1
|
Taurin S, Alzahrani R, Aloraibi S, Ashi L, Alharmi R, Hassani N. Patient-derived tumor organoids: A preclinical platform for personalized cancer therapy. Transl Oncol 2025; 51:102226. [PMID: 39622151 DOI: 10.1016/j.tranon.2024.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/11/2024] Open
Abstract
Patient-derived tumor organoids (PDTOs) represent a significant advancement in cancer research and personalized medicine. These organoids, derived from various cancer types, have shown the ability to retain the genetic and molecular characteristics of the original tumors, allowing for the detailed study of tumor biology and drug responses on an individual basis. The success rates of establishing PDTOs vary widely and are influenced by factors such as cancer type, tissue quality, and media composition. Furthermore, the dynamic nature of organoid cultures may also lead to unique molecular characteristics that deviate from the original tumors, affecting their interpretation in clinical settings without the implementation of rigorous validation and establishment of standardized protocols. Recent studies have supported the correlation between PDTOs and the corresponding patient response. Although these studies involved a small number of patients, they promoted the integration of PDTOs in observational and interventional clinical trials to advance translational cancer therapies.
Collapse
Affiliation(s)
- Sebastien Taurin
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain.
| | - Reem Alzahrani
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Sahar Aloraibi
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Layal Ashi
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Rawan Alharmi
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Noora Hassani
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
2
|
Niazi V, Parseh B. Organoid models of breast cancer in precision medicine and translational research. Mol Biol Rep 2024; 52:2. [PMID: 39570495 DOI: 10.1007/s11033-024-10101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
One of the most famous and heterogeneous cancers worldwide is breast cancer (BC). Owing to differences in the gene expression profiles and clinical features of distinct BC subtypes, different treatments are prescribed for patients. However, even with more thorough pathological evaluations of tumors than in the past, available treatments do not perform equally well for all individuals. Precision medicine is a new approach that considers the effects of patients' genes, lifestyle, and environment to choose the right treatment for an individual patient. As a powerful tool, the organoid culture system can maintain the morphological and genetic characteristics of patients' tumors. Evidence also shows that organoids have high predictive value for patient treatment. In this review, a variety of BC studies performed on organoid culture systems are evaluated. Additionally, the potential of using organoid models in BC translational research, especially in immunotherapy, drug screening, and precision medicine, has been reported.
Collapse
Affiliation(s)
- Vahid Niazi
- Stem Cell Research Center, Golestan University of Medical Science, Gorgan, Iran
- School of Advanced Technologies in Medicine, Golestan University of Medical Science, Shastkola Street, Gorgan, 4918936316, Iran
| | - Benyamin Parseh
- Stem Cell Research Center, Golestan University of Medical Science, Gorgan, Iran.
- School of Advanced Technologies in Medicine, Golestan University of Medical Science, Shastkola Street, Gorgan, 4918936316, Iran.
| |
Collapse
|
3
|
Wang Y, Wang Y, Sun T, Xu J. Bacteriocins in Cancer Treatment: Mechanisms and Clinical Potentials. Biomolecules 2024; 14:831. [PMID: 39062544 PMCID: PMC11274894 DOI: 10.3390/biom14070831] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer poses a severe threat to human health. Although conventional chemotherapy remains a cornerstone of cancer treatment, its significant side effects and the growing issue of drug resistance necessitate the urgent search for more efficient and less toxic anticancer drugs. In recent years, bacteriocins, antimicrobial peptides of microbial origin, have garnered significant attention due to their targeted antitumor activity. This unique activity is mainly attributed to their cationic and amphiphilic nature, which enables bacteriocins to specifically kill tumor cells without harming normal cells. When involving non-membrane-disrupting mechanisms, such as apoptosis induction, cell cycle blockade, and metastasis inhibition, the core mechanism of action is achieved by disrupting cell membranes, which endows bacteriocins with low drug resistance and high selectivity. However, the susceptibility of bacteriocins to hydrolysis and hemolysis in vivo limits their clinical application. To overcome these challenges, structural optimization of bacteriocins or their combination with nanotechnology is proposed for future development. This review aims to study the mechanism of action and current research status of bacteriocins as anticancer treatments, thus providing new insights for their clinical development and application.
