1
|
Han X, Ren Y, Zhang X, Zhu D, Meng Z, Zhang Q, Chen B, Zhou P, Wei Z, Cao Y, Xu X, Zhang Z, Zou H. HMGB1 induces unexplained recurrent spontaneous abortion by mediating decidual macrophage autophagy. Int Immunopharmacol 2025; 147:113999. [PMID: 39787761 DOI: 10.1016/j.intimp.2024.113999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/04/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND The overexpression of HMGB1 at the maternal-fetal interface (MFI) is recognized as a significant factor in Unexplained Recurrent Spontaneous Abortion (URSA). This study aimed to investigate autophagy in the decidual tissues of URSA patients and to explore the relationship between HMGB1 and macrophage autophagy at the MFI in URSA. METHODS Human decidual tissues were collected from 40 patients diagnosed with URSA and from 60 women undergoing active termination of pregnancy. Mouse models of pregnancy loss URSA and in vitro cellular models were created and then subjected to treatment with an HMGB1 inhibitor (aspirin) and an anti-HMGB1 antibody, respectively. Autophagy at the MFI was evaluated using western blot analysis, immunofluorescence assays, and transmission electron microscopy (TEM). RESULTS This study revealed a high expression of LC3B and a low expression of P62 in the decidual tissue of the URSA group. These findings were further corroborated through TEM. The localization of autophagy within macrophages indicated a significant enhancement of autophagy in the decidual macrophages of the URSA group. However, treatment with low-dose aspirin resulted in a reversal of protein expression and a reduction in autophagy. In in vitro experiments, recombinant HMGB1 was found to mediate autophagy of immortalized bone marrow-derived macrophages, which could be inhibited by an anti-HMGB1 antibody. CONCLUSION This study first indicates that elevated levels of HMGB1 at the MFI trigger autophagy in macrophages, thereby promoting aseptic inflammation and contributing to the onset and progression of URSA. Furthermore, low-dose aspirin has been demonstrated to protect against URSA by inhibiting HMGB1, which in turn suppresses autophagy production.
Collapse
Affiliation(s)
- Xingxing Han
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yu Ren
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xueke Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Damin Zhu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zihan Meng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Qiqi Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Beili Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ping Zhou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiaofeng Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Zhiguo Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei 230032, Anhui, China; Innovation Research Institute of Engineering Medicine and Medical Equipment, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Huijuan Zou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei 230032, Anhui, China; Innovation Research Institute of Engineering Medicine and Medical Equipment, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
2
|
Singharajkomron N, Seephan S, Iksen I, Chantaravisoot N, Wongkongkathep P, Hayakawa Y, Pongrakhananon V. CAMSAP3-mediated regulation of HMGB1 acetylation and subcellular localization in lung cancer cells: Implications for cell death modulation. Biochim Biophys Acta Gen Subj 2024; 1868:130614. [PMID: 38598971 DOI: 10.1016/j.bbagen.2024.130614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Deregulation of cell death is a common characteristic of cancer, and resistance to this process often occurs in lung cancer. Understanding the molecular mechanisms underlying an aberrant cell death is important. Recent studies have emphasized the involvement of calmodulin-regulated spectrin-associated protein 3 (CAMSAP3) in lung cancer aggressiveness, its influence on cell death regulation remains largely unexplored. METHODS CAMSAP3 was knockout in lung cancer cells using CRISPR-Cas9 system. Cell death and autophagy were evaluated using MTT and autophagic detection assays. Protein interactions were performed by proteomic analysis and immunoprecipitation. Protein expressions and their cytoplasmic localization were analyzed through immunoblotting and immunofluorescence techniques. RESULTS This study reveals a significant correlation between low CAMSAP3 expression and poor overall survival rates in lung cancer patients. Proteomic analysis identified high mobility group box 1 (HMGB1) as a candidate interacting protein involved in the regulation of cell death. Treatment with trichostatin A (TSA), an inhibitor of histone deacetylases (HDACs) resulted in increased HMGB1 acetylation and its translocation to the cytoplasm and secretion, thereby inducing autophagic cell death. However, this process was diminished in CAMSAP3 knockout lung cancer cells. Mechanistically, immunoprecipitation indicated an interaction between CAMSAP3 and HMGB1, particularly with its acetylated form, in which this complex was elevated in the presence of TSA. CONCLUSIONS CAMSAP3 is prerequisite for TSA-mediated autophagic cell death by interacting with cytoplasmic acetylated HMGB1 and enhancing its release. SIGNIFICANT This finding provides molecular insights into the role of CAMSAP3 in regulating cell death, highlighting its potential as a therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Natsaranyatron Singharajkomron
