1
|
Zhang X, Luo B, Sun M, Gao D, Xu S. Research progress of DNA methylation in the diagnosis and treatment of thyroid carcinoma. Int Immunopharmacol 2025; 152:114426. [PMID: 40058105 DOI: 10.1016/j.intimp.2025.114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/07/2025] [Accepted: 03/03/2025] [Indexed: 03/24/2025]
Abstract
Thyroid cancer is the most prevalent endocrine malignancy, and its timely and accurate diagnostic and prognostic assessments are crucial for enhancing patient survival rates. As an important epigenetic modification, DNA methylation plays a key role in the regulation of gene expression and tumorigenesis. Recent studies increasingly indicate that abnormal DNA methylation patterns are closely associated with the onset and progression of thyroid cancer. This review discusses the role of DNA methylation in diagnosing thyroid adenocarcinoma, its impact on prognosis, and its potential utility in cancer immunotherapy. Additionally, it explores the prospect of using DNA methylation as a biomarker and highlights its significant potential in the personalized treatment of thyroid cancer. This article aims to serve as a resource for future research and clinical applications to advance the diagnosis and treatment of thyroid cancer.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Medical Laboratory Center, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui 230041, China
| | - Bing Luo
- Department of Medical Laboratory Center, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui 230041, China.
| | - Minjie Sun
- Department of Operating Room, Anhui No.2 Provincial People's Hospital, Hefei, Anhui 230041, China
| | - Deyu Gao
- Department of Laboratory Medicine, Hefei BOE Hospital, Hefei, Anhui 230011, China
| | - Sufang Xu
- Department of Medical Laboratory Center, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui 230041, China.
| |
Collapse
|
2
|
Wan Y, Li G, Cui G, Duan S, Chang S. Reprogramming of Thyroid Cancer Metabolism: from Mechanism to Therapeutic Strategy. Mol Cancer 2025; 24:74. [PMID: 40069775 PMCID: PMC11895238 DOI: 10.1186/s12943-025-02263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/06/2025] [Indexed: 03/15/2025] Open
Abstract
Thyroid cancer as one of the most prevalent malignancies of endocrine system, has raised public concern and more research on its mechanism and treatment. And metabolism-based therapies have advanced rapidly, for the exclusive metabolic profiling of thyroid cancer. In thyroid cancer cells, plenty of metabolic pathways are reprogrammed to accommodate tumor microenvironment. In this review, we initiatively summarize recent progress in the full-scale thyroid cancer metabolic rewiring and the interconnection of various metabolites. We also discuss the efficacy and prospect of metabolic targeted detection as well as therapy. Comprehending metabolic mechanism and characteristics of thyroid cancer roundly will be highly beneficial to managing individual patients.
Collapse
Affiliation(s)
- Yuxuan Wan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Guoqing Li
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Gaoyuan Cui
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Saili Duan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Thyroid Disease in Hunan Province, Changsha, 410008, Hunan, People's Republic of China.
- Hunan Provincial Engineering Research Center for Thyroid and Related Diseases Treatment Technology, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
3
|
Tiucă RA, Pop RM, Tiucă OM, Bănescu C, Cârstea AC, Preda C, Pașcanu IM. NOS3 Gene Polymorphisms (rs2070744 and rs1799983) and Differentiated Thyroid Cancer: Investigating Associations with Clinical Outcomes. Int J Mol Sci 2025; 26:759. [PMID: 39859471 PMCID: PMC11765836 DOI: 10.3390/ijms26020759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/12/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Differentiated thyroid cancer (DTC) is the most common endocrine malignancy, with genetic factors playing an important role in its development and progression. This study investigated the association between nitric oxide synthase 3 (NOS3) gene polymorphisms (-786T>C or rs2070744 and Glu298Asp or c.894T>G or rs1799983) and the clinical characteristics and outcomes of DTC, aiming to evaluate their potential as biomarkers for prognosis. A case-control study was conducted, enrolling 172 individuals from the Endocrinology Clinics of Târgu Mureș and Iași, Romania, between 2021 and 2023. This study included 88 patients with DTC and 84 healthy controls, matched for age and sex. DNA was extracted from blood samples, and the NOS3 polymorphisms were genotyped using TaqMan assays. Statistical analysis included chi-square tests with a significance level set at p < 0.05. The distribution of the rs2070744 and rs1799983 polymorphisms showed no significant differences between the patients with DTC and healthy controls (p = 0.387 and p = 0.329, respectively). Furthermore, no significant associations were found between these polymorphisms and key clinical outcomes such as biochemical control, structural control, or loco-regional metastases. Our findings indicate that NOS3 rs2070744 and rs1799983 gene polymorphisms do not significantly influence the clinical outcomes of DTC, suggesting their limited utility as biomarkers for DTC prognosis.