Collapse
Affiliation(s)
- Yiwen Wang
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China; (Y.W.); (Y.W.)
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China
| | - Yue Wang
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China; (Y.W.); (Y.W.)
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China
| | - Tao Sun
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China; (Y.W.); (Y.W.)
- Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang 110042, China
| | - Junnan Xu
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China; (Y.W.); (Y.W.)
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China
- Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang 110042, China
| |
Collapse
|
4
|
Mazzucchelli S, Signati L, Messa L, Franceschini A, Bonizzi A, Castagnoli L, Gasparini P, Consolandi C, Mangano E, Pelucchi P, Cifola I, Camboni T, Severgnini M, Villani L, Tagliaferri B, Carelli S, Pupa SM, Cereda C, Corsi F. Breast cancer patient-derived organoids for the investigation of patient-specific tumour evolution. Cancer Cell Int 2024; 24:220. [PMID: 38926706 PMCID: PMC11210105 DOI: 10.1186/s12935-024-03375-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND A reliable preclinical model of patient-derived organoids (PDOs) was developed in a case study of a 69-year-old woman diagnosed with breast cancer (BC) to investigate the tumour evolution before and after neoadjuvant chemotherapy and surgery. The results were achieved due to the development of PDOs from tissues collected before (O-PRE) and after (O-POST) treatment. METHODS PDO cultures were characterized by histology, immunohistochemistry (IHC), transmission electron microscopy (TEM), scanning electron microscopy (SEM), confocal microscopy, flow cytometry, real-time PCR, bulk RNA-seq, single-cell RNA sequencing (scRNA-seq) and drug screening. RESULTS Both PDO cultures recapitulated the histological and molecular profiles of the original tissues, and they showed typical mammary gland organization, confirming their reliability as a personalized in vitro model. Compared with O-PRE, O-POST had a greater proliferation rate with a significant increase in the Ki67 proliferation index. Moreover O-POST exhibited a more stem-like and aggressive phenotype, with increases in the CD24low/CD44low and EPCAMlow/CD49fhigh cell populations characterized by increased tumour initiation potential and multipotency and metastatic potential in invasive lobular carcinoma. Analysis of ErbB receptor expression indicated a decrease in HER-2 expression coupled with an increase in EGFR expression in O-POST. In this context, deregulation of the PI3K/Akt signalling pathway was assessed by transcriptomic analysis, confirming the altered transcriptional profile. Finally, transcriptomic single-cell analysis identified 11 cell type clusters, highlighting the selection of the luminal component and the decrease in the number of Epithelial-mesenchymal transition cell types in O-POST. CONCLUSION Neoadjuvant treatment contributed to the enrichment of cell populations with luminal phenotypes that were more resistant to chemotherapy in O-POST. PDOs represent an excellent 3D cell model for assessing disease evolution.
Collapse
Affiliation(s)
- Serena Mazzucchelli
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, Via G. B. Grassi 74, 20157, Milan, Italy.