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suthasinee Seephan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Iksen Iksen
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmacy, Sekolah Tinggi Ilum Kesehatan Senior Medan, Medan 20141, Indonesia
| | - Naphat Chantaravisoot
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piriya Wongkongkathep
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yoshihiro Hayakawa
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
3
|
Tian Z, Zhu L, Xie Y, Hu H, Ren Q, Liu J, Wang Q. The mechanism of high mobility group box-1 protein and its bidirectional regulation in tumors. BIOMOLECULES & BIOMEDICINE 2024; 24:477-485. [PMID: 37897664 PMCID: PMC11088895 DOI: 10.17305/bb.2023.9760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/01/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
High-mobility group box-1 protein (HMGB1) is a nonhistone chromatin-related protein widely found in eukaryotic cells. It is involved in the transcription, replication, and repair of DNA to maintain nuclear homeostasis. It participates in cell growth, differentiation, and signal transduction. Recent studies showed that HMGB1 has a bidirectional regulatory effect on tumors by regulating TLR4/MYD88/NF-κB and RAGE/AMPK/mTOR signaling pathways. On the one hand, it is highly expressed in a variety of tumors, promoting tumor proliferation and invasion, while on the other hand, it induces autophagy and apoptosis of tumor cells and stimulates tumor-infiltrating lymphocytes to produce an anti-tumor immune response. At present, HMGB1 could be used as a target to regulate the drug resistance and prognostication in cancer. Clinical applications of HMGB1 in cancer need further in-depth studies.
Collapse
Affiliation(s)
- Zhongjia Tian
- The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Lin Zhu
- The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Yutong Xie
- The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Huan Hu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Qunli Ren
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Jianguo Liu
- The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Qian Wang
- The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
Patra S, Roy PK, Dey A, Mandal M. Impact of HMGB1 on cancer development and therapeutic insights focused on CNS malignancy. Biochim Biophys Acta Rev Cancer 2024; 1879:189105. [PMID: 38701938 DOI: 10.1016/j.bbcan.2024.189105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
The present study explores the complex roles of High Mobility Group Box 1 (HMGB1) in the context of cancer development, emphasizing glioblastoma (GBM) and other central nervous system (CNS) cancers. HMGB1, primarily known for its involvement in inflammation and angiogenesis, emerges as a multifaceted player in the tumorigenesis of GBM. The overexpression of HMGB1 correlates with glioma malignancy, influencing key pathways like RAGE/MEK/ERK and RAGE/Rac1. Additionally, HMGB1 secretion is linked to the maintenance of glioma stem cells (GSCs) and contributes to the tumor microenvironment's (TME) vascular leakiness. Henceforth, our review discusses the bidirectional impact of HMGB1, acting as both a promoter of tumor progression and a mediator of anti-tumor immune responses. Notably, HMGB1 exhibits tumor-suppressive roles by inducing apoptosis, limiting cellular proliferation, and enhancing the sensitivity of GBM to therapeutic interventions. This dualistic nature of HMGB1 calls for a nuanced understanding of its implications in GBM pathogenesis, offering potential avenues for more effective and personalized treatment strategies. The findings underscore the need to explore HMGB1 as a prognostic marker, therapeutic target, and a promising tool for stimulating anti-tumor immunity in GBM.
Collapse
Affiliation(s)
- Sucharita Patra
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India.
| | - Pritam Kumar Roy
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India.
| | - Ankita Dey
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India.
| | - Mahitosh Mandal
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India.