Collapse
Affiliation(s)
- Robert Aurelian Tiucă
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Department of Endocrinology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Compartment of Endocrinology, Mures County Clinical Hospital, 540139 Targu Mures, Romania
| | - Raluca Monica Pop
- Department of Endocrinology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Compartment of Endocrinology, Mures County Clinical Hospital, 540139 Targu Mures, Romania
| | - Oana Mirela Tiucă
- Department of Dermatology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Dermatology Clinic, Mures County Clinical Hospital, 540015 Targu Mures, Romania
| | - Claudia Bănescu
- Department of Medical Genetics, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Medical Genetics Laboratory, Emergency County Hospital of Targu Mures, 540136 Targu Mures, Romania
| | - Ana Claudia Cârstea
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Cristina Preda
- Department of Endocrinology, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Department of Endocrinology, ‘Sf. Spiridon’ County Hospital, 700111 Iasi, Romania
| | - Ionela Maria Pașcanu
- Department of Endocrinology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Compartment of Endocrinology, Mures County Clinical Hospital, 540139 Targu Mures, Romania
| |
Collapse
|
4
|
Sadr Z, Ghasemi M, Jafarpour S, Seyfi R, Ghasemi A, Boustanipour E, Khorshid HRK, Ehtesham N. Beginning at the ends: telomere and telomere-based cancer therapeutics. Mol Genet Genomics 2024; 300:1. [PMID: 39638969 DOI: 10.1007/s00438-024-02206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Telomeres, which are situated at the terminal ends of chromosomes, undergo a reduction in length with each cellular division, ultimately reaching a critical threshold that triggers cellular senescence. Cancer cells circumvent this senescence by utilizing telomere maintenance mechanisms (TMMs) that grant them a form of immortality. These mechanisms can be categorized into two primary processes: the reactivation of telomerase reverse transcriptase and the alternative lengthening of telomeres (ALT) pathway, which is dependent on homologous recombination (HR). Various strategies have been developed to inhibit telomerase activation in 85-95% of cancers, including the use of antisense oligonucleotides such as small interfering RNAs and endogenous microRNAs, agents that simulate telomere uncapping, expression modulators, immunotherapeutic vaccines targeting telomerase, reverse transcriptase inhibitors, stabilization of G-quadruplex structures, and gene therapy approaches. Conversely, in the remaining 5-15% of human cancers that rely on ALT, mechanisms involve modifications in the chromatin environment surrounding telomeres, upregulation of TERRA long non-coding RNA, enhanced activation of the ataxia telangiectasia and Rad-3-related protein kinase signaling pathway, increased interactions with nuclear receptors, telomere repositioning driven by HR, and recombination events between non-sister chromatids, all of which present potential targets for therapeutic intervention. Additionally, combinatorial therapy has emerged as a strategy that employs selective agents to simultaneously target both telomerase and ALT, aiming for optimal clinical outcomes. Given the critical role of anti-TMM strategies in cancer treatment, this review provides an overview of the latest insights into the structure and function of telomeres, their involvement in tumorigenesis, and the advancements in TMM-based cancer therapies.
Collapse
Affiliation(s)
- Zahra Sadr
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoumeh Ghasemi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Soheyla Jafarpour
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Seyfi
- Department of Stem Cells Technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Aida Ghasemi
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Boustanipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Naeim Ehtesham
- Department of Medical Genetics, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran.
| |
Collapse
|
5
|
Liu Y, Yuan M, Xu X, Yang H, Yao Y, Hou P, Yu W, Ji M. USP44 inactivation accelerates the progression of thyroid cancer by inducing ubiquitylation and degradation of p21. Int J Biol Sci 2024; 20:5223-5238. [PMID: 39430240 PMCID: PMC11489182 DOI: 10.7150/ijbs.99817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024] Open
Abstract
Ubiquitin-specific peptidase 44 (USP44) belongs to the ubiquitin-specific protease family and is pivotal in the development and progression of tumors across various human cancers. However, its biological function and the underlying mechanisms in thyroid cancer remain poorly understood. In this study, we observed that USP44 was frequently downregulated by promoter hypermethylation in thyroid cancers and found that its decreased expression was closely associated with poor patient survival. Subsequent in vitro and in vivo functional studies revealed that USP44 substantially suppressed the proliferation of thyroid cancer cells by impeding the G1/S transition in cell cycle. Mechanistically, USP44 directly interacted with p21 and eliminated its K-48-linked polyubiquitination chain, thereby stabilizing p21 proteins in a cell cycle-independent manner. In addition, the rescue of p21 partially alleviated cell cycle advancement and cell proliferation induced by the depletion of USP44. Our findings, taken together, indicate that USP44 is frequently repressed in thyroid cancer due to promoter hypermethylation and functions as a tumor suppressor by stabilizing p21 via deubiquitination.
Collapse
Affiliation(s)
- Yan Liu
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