| | - Lorena Signati
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, Via G. B. Grassi 74, 20157, Milan, Italy
| | - Letizia Messa
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133, Milan, Italy
- Pediatric Research Center "Romeo and Enrica Invernizzi", Università di Milano, 20157, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, 20154, Milan, Italy
| | - Alma Franceschini
- Microenvironment and Biomarkers of Solid Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133, Milan, Italy
| | - Arianna Bonizzi
- Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Lorenzo Castagnoli
- Microenvironment and Biomarkers of Solid Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133, Milan, Italy
| | - Patrizia Gasparini
- Epigenomics and Biomarkers of Solid Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133, Milan, Italy
| | - Clarissa Consolandi
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Via F. lli Cervi 93, 20054, Segrate, Italy
| | - Eleonora Mangano
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Via F. lli Cervi 93, 20054, Segrate, Italy
| | - Paride Pelucchi
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Via F. lli Cervi 93, 20054, Segrate, Italy
| | - Ingrid Cifola
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Via F. lli Cervi 93, 20054, Segrate, Italy
| | - Tania Camboni
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Via F. lli Cervi 93, 20054, Segrate, Italy
| | - Marco Severgnini
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Via F. lli Cervi 93, 20054, Segrate, Italy
| | - Laura Villani
- Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | | | - Stephana Carelli
- Pediatric Research Center "Romeo and Enrica Invernizzi", Università di Milano, 20157, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, 20154, Milan, Italy
| | - Serenella M Pupa
- Microenvironment and Biomarkers of Solid Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133, Milan, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, 20154, Milan, Italy
| | - Fabio Corsi
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, Via G. B. Grassi 74, 20157, Milan, Italy.
- Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy.
| |
Collapse
|
5
|
Han Z, Yao L, Fang Y, Chen S, Lian R, Yao Y, Chen H, Ji X, Yu W, Wang Z, Wang R, Liang S. Patient-derived organoid elucidates the identical clonal origin of bilateral breast cancer with diverse molecular subtypes. Front Oncol 2024; 14:1361603. [PMID: 38800414 PMCID: PMC11116675 DOI: 10.3389/fonc.2024.1361603] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Bilateral breast cancer (BBC), an infrequent breast cancer subtype, has primarily been studied in terms of incidence, prognosis, and through comparative analysis of synchronous (SBBC) and metachronous (MBBC) manifestations. The advent and application of organoid technology hold profound implications for tumor research and clinical management. This study represents the pioneering use of organoid models in BBC research. We established organoid lines from two surgical tumor specimens of a BBC patient, with one line undergoing detailed pathological and genomic analysis. The BBC organoid from the right breast demonstrated a marker expression profile of ER (-), PR (-), HER-2 (0), and Ki67 index 10%, indicating that it may derived from the TNBC tissue. Whole Exome Sequencing (WES) displayed consistent set of Top10 cancer driver genes affected by missense mutations, frameshift mutation, or splice site mutations in three tumor tissues and the organoid samples. The organoids' single nucleotide polymorphisms (SNPs) were more closely aligned with the TNBC tissue than other tumor tissues. Evolutionary analysis suggested that different tumor regions might evolve from a common ancestral layer. In this case, the development of BBC organoids indicated that simultaneous lesions with diverse molecular profiles shared a high degree of consistency in key tumor-driving mutations. These findings suggest the feasibility of generating BBC organoids representing various molecular types, accurately replicating significant markers and driver mutations of the originating tumor. Consequently, organoids serve as a valuable in vitro model for exploring treatment strategies and elucidating the underlying mechanisms of BBC.