| |
Collapse
|
5
|
Wang T, He M, Zhang X, Guo Z, Wang P, Long F. Deciphering the impact of circRNA-mediated autophagy on tumor therapeutic resistance: a novel perspective. Cell Mol Biol Lett 2024; 29:60. [PMID: 38671354 PMCID: PMC11046940 DOI: 10.1186/s11658-024-00571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer therapeutic resistance remains a significant challenge in the pursuit of effective treatment strategies. Circular RNAs (circRNAs), a class of non-coding RNAs, have recently emerged as key regulators of various biological processes, including cancer progression and drug resistance. This review highlights the emerging role of circRNAs-mediated autophagy in cancer therapeutic resistance, a cellular process that plays a dual role in cancer by promoting both cell survival and death. Increasing evidence suggests that circRNAs can modulate autophagy pathways, thereby influencing the response of cancer cells to therapeutic agents. In this context, the intricate interplay between circRNAs, autophagy, and therapeutic resistance is explored. Various mechanisms are discussed through which circRNAs can impact autophagy, including direct interactions with autophagy-related genes, modulation of signaling pathways, and cross-talk with other non-coding RNAs. Furthermore, the review delves into specific examples of how circRNA-mediated autophagy regulation can contribute to resistance against chemotherapy and radiotherapy. Understanding these intricate molecular interactions provides valuable insights into potential strategies for overcoming therapeutic resistance in cancer. Exploiting circRNAs as therapeutic targets or utilizing them as diagnostic and predictive biomarkers opens new avenues for developing personalized treatment approaches. In summary, this review underscores the importance of circRNA-mediated autophagy in cancer therapeutic resistance and proposes future directions for research in this exciting and rapidly evolving field.
Collapse
Affiliation(s)
- Ting Wang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Mengjie He
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610041, China
| | - Xudong Zhang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Zhixun Guo
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610041, China.
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610041, China.
| |
Collapse
|
6
|
Sverchinsky DV, Alhasan BA, Mikeladze MA, Lazarev VF, Kuznetcova LS, Morshneva AV, Nikotina AD, Ziewanah A, Koludarova LV, Starkova TY, Margulis BA, Guzhova IV. Autocrine regulation of tumor cell repopulation by Hsp70-HMGB1 alarmin complex. J Exp Clin Cancer Res 2023; 42:279. [PMID: 37880798 PMCID: PMC10598926 DOI: 10.1186/s13046-023-02857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Cancer recurrence is regulated by a variety of factors, among which is the material of dying tumor cells; it is suggested that remaining after anti-cancer therapy tumor cells receive a signal from proteins called damage-associated molecular patterns (DAMPs), one of which is heat shock protein 70 (Hsp70). METHODS Two models of tumor repopulation were employed, based on minimal population of cancer cells and application of conditioned medium (CM). To deplete the CMs of Hsp70 affinity chromatography on ATP-agarose and immunoprecipitation were used. Cell proliferation and the dynamics of cell growth were measured using MTT assay and xCELLigence technology; cell growth markers were estimated using qPCR and with the aid of ELISA for prostaglandin E detection. Immunoprecipitation followed by mass-spectrometry was employed to identify Hsp70-binding proteins and protein-protein interaction assays were developed to reveal the above protein complexes. RESULTS It was found that CM of dying tumor cells contains tumor regrowth-initiating factors and the removal of one of them, Hsp70, caused a reduction in the relapse-activating capacity. The pull out of Hsp70 alone using ATP-agarose had no effect on repopulation, while the immunodepletion of Hsp70 dramatically reduced its repopulation activity. Using proteomic and immunochemical approaches, we showed that Hsp70 in conditioned medium binds and binds another abundant alarmin, the High Mobility Group B1 (HMGB1) protein; the complex is formed in tumor cells treated with anti-cancer drugs, persists in the cytosol and is further released from dying tumor cells. Recurrence-activating power of Hsp70-HMGB1 complex was proved by the enhanced expression of proliferation markers, Ki67, Aurka and MCM-10 as well as by increase of prostaglandin E production and autophagy activation. Accordingly, dissociating the complex with Hsp70 chaperone inhibitors significantly inhibited the pro-growth effects of the above complex, in both in vitro and in vivo tumor relapse models. CONCLUSIONS These data led us to suggest that the abundance of the Hsp70-HMGB1 complex in the extracellular matrix may serve as a novel marker of relapse state in cancer patients, while specific targeting of the complex may be promising in the treatment of cancers with a high risk of recurrence.
