctDNA in liquid biopsy as an indicator for early diagnosis and monitoring of hepatocellular cancer.
Collapse
Affiliation(s)
- Agnieszka Kopystecka
- Students' Scientific Circle on Medical Law, Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| | - Rafał Patryn
- Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| | - Magdalena Leśniewska
- Students' Scientific Circle on Medical Law, Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| | - Julia Budzyńska
- Students' Scientific Circle on Medical Law, Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ilona Kozioł
- Students' Scientific Circle on Medical Law, Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
12
|
Diagnostic performance of RASSF1A and CDKN2A gene methylation versus α-fetoprotein in hepatocellular carcinoma. Clin Exp Hepatol 2022; 8:243-252. [PMID: 36685264 PMCID: PMC9850312 DOI: 10.5114/ceh.2022.119315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/07/2022] [Indexed: 01/25/2023] Open
Abstract
Aim of the study This study aimed to evaluate the methylation status of two genes in the peripheral blood as possible non-invasive biomarkers for hepatocellular carcinoma (HCC) development in Egyptian patients with hepatitis C virus (HCV)-related liver cirrhosis, compare them with α-fetoprotein (AFP), and assess their relationship with the clinicopathological characteristics of the tumor. Material and methods Thirty healthy volunteers, forty patients with HCC on top of HCV-associated liver cirrhosis, and forty patients with HCV-associated liver cirrhosis participated in this study. Using methylation-specific polymerase chain reaction (MSP), the methylation status of RASSF1A and CDKN2A was assessed. Results The tumor group was significantly more methylated in both genes than the cirrhosis and the control groups. The RASSF1A gene was highly methylated in advanced tumor characteristics. There was no association between AFP levels in the blood and the methylation state of both genes. The combined diagnostic performance of the methylation status of both genes in predicting HCC in cirrhotic patients was high but not to the degree of that of AFP. Conclusions Methylated RASSF1A and CDKN2A levels in the blood may be employed as a non-invasive biomarker for the detection of HCC, especially in high-risk individuals.
Collapse
|
13
|
Li J, Li H, Run ZC, Wang ZL, Jiang T, An Y, Li Z. RASSF1A methylation as a biomarker for detection of colorectal cancer and hepatocellular carcinoma. World J Gastrointest Oncol 2022; 14:1574-1584. [PMID: 36160746 PMCID: PMC9412931 DOI: 10.4251/wjgo.v14.i8.1574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/02/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Studies have validated the potential of methylated cell-free DNA as a biomarker in various tumors, and methylated DNA in plasma may be a potential biomarker for cancer.
AIM To evaluate the diagnostic value of RASSF1A methylation in plasma for colorectal cancer (CRC) and hepatocellular carcinoma (HCC).
METHODS A total of 92 CRC patients, 67 colorectal polyp (CRP) patients, 63 HCC patients, and 66 liver cirrhosis (LC) patients were enrolled. The plasma DNA was subjected to DNA extraction, double-strand DNA concentration determination, bisulfite conversion, purification, single-strand DNA concentration determination, and digital polymerase chain reaction (PCR) detection. The methylation rate was calculated. The diagnostic value was evaluated by the area under the curve (AUC).
RESULTS The age and sex in the CRC and CRP groups and the HCC and LC groups were also matched. The DNA methylation rate of RASSF1A in plasma in the CRC group was 2.87 ± 1.80, and that in the CRP group was 1.50 ± 0.64. DNA methylation of RASSF1A in plasma showed a significant difference between the CRC and CRP groups. The AUC of RASSF1A methylation for discriminating the CRC and CRP groups was 0.82 (0.76-0.88). The AUCs of T1, T2, T3 and T4 CRC and CRP were 0.83 (0.72-0.95), 0.87 (0.78-0.95), 0.86 (0.77-0.95), and 0.75 (0.64-0.85), respectively. The DNA methylation rate of RASSF1A in plasma in the HCC group was 4.45 ± 2.93, and that in the LC group was 2.46 ± 2.07. DNA methylation of RASSF1A in plasma for the HCC and LC groups showed a significant difference. The AUC of RASSF1A methylation for discriminating the HCC and LC groups was 0.70 (0.60-0.79). The AUCs of T1, T2, T3 and T4 HCC and LC were 0.80 (0.61, 1.00), 0.74 (0.59-0.88), 0.60 (0.42-0.79), and 0.68 (0.53-0.82), respectively.
CONCLUSION RASSF1A methylation in plasma detected by digital PCR may be a potential biomarker for CRC and HCC.