Collapse
Affiliation(s)
- Zhongbin Han
- The Key Laboratory of Biomarker High Throughput Screening And Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
- Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Liangxue Yao
- The Key Laboratory of Biomarker High Throughput Screening And Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Yanhua Fang
- The Key Laboratory of Biomarker High Throughput Screening And Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Sijing Chen
- The Key Laboratory of Biomarker High Throughput Screening And Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
- Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Ruiqing Lian
- Pathology Department, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Yongqiang Yao
- Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Hongsheng Chen
- Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Xuening Ji
- Oncology Department, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Weiting Yu
- The Key Laboratory of Biomarker High Throughput Screening And Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Zhe Wang
- Oncology Department, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Ruoyu Wang
- The Key Laboratory of Biomarker High Throughput Screening And Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
- Oncology Department, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Shanshan Liang
- The Key Laboratory of Biomarker High Throughput Screening And Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|
6
|
Sevieri M, Andreata F, Mainini F, Signati L, Piccotti F, Truffi M, Bonizzi A, Sitia L, Pigliacelli C, Morasso C, Tagliaferri B, Corsi F, Mazzucchelli S. Impact of doxorubicin-loaded ferritin nanocages (FerOX) vs. free doxorubicin on T lymphocytes: a translational clinical study on breast cancer patients undergoing neoadjuvant chemotherapy. J Nanobiotechnology 2024; 22:184. [PMID: 38622644 PMCID: PMC11020177 DOI: 10.1186/s12951-024-02441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Despite the advent of numerous targeted therapies in clinical practice, anthracyclines, including doxorubicin (DOX), continue to play a pivotal role in breast cancer (BC) treatment. DOX directly disrupts DNA replication, demonstrating remarkable efficacy against BC cells. However, its non-specificity toward cancer cells leads to significant side effects, limiting its clinical utility. Interestingly, DOX can also enhance the antitumor immune response by promoting immunogenic cell death in BC cells, thereby facilitating the presentation of tumor antigens to the adaptive immune system. However, the generation of an adaptive immune response involves highly proliferative processes, which may be adversely affected by DOX-induced cytotoxicity. Therefore, understanding the impact of DOX on dividing T cells becomes crucial, to deepen our understanding and potentially devise strategies to shield anti-tumor immunity from DOX-induced toxicity. Our investigation focused on studying DOX uptake and its effects on human lymphocytes. We collected lymphocytes from healthy donors and BC patients undergoing neoadjuvant chemotherapy (NAC). Notably, patient-derived peripheral blood mononuclear cells (PBMC) promptly internalized DOX when incubated in vitro or isolated immediately after NAC. These DOX-treated PBMCs exhibited significant proliferative impairment compared to untreated cells or those isolated before treatment initiation. Intriguingly, among diverse lymphocyte sub-populations, CD8 + T cells exhibited the highest uptake of DOX. To address this concern, we explored a novel DOX formulation encapsulated in ferritin nanocages (FerOX). FerOX specifically targets tumors and effectively eradicates BC both in vitro and in vivo. Remarkably, only T cells treated with FerOX exhibited reduced DOX internalization, potentially minimizing cytotoxic effects on adaptive immunity.Our findings underscore the importance of optimizing DOX delivery to enhance its antitumor efficacy while minimizing adverse effects, highlighting the pivotal role played by FerOX in mitigating DOX-induced toxicity towards T-cells, thereby positioning it as a promising DOX formulation. This study contributes valuable insights to modern cancer therapy and immunomodulation.
Collapse
Affiliation(s)
- Marta Sevieri
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, Milan, 20157, Italy
| | - Francesco Andreata
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Mainini
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, Milan, 20157, Italy
| | - Lorena Signati
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, Milan, 20157, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Pavia, 27100, Italy
| | | | - Marta Truffi
- Istituti Clinici Scientifici Maugeri IRCCS, Pavia, 27100, Italy
| | - Arianna Bonizzi
- Istituti Clinici Scientifici Maugeri IRCCS, Pavia, 27100, Italy
| | - Leopoldo Sitia
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, Milan, 20157, Italy
| | - Claudia Pigliacelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, 20131, Italy
| | - Carlo Morasso
- Istituti Clinici Scientifici Maugeri IRCCS, Pavia, 27100, Italy
| | | | - Fabio Corsi
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, Milan, 20157, Italy.
- Istituti Clinici Scientifici Maugeri IRCCS, Pavia, 27100, Italy.
| | - Serena Mazzucchelli
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, Milan, 20157, Italy.