Collapse
Affiliation(s)
- Dmitry V Sverchinsky
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Bashar A Alhasan
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Marina A Mikeladze
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Vladimir F Lazarev
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Liubov S Kuznetcova
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Alisa V Morshneva
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Alina D Nikotina
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Amr Ziewanah
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
- University of Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663, Kaiserslautern, Germany
| | - Lidia V Koludarova
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5, Biocenter 2, Helsinki, 00790, Finland
| | - Tatiana Y Starkova
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Boris A Margulis
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia
| | - Irina V Guzhova
- Department of Molecular and Cellular Interaction, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russia.
| |
Collapse
|
7
|
Dai X, Hou Y, Deng T, Lin G, Cao Y, Yu G, Wei W, Zheng Q, Huang L, Ma S. A specific RAGE-binding peptide inhibits triple negative breast cancer growth through blocking of Erk1/2/NF-κB pathway. Eur J Pharmacol 2023; 954:175861. [PMID: 37380046 DOI: 10.1016/j.ejphar.2023.175861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive cancer that poses a significant threat to women's health. Unfortunately, the lack of clinical targets leads the poor clinical outcomes in TNBC. Many cancers demonstrate overexpression of receptor for advanced glycation end products (RAGE), which can contribute to cancer progression. Despite the potential therapeutic value of blocking RAGE for TNBC treatment, effective peptide drugs have yet to be developed. In our study, we observed that RAGE was highly expressed in TNBC and was associated with poor disease progression. We subsequently investigated the antitumor effects and underlying mechanisms of the RAGE antagonist peptide RP7 in both in vitro and in vivo models of TNBC. Our study revealed that RP7 selectively binds to RAGE-overexpressing TNBC cell lines, including MDA-MB-231 and BT549, and significantly inhibits cell viability, migration, and invasion in both cell lines. Furthermore, RP7-treatment suppressed tumor growth in TNBC xenograft mouse models without inducing detectable toxicity in normal tissues. Mechanistically, RP7 was found to inhibit the phosphorylation of ERK1/2, IKKα/β, IKBα, and p65 to block the NF-κB pathway, prevent the entry of p65 into the nucleus, decrease the protein expression of Bcl-2 and HMGB1, and promote the release of cytochrome C from the mitochondria into the cytoplasm. These effects were observed to activate apoptosis and inhibit epithelial-mesenchymal transition (EMT) in TNBC cells. This study highlights RAGE as a candidate therapeutic target for TNBC treatment and suggests that the RAGE antagonist peptide RP7 is a promising anticancer drug for TNBC.
Collapse
Affiliation(s)
- Xiaoyong Dai
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Yibo Hou
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Ting Deng
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Gaoyang Lin
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Yuanxiong Cao
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Guiyuan Yu
- Shenzhen Maternal and Child Health Hospital Affiliated to Southern Medical University, Shenzhen, Guangdong, China
| | - Wei Wei
- The Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Qing Zheng
- College of Pharmacy, Jinan University, 510632 Guangzhou, Guangdong, People's Republic of China
| | - Laiqiang Huang
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.
| | - Shaohua Ma
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
8
|
Geduk¹ A, Oztas B, Eryılmaz BH, Demirsoy ET, Menguc MU, Unal S, Mersin S, Polat MG, Aygun K, Yenihayat EM, Albayrak H, Erol HA, Balcı S, Mehtap¹ O, Tarkun¹ P, Hacihanefioglu¹ A. Effects of AGEs, sRAGE and HMGB1 on Clinical Outcomes in Multiple Myeloma. Indian J Hematol Blood Transfus 2023; 39:220-227. [PMID: 37006982 PMCID: PMC10064350 DOI: 10.1007/s12288-022-01574-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/31/2022] [Indexed: 11/07/2022] Open
Abstract
Purpose The receptor for advanced glycation end products (RAGE) upregulated during the onset and progression of cancer and bone-related pathologies. In this study, we aimed to investigate the role of serum advanced glycation end products (AGEs), soluble RAGE (sRAGE) and high mobility group box 1 (HMGB1), in multiple myeloma (MM). Methods AGEs, sRAGE and HMGB1 concentrations of 54 newly diagnosed MM patients and 30 healthy volunteers were measured by ELISA. The estimations were done only once at diagnosis. The medical records of the patients were evaluated. Results There was no significant difference between the AGEs and sRAGE levels between the patient and control groups (p = 0.273, p = 0.313). In ROC analysis, a HMGB1 cutoff value of > 9170 pg/ml accurately discriminated MM patients (AUC = 0.672, 95% CI 0.561-0.77, p = 0.0034). AGEs level was found to be significantly higher in early-stage disease and HMGB1 in advanced disease (p = 0.022, p = 0.026). High HMGB1 levels were detected in patients whose with better first-line treatment response (p = 0.019). At 36 months, 54% of patients with low AGE were alive, compared to 79% of patients with high AGE (p = 0.055). Patients with high HMGB1 levels tended to have a longer PFS (median 43 mo [95% CI; 20.68-65.31] ) compared to patients with low HMGB1 levels (median 25 mo [95% CI; 12.39-37.6], p = 0.054). Conclusion In this study, a significant elevation of serum HMGB1 level was found in MM patients. In addition, the positive effects of RAGE ligands on treatment response and prognosis were determined.