Collapse
Affiliation(s)
- Jian Li
- Department of General Surgery, Affiliated Tumor Hospital of Zhengzhou University, Henan Tumor Hospital, Zhengzhou 450000, Henan Province, China
| | - Huan Li
- Department of Gastroenterology, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Zeng-Ci Run
- Department of General Surgery, Affiliated Tumor Hospital of Zhengzhou University, Henan Tumor Hospital, Zhengzhou 450000, Henan Province, China
| | - Zhen-Lei Wang
- Department of General Surgery, Affiliated Tumor Hospital of Zhengzhou University, Henan Tumor Hospital, Zhengzhou 450000, Henan Province, China
| | - Tao Jiang
- Medicine Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Yang An
- Faculty of Hepato-Pancreato-Biliary Surgery, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Zhi Li
- Department of General Surgery, Affiliated Tumor Hospital of Zhengzhou University, Henan Tumor Hospital, Zhengzhou 450000, Henan Province, China
| |
Collapse
|
14
|
Correlation between RASSF1A Methylation in Cell-Free DNA and the Prognosis of Cancer Patients: A Systematic Review and Meta-Analysis. JOURNAL OF ONCOLOGY 2022; 2022:3458420. [PMID: 35528240 PMCID: PMC9071870 DOI: 10.1155/2022/3458420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
Abstract
Background Although the effects of methylation of the Ras association domain-containing protein 1 isoform A (RASSF1A) gene in cell-free DNA on the outcomes of patients with different types of cancer have been reported, the results are inconsistent. Objective : To explore the relationships between RASSF1A methylation in cell-free DNA and the outcomes of cancer patients. Methods The PubMed, Embase, and Web of Science databases were searched for papers related to this topic on December 8, 2021. The retrieved articles were screened by two independent researchers, following which the methodological quality of the selected studies was evaluated using the Newcastle-Ottawa Scale. Additionally, hazard ratios were calculated, and publication bias of the studies was determined using Egger's test. Results Nine relevant publications involving a combined total of 1254 patients with different types of cancer were included in this study. The combined results of the random effects models yielded a hazard ratio of 1.73 (95% confidence interval: 1.31, 2.29; P < 0.001), which suggested there was a significant association between RASSF1A methylation and overall survival, and patients with an RASSF1A methylation status had a significantly increased risk of total death. Moreover, the Egger test result suggested there was no significant publication bias among the included studies. Conclusions The methylation of RASSF1A in cell-free DNA in cancer patients was observably associated with an increased risk of poor overall survival.
Collapse
|
15
|
Braghini MR, Lo Re O, Romito I, Fernandez-Barrena MG, Barbaro B, Pomella S, Rota R, Vinciguerra M, Avila MA, Alisi A. Epigenetic remodelling in human hepatocellular carcinoma. J Exp Clin Cancer Res 2022; 41:107. [PMID: 35331312 PMCID: PMC8943959 DOI: 10.1186/s13046-022-02297-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/19/2022] [Indexed: 04/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer, being the sixth most commonly diagnosed cancer and the fourth leading cause of cancer-related death. As other heterogeneous solid tumours, HCC results from a unique synergistic combination of genetic alterations mixed with epigenetic modifications.In HCC the patterns and frequencies of somatic variations change depending on the nearby chromatin. On the other hand, epigenetic alterations often induce genomic instability prone to mutations. Epigenetics refers to heritable states of gene expression without alteration to the DNA sequence itself and, unlike genetic changes, the epigenetic modifications are reversible and affect gene expression more extensively than genetic changes. Thus, studies of epigenetic regulation and the involved molecular machinery are greatly contributing to the understanding of the mechanisms that underline HCC onset and heterogeneity. Moreover, this knowledge may help to identify biomarkers for HCC diagnosis and prognosis, as well as future new targets for more efficacious therapeutic approaches.In this comprehensive review we will discuss the state-of-the-art knowledge about the epigenetic landscape in hepatocarcinogenesis, including evidence on the diagnostic and prognostic role of non-coding RNAs, modifications occurring at the chromatin level, and their role in the era of precision medicine.Apart from other better-known risk factors that predispose to the development of HCC, characterization of the epigenetic remodelling that occurs during hepatocarcinogenesis could open the way to the identification of personalized biomarkers. It may also enable a more accurate diagnosis and stratification of patients, and the discovery of new targets for more efficient therapeutic approaches.
Collapse
Affiliation(s)
- Maria Rita Braghini
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Oriana Lo Re
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Ilaria Romito
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Maite G Fernandez-Barrena
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Barbara Barbaro
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Silvia Pomella
- Department of Paediatric Haematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Rota
- Department of Paediatric Haematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manlio Vinciguerra
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Matias A Avila
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Anna Alisi
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy.
| |
Collapse
|
16
|
Tahoon A, El-Khateeb D, Mosbeh A, Tantawy El Sayed I, Khalil A. Significance of promoter methylation of multiple tumor suppressor genes in hepatocellular carcinoma. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00237-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Abstract
Background
Methylation of the promoter at CpG islands is a mechanism of silencing tumor suppressor genes and therefore enhances cancer progression. The study aimed to examine promoter methylation frequencies of five tumor suppressor genes in hepatocellular carcinoma and their implication on the first-year outcome of surgical resection of the tumor. Fifty specimens of hepatocellular carcinoma and the adjacent non-tumorous liver tissue were collected from the surgically resected hepatic tumor. The status of promoter methylation of tumor suppressor genes RASSF1A, CHFR, MGMT, GSTP1, and hMLH1 was investigated using methylation-specific polymerase chain reaction.