| |
Collapse
|
7
|
Baskar G, Palaniyandi T, Viswanathan S, Wahab MRA, Surendran H, Ravi M, Sivaji A, Rajendran BK, Natarajan S, Govindasamy G. Recent and advanced therapy for oral cancer. Biotechnol Bioeng 2023; 120:3105-3115. [PMID: 37243814 DOI: 10.1002/bit.28452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Oral cancer is a common and deadly kind of tissue invasion, has a high death rate, and may induce metastasis that mostly affects adults over the age of 40. Most in vitro traditional methods for studying cancer have included the use of monolayer cell cultures and several animal models. There is a worldwide effort underway to reduce the excessive use of laboratory animals since, although being physiologically adequate, animal models rarely succeed in exactly mimicking human models. 3D culture models have gained great attention in the area of biomedicine because of their capacity to replicate parent tissue. There are many benefits to using a drug delivery approach based on nanoparticles in cancer treatment. Because of this, in vitro test methodologies are crucial for evaluating the efficacy of prospective novel nanoparticle drug delivery systems. This review discusses current advances in the utility of 3D cell culture models including multicellular spheroids, patient-derived explant cultures, organoids, xenografts, 3D bioprinting, and organoid-on-a-chip models. Aspects of nanoparticle-based drug discovery that have utilized 2D and 3D cultures for a better understanding of genes implicated in oral cancers are also included in this review.
Collapse
Affiliation(s)
- Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
- Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - Mugip Rahaman Abdul Wahab
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| | | | - Sudhakar Natarajan
- Department of HIV/AIDS, ICMR - National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Gopu Govindasamy
- Department of Surgical Oncology, Rajiv Gandhi Government General Hospital and Madras Medical College, Chennai, India
| |
Collapse
|
8
|
Li LR, Song JL, Liu HQ, Chen C. Metabolic syndrome and thyroid Cancer: risk, prognosis, and mechanism. Discov Oncol 2023; 14:23. [PMID: 36811728 PMCID: PMC9947216 DOI: 10.1007/s12672-022-00599-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/01/2022] [Indexed: 02/24/2023] Open
Abstract
The increasing incidence of thyroid cancer (TC) cannot be fully explained by overdiagnosis. Metabolic syndrome (Met S) is highly prevalent due to the modern lifestyle, which can lead to the development of tumors. This review expounds on the relationship between Met S and TC risk, prognosis and its possible biological mechanism. Met S and its components were associated with an increased risk and aggressiveness of TC, and there were gender differences in most studies. Abnormal metabolism places the body in a state of chronic inflammation for a long time, and thyroid-stimulating hormones may initiate tumorigenesis. Insulin resistance has a central role assisted by adipokines, angiotensin II, and estrogen. Together, these factors contribute to the progression of TC. Therefore, direct predictors of metabolic disorders (e.g., central obesity, insulin resistance and apolipoprotein levels) are expected to become new markers for diagnosis and prognosis. cAMP, insulin-like growth factor axis, angiotensin II, and AMPK-related signaling pathways could provide new targets for TC treatment.
Collapse
Affiliation(s)
- Ling-Rui Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jieang Road, Wuchang District, Wuhan, 430060, Hubei, PR China
| | - Jun-Long Song
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jieang Road, Wuchang District, Wuhan, 430060, Hubei, PR China
| | - Han-Qing Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jieang Road, Wuchang District, Wuhan, 430060, Hubei, PR China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jieang Road, Wuchang District, Wuhan, 430060, Hubei, PR China.
| |
Collapse
|
9
|
Lewis SM, Callaway MK, dos Santos CO. Clinical applications of 3D normal and breast cancer organoids: A review of concepts and methods. Exp Biol Med (Maywood) 2022; 247:2176-2183. [PMID: 36408534 PMCID: PMC9899987 DOI: 10.1177/15353702221131877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
While mouse models and two-dimensional (2D) cell culture systems have dominated as research tools for cancer biology, three-dimensional (3D) cultures have gained traction as a new approach that retains features of in vivo biology within an in vitro system. Over time, 3D culture systems have evolved from spheroids and tumorspheres to organoids, and by doing so, they have become more complex and representative of original tissue. Such technological improvements have mostly benefited the study of heterogeneous solid tumors, like those found in breast cancer (BC), by providing an attractive avenue for scalable drug testing and biobank generation. Experimentally, organoids have been used in the BC field to dissect mechanisms related to cellular invasion and metastasis-and through co-culture methods-epithelial interactions with stromal and immune cells. In addition, organoid studies of wild-type mouse models and healthy donor samples have provided insight into the basic developmental cellular and molecular biology of the mammary gland, which may inform one's understanding of the initial stages of cancer development and progression.