Collapse
Affiliation(s)
- Ayfer Geduk¹
- Department of Hematology, Medical Faculty, Kocaeli University, 11.km, 41380 Umuttepe, Kocaeli, Turkey
| | - Berrin Oztas
- Department of Biochemistry, Medical Faculty, Kocaeli University, Kocaeli, Turkey
| | - Baldan Huri Eryılmaz
- Department of İnternal Medicine, Medical Faculty, Kocaeli University, Kocaeli, Turkey
| | - Esra Terzi Demirsoy
- Department of Hematology, Derince Training and Research Hospital, Health Sciences University, Kocaeli, Turkey
| | - Meral U. Menguc
- Department of Hematology, Medical Faculty, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Serkan Unal
- Department of Hematology, Kastamonu Training and Research Hospital, Kastamonu, Turkey
| | - Sinan Mersin
- Department of Hematology, Medical Faculty, Kocaeli University, 11.km, 41380 Umuttepe, Kocaeli, Turkey
| | - Merve Gokcen Polat
- Department of Hematology, Medical Faculty, Kocaeli University, 11.km, 41380 Umuttepe, Kocaeli, Turkey
| | - Kemal Aygun
- Department of Hematology, Medical Faculty, Kocaeli University, 11.km, 41380 Umuttepe, Kocaeli, Turkey
| | - Emel Merve Yenihayat
- Department of Hematology, Medical Faculty, Kocaeli University, 11.km, 41380 Umuttepe, Kocaeli, Turkey
| | - Hayrunnisa Albayrak
- Department of Hematology, Medical Faculty, Kocaeli University, 11.km, 41380 Umuttepe, Kocaeli, Turkey
| | - Hasim Atakan Erol
- Department of Hematology, Medical Faculty, Kocaeli University, 11.km, 41380 Umuttepe, Kocaeli, Turkey
| | - Sibel Balcı
- Department of Biostatistics and Medical Informatics, Medical Faculty, Kocaeli University, Kocaeli, Turkey
| | - Ozgur Mehtap¹
- Department of Hematology, Medical Faculty, Kocaeli University, 11.km, 41380 Umuttepe, Kocaeli, Turkey
| | - Pinar Tarkun¹
- Department of Hematology, Medical Faculty, Kocaeli University, 11.km, 41380 Umuttepe, Kocaeli, Turkey
| | - Abdullah Hacihanefioglu¹
- Department of Hematology, Medical Faculty, Kocaeli University, 11.km, 41380 Umuttepe, Kocaeli, Turkey
| |
Collapse
|
9
|
RAGE antagonism with azeliragon improves xenograft rejection by T cells in humanized mice. Clin Immunol 2022; 245:109165. [DOI: 10.1016/j.clim.2022.109165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/21/2022]
|
10
|
Singh H, Agrawal DK. Therapeutic Potential of Targeting the HMGB1/RAGE Axis in Inflammatory Diseases. Molecules 2022; 27:7311. [PMID: 36364135 PMCID: PMC9658169 DOI: 10.3390/molecules27217311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 10/18/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a nuclear protein that can interact with a receptor for advanced glycation end-products (RAGE; a multi-ligand immunoglobulin receptor) and mediates the inflammatory pathways that lead to various pathological conditions, such as cancer, diabetes, neurodegenerative disorders, and cardiovascular diseases. Blocking the HMGB1/RAGE axis could be an effective therapeutic approach to treat these inflammatory conditions, which has been successfully employed by various research groups recently. In this article, we critically review the structural insights and functional mechanism of HMGB1 and RAGE to mediate inflammatory processes. More importantly, current perspectives of recent therapeutic approaches utilized to inhibit the communication between HMGB1 and RAGE using small molecules are also summarized along with their clinical progression to treat various inflammatory disorders. Encouraging results are reported by investigators focusing on HMGB1/RAGE signaling leading to the identification of compounds that could be useful in further clinical studies. We highlight the current gaps in our knowledge and future directions for the therapeutic potential of targeting key molecules in HMGB1/RAGE signaling in the pathophysiology of inflammatory diseases.
Collapse
Affiliation(s)
| | - Devendra K. Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
11
|
Taggi V, Riera Romo M, Piquette-Miller M, Meyer zu Schwabedissen HE, Neuhoff S. Transporter Regulation in Critical Protective Barriers: Focus on Brain and Placenta. Pharmaceutics 2022; 14:pharmaceutics14071376. [PMID: 35890272 PMCID: PMC9319476 DOI: 10.3390/pharmaceutics14071376] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 01/06/2023] Open
Abstract
Drug transporters play an important role in the maintenance of chemical balance and homeostasis in different tissues. In addition to their physiological functions, they are crucial for the absorption, distribution, and elimination of many clinically important drugs, thereby impacting therapeutic efficacy and toxicity. Increasing evidence has demonstrated that infectious, metabolic, inflammatory, and neurodegenerative diseases alter the expression and function of drug transporters. However, the current knowledge on transporter regulation in critical protective barriers, such as the brain and placenta, is still limited and requires more research. For instance, while many studies have examined P-glycoprotein, it is evident that research on the regulation of highly expressed transporters in the blood–brain barrier and blood–placental barrier are lacking. The aim of this review is to summarize the currently available literature in order to better understand transporter regulation in these critical barriers.
Collapse
Affiliation(s)
- Valerio Taggi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (V.T.); (H.E.M.z.S.)
| | - Mario Riera Romo
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (M.R.R.); (M.P.-M.)
| | - Micheline Piquette-Miller
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (M.R.R.); (M.P.-M.)
| | | | - Sibylle Neuhoff
- Certara UK Ltd., Simcyp Division, Sheffield S1 2BJ, UK
- Correspondence:
| |
Collapse
|
12
|
Ismail N, Sharma A, Soong L, Walker DH. Review: Protective Immunity and Immunopathology of Ehrlichiosis. ZOONOSES (BURLINGTON, MASS.) 2022; 2:10.15212/zoonoses-2022-0009. [PMID: 35876763 PMCID: PMC9300479 DOI: 10.15212/zoonoses-2022-0009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Human monocytic ehrlichiosis, a tick transmitted infection, ranges in severity from apparently subclinical to a fatal toxic shock-like fatal disease. Models in immunocompetent mice range from an abortive infection to uniformly lethal depending on the infecting Ehrlichia species, dose of inoculum, and route of inoculation. Effective immunity is mediated by CD4+ T lymphocytes and gamma interferon. Lethal infection occurs with early overproduction of proinflammatory cytokines and overproduction of TNF alpha and IL-10 by CD8+ T lymphocytes. Furthermore, fatal ehrlichiosis is associated with signaling via TLR 9/MyD88 with upregulation of several inflammasome complexes and secretion of IL-1 beta, IL-1 alpha, and IL-18 by hepatic mononuclear cells, suggesting activation of canonical and noncanonical inflammasome pathways, a deleterious role for IL-18, and the protective role for caspase 1. Autophagy promotes ehrlichial infection, and MyD88 signaling hinders ehrlichial infection by inhibiting autophagy induction and flux. Activation of caspase 11 during infection of hepatocytes by the lethal ehrlichial species after interferon alpha receptor signaling results in the production of inflammasome-dependent IL-1 beta, extracellular secretion of HMGB1, and pyroptosis. The high level of HMGB1 in lethal ehrlichiosis suggests a role in toxic shock. Studies of primary bone marrow-derived macrophages infected by highly avirulent or mildly avirulent ehrlichiae reveal divergent M1 and M2 macrophage polarization that links with generation of pathogenic CD8 T cells, neutrophils, and excessive inflammation or with strong expansion of protective Th1 and NKT cells, resolution of inflammation and clearance of infection, respectively.
Collapse
Affiliation(s)
- Nahed Ismail
- Clinical Microbiology, Laboratory Medicine, University of Illinois at Chicago-College of Medicine, University of Illinois Hospitals & Health Science System, Chicago, IL
| | - Aditya Sharma
- Clinical Microbiology, Laboratory Medicine, University of Illinois at Chicago-College of Medicine, University of Illinois Hospitals & Health Science System, Chicago, IL
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
- Department of Pathology, Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX
| | - David H. Walker
- Department of Pathology, Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|