Results
The frequency of promoter methylation of these tumor suppressors genes (TSG) genes in hepatocellular carcinoma was significantly higher than non-tumorous tissue all, P < 0.05, with a methylation rate of 80% in RASSF1A, 70% in CHFR, 46% in GSTP1, 56% in MGMT, and 10% in hMLH1. Methylation of RASSF1A, CHFR, and MGMT promoter genes was significantly associated with decreased first-year postoperative survival and increased recurrence of hepatocellular carcinoma, P < 0.05.
Conclusion
Methylated RASSF1A, CHRF, and MGMT promoters indicated poor prognosis among patients with hepatocellular carcinoma and may serve as potential prognostic indicators in patients with hepatocellular carcinoma.
Collapse
|
17
|
Zhang X, Ma L, Tang Y, Han J, Qi Y, Huang D. Low-dose cadmium exposure facilitates cell proliferation by promoter hypermethylation of RASSF1A and DAPK1 genes. ENVIRONMENTAL TOXICOLOGY 2021; 36:2313-2321. [PMID: 34402589 DOI: 10.1002/tox.23345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) at low concentrations has a potential to promote cell proliferation. However, the molecular mechanisms of Cd-induced proliferation are not well understood. Here, we reported that Cd (0-500 nM) significantly promoted the proliferation of HepG2 cells as demonstrated by elevated cell viability, more EdU-positive cells and increased gene expression of KI-67 and COX-2. Meanwhile, the gene expression of DNA methyltransferases was found to be elevated while that of tumor suppressor genes DAPK1 and RASSF1A were decreased under Cd exposure. Correspondingly, the methylation level of promoters in DAPK1 and RASSF1A were increased. Specifically, the CpG sites at -461 (Chr3:50, 374, 481) of RASSF1A promoter, and that at -260 (Chr9:90, 113, 207), -239 (Chr9:90, 113, 228), and -68 (Chr9:90, 113, 399) of DAPK1 promoter, were significantly hypermethylated. Moreover, 5-azacytidine (an inhibitor of DNA methyltransferase) partly impaired Cd-induced promoter hypermethylation of RASSF1A and DAPK1 genes, increased their expressions and slowed down Cd-induced cell proliferation, suggesting that DNA methylation play an essential part in Cd-boosted proliferation. The study showed that Cd caused promoter hypermethylation of RASSF1A and DAPK1, decreasing their expression and leading to higher level of cell proliferation. Furthermore, Cd at low concentrations could influence DNA methylation, which may serve as the proliferative mechanism of Cd.
Collapse
Affiliation(s)
- Xingjie Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
- Department of Wildlife Management, Administration of Wildlife, Gansu Province, Lanzhou, China
| | - Lin Ma
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yue Tang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jiangyuan Han
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
18
|
Friedemann M, Horn F, Gutewort K, Tautz L, Jandeck C, Bechmann N, Sukocheva O, Wirth MP, Fuessel S, Menschikowski M. Increased Sensitivity of Detection of RASSF1A and GSTP1 DNA Fragments in Serum of Prostate Cancer Patients: Optimisation of Diagnostics Using OBBPA-ddPCR. Cancers (Basel) 2021; 13:4459. [PMID: 34503269 PMCID: PMC8431466 DOI: 10.3390/cancers13174459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/05/2023] Open
Abstract
Identification of aberrant DNA methylation is a promising tool in prostate cancer (PCa) diagnosis and treatment. In this study, we evaluated a two-step method named optimised bias-based preamplification followed by digital PCR (OBBPA-dPCR). The method was used to identify promoter hypermethylation of 2 tumour suppressor genes RASSF1A and GSTP1 in the circulating cell-free DNA (cfDNA) from serum samples of PCa patients (n = 75), benign prostatic hyperplasia (BPH, n = 58), and healthy individuals (controls, n = 155). The PCa cohort was further subdivided into subgroups comprising (I) patients with Gleason Scores (GS) ≤ 7 (n = 55), (II) GS ≥ 8 (n = 10), and (III) patients with metastatic PCa diagnosis (n = 10). We found that RASSF1A methylation levels were significantly increased in all 3 PCa subgroups compared to the controls and BPH cohorts (p < 0.01 for all comparisons). Fractional abundances of methylated GSTP1 DNA fragments were significantly increased in subgroup III of metastatic PCa patients (p < 0.001). RASSF1A methylation analysis was found to be beneficial as a complementary biomarker where further diagnostic validation is most crucial. In combination with free PSA, RASSF1A methylation status helps to identify PCa patients with GS ≥ 8 and grey-zone total PSA values between 2-10 ng/mL. In our study, PCR biases between 80-90% were sufficient to detect minute amounts of tumour DNA with high signal-to-noise ratios as well as high analytical sensitivity and specificity. Both RASSF1A and GSTP1 exhibited strongly increased DNA methylation levels in all metastatic PCa patients. Our data indicates a superior sensitivity of epigenetic biomarker analyses in early detection of PCa metastases that should also help to improve PCa therapy.