Collapse
Affiliation(s)
- Steven M Lewis
- Cold Spring Harbor Laboratory, Cold
Spring Harbor, NY 11724, USA,Graduate Program in Genetics, Stony
Brook University, Stony Brook, NY 11794, USA
| | | | - Camila O dos Santos
- Cold Spring Harbor Laboratory, Cold
Spring Harbor, NY 11724, USA,Camila O dos Santos.
| |
Collapse
|
10
|
Characterization of Mitochondrial Alterations in Aicardi-Goutières Patients Mutated in RNASEH2A and RNASEH2B Genes. Int J Mol Sci 2022; 23:ijms232214482. [PMID: 36430958 PMCID: PMC9692803 DOI: 10.3390/ijms232214482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Aicardi-Goutières syndrome (AGS) is a rare encephalopathy characterized by neurological and immunological features. Mitochondrial dysfunctions may lead to mitochondrial DNA (mtDNA) release and consequent immune system activation. We investigated the role of mitochondria and mtDNA in AGS pathogenesis by studying patients mutated in RNASEH2B and RNASEH2A genes. Lymphoblastoid cell lines (LCLs) from RNASEH2A- and RNASEH2B-mutated patients and healthy control were used. Transmission Electron Microscopy (TEM) and flow cytometry were used to assess morphological alterations, reactive oxygen species (ROS) production and mitochondrial membrane potential variations. Seahorse Analyzer was used to investigate metabolic alterations, and mtDNA oxidation and VDAC1 oligomerization were assessed by immunofluorescence. Western blot and RT-qPCR were used to quantify mtTFA protein and mtDNA release. Morphological alterations of mitochondria were observed in both mutated LCLs, and loss of physiological membrane potential was mainly identified in RNASEH2A LCLs. ROS production and 8-oxoGuanine levels were increased in RNASEH2B LCLs. Additionally, the VDAC1 signal was increased, suggesting a mitochondrial pore formation possibly determining mtDNA release. Indeed, higher cytoplasmic mtDNA levels were found in RNASEH2B LCLs. Metabolic alterations confirmed mitochondrial damage in both LCLs. Data highlighted mitochondrial alterations in AGS patients' LCLs suggesting a pivotal role in AGS pathogenesis.
Collapse
|
11
|
Moya-Garcia CR, Okuyama H, Sadeghi N, Li J, Tabrizian M, Li-Jessen NYK. In vitro models for head and neck cancer: Current status and future perspective. Front Oncol 2022; 12:960340. [PMID: 35992863 PMCID: PMC9381731 DOI: 10.3389/fonc.2022.960340] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/29/2022] [Indexed: 12/12/2022] Open
Abstract
The 5-year overall survival rate remains approximately 50% for head and neck (H&N) cancer patients, even though new cancer drugs have been approved for clinical use since 2016. Cancer drug studies are now moving toward the use of three-dimensional culture models for better emulating the unique tumor microenvironment (TME) and better predicting in vivo response to cancer treatments. Distinctive TME features, such as tumor geometry, heterogenous cellularity, and hypoxic cues, notably affect tissue aggressiveness and drug resistance. However, these features have not been fully incorporated into in vitro H&N cancer models. This review paper aims to provide a scholarly assessment of the designs, contributions, and limitations of in vitro models in H&N cancer drug research. We first review the TME features of H&N cancer that are most relevant to in vitro drug evaluation. We then evaluate a selection of advanced culture models, namely, spheroids, organotypic models, and microfluidic chips, in their applications for H&N cancer drug research. Lastly, we propose future opportunities of in vitro H&N cancer research in the prospects of high-throughput drug screening and patient-specific drug evaluation.
Collapse
Affiliation(s)
| | - Hideaki Okuyama
- School of Communication Sciences and Disorders, McGill University, Montreal, QC, Canada
- Department of Otolaryngology – Head & Neck Surgery, Kyoto University, Kyoto, Japan
| | - Nader Sadeghi
- Department of Otolaryngology – Head and Neck Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Jianyu Li
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- Department of Mechanical Engineering, McGill University, Montreal, QC, Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- *Correspondence: Maryam Tabrizian, ; Nicole Y. K. Li-Jessen,
| | - Nicole Y. K. Li-Jessen
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- School of Communication Sciences and Disorders, McGill University, Montreal, QC, Canada
- Department of Otolaryngology – Head and Neck Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Center, McGill University, Montreal, QC, Canada
- *Correspondence: Maryam Tabrizian, ; Nicole Y. K. Li-Jessen,
| |
Collapse
|
12
|
Cheng GJ, Leung EY, Singleton DC. In vitro breast cancer models for studying mechanisms of resistance to endocrine therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:297-320. [PMID: 36045910 PMCID: PMC9400723 DOI: 10.37349/etat.2022.00084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/24/2022] [Indexed: 11/19/2022] Open
Abstract
The development of endocrine resistance is a common reason for the failure of endocrine therapies in hormone receptor-positive breast cancer. This review provides an overview of the different types of in vitro models that have been developed as tools for studying endocrine resistance. In vitro models include cell lines that have been rendered endocrine-resistant by ex vivo treatment; cell lines with de novo resistance mechanisms, including genetic alterations; three-dimensional (3D) spheroid, co-culture, and mammosphere techniques; and patient-derived organoid models. In each case, the key discoveries, different analysis strategies that are suitable, and strengths and weaknesses are discussed. Certain recently developed methodologies that can be used to further characterize the biological changes involved in endocrine resistance are then emphasized, along with a commentary on the types of research outcomes that using these techniques can support. Finally, a discussion anticipates how these recent developments will shape future trends in the field. We hope this overview will serve as a useful resource for investigators that are interested in understanding and testing hypotheses related to mechanisms of endocrine therapy resistance.
Collapse
Affiliation(s)
- Gary J. Cheng
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Euphemia Y. Leung
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1023, New Zealand
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1023, New Zealand
| | - Dean C. Singleton
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1023, New Zealand
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
13
|
Green Synthesis of Gold Nanoparticles Using Plant Extracts as Beneficial Prospect for Cancer Theranostics. Molecules 2021; 26:molecules26216389. [PMID: 34770796 PMCID: PMC8586976 DOI: 10.3390/molecules26216389] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Gold nanoparticles (AuNPs) have been widely explored and are well-known for their medical applications. Chemical and physical synthesis methods are a way to make AuNPs. In any case, the hunt for other more ecologically friendly and cost-effective large-scale technologies, such as environmentally friendly biological processes known as green synthesis, has been gaining interest by worldwide researchers. The international focus on green nanotechnology research has resulted in various nanomaterials being used in environmentally and physiologically acceptable applications. Several advantages over conventional physical and chemical synthesis (simple, one-step approach to synthesize, cost-effectiveness, energy efficiency, and biocompatibility) have drawn scientists’ attention to exploring the green synthesis of AuNPs by exploiting plants’ secondary metabolites. Biogenic approaches, mainly the plant-based synthesis of metal nanoparticles, have been chosen as the ideal strategy due to their environmental and in vivo safety, as well as their ease of synthesis. In this review, we reviewed the use of green synthesized AuNPs in the treatment of cancer by utilizing phytochemicals found in plant extracts. This article reviews plant-based methods for producing AuNPs, characterization methods of synthesized AuNPs, and discusses their physiochemical properties. This study also discusses recent breakthroughs and achievements in using green synthesized AuNPs in cancer treatment and different mechanisms of action, such as reactive oxygen species (ROS), mediated mitochondrial dysfunction and caspase activation, leading to apoptosis, etc., for their anticancer and cytotoxic effects. Understanding the mechanisms underlying AuNPs therapeutic efficacy will aid in developing personalized medicines and treatments for cancer as a potential cancer therapeutic strategy.
Collapse
|