Collapse
Affiliation(s)
- Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
| | - Friederike Horn
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
| | - Katharina Gutewort
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
| | - Lars Tautz
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
| | - Carsten Jandeck
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
- Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- German Department of Human Nutrition Potsdam-Rehbruecke, Institute of Experimental Diabetology, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Olga Sukocheva
- School of Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia;
| | - Manfred P. Wirth
- Department of Urology, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.P.W.); (S.F.)
| | - Susanne Fuessel
- Department of Urology, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.P.W.); (S.F.)
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
| |
Collapse
|
19
|
McKenna S, García-Gutiérrez L. Resistance to Targeted Therapy and RASSF1A Loss in Melanoma: What Are We Missing? Int J Mol Sci 2021; 22:5115. [PMID: 34066022 PMCID: PMC8150731 DOI: 10.3390/ijms22105115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
Melanoma is one of the most aggressive forms of skin cancer and is therapeutically challenging, considering its high mutation rate. Following the development of therapies to target BRAF, the most frequently found mutation in melanoma, promising therapeutic responses were observed. While mono- and combination therapies to target the MAPK cascade did induce a therapeutic response in BRAF-mutated melanomas, the development of resistance to MAPK-targeted therapies remains a challenge for a high proportion of patients. Resistance mechanisms are varied and can be categorised as intrinsic, acquired, and adaptive. RASSF1A is a tumour suppressor that plays an integral role in the maintenance of cellular homeostasis as a central signalling hub. RASSF1A tumour suppressor activity is commonly lost in melanoma, mainly by aberrant promoter hypermethylation. RASSF1A loss could be associated with several mechanisms of resistance to MAPK inhibition considering that most of the signalling pathways that RASSF1A controls are found to be altered targeted therapy resistant melanomas. Herein, we discuss resistance mechanisms in detail and the potential role for RASSF1A reactivation to re-sensitise BRAF mutant melanomas to therapy.
Collapse
Affiliation(s)
| | - Lucía García-Gutiérrez
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland;
| |
Collapse
|
20
|
Tian H, Chen X, Zhang Y, Wang Y, Fu X, Gu W, Wen Y. Dioscin inhibits SCC15 cell proliferation via the RASSF1A/MST2/YAP axis. Mol Med Rep 2021; 23:414. [PMID: 33786612 PMCID: PMC8025490 DOI: 10.3892/mmr.2021.12053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Dioscin, an extract from traditional Chinese herbal plants, displays various biological and pharmacological effects on tumors, including inhibition of cell proliferation and induction of DNA damage. However, the effects of dioscin on oral squamous cell carcinoma (OSCC) cells are not completely understood. The present study aimed to evaluate the impact of dioscin on OSCC cell proliferation. Cell Counting Kit-8 and 5-ethynyl-2′-deoxyuridine incorporation assays were performed to assess cell proliferation. Flow cytometry was conducted to detect alterations in the cell cycle and cell apoptosis. Western blotting and coimmunoprecipitation were performed to determine protein expression levels. In SCC15 cells, dioscin treatment significantly induced cell cycle arrest, increased apoptosis and inhibited proliferation compared with the control group. Mechanistically, the tumor suppressor protein Ras association domain-containing protein 1A (RASSF1A) was activated and oncoprotein yes-associated protein (YAP) was phosphorylated by dioscin. Furthermore, YAP overexpression and knockdown reduced and enhanced the inhibitory effects of dioscin on SCC15 cells, respectively. In summary, the results demonstrated that, compared with the control group, dioscin upregulated RASSF1A expression in OSCC cells, which resulted in YAP phosphorylation, thus weakening its transcriptional coactivation function, enhancing cell cycle arrest and apoptosis, and inhibiting cell proliferation. The present study indicated that dioscin may serve as a therapeutic agent for OSCC.
Collapse
Affiliation(s)
- Hui Tian
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiyan Chen
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yafei Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ying Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xucheng Fu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Weiting Gu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yong Wen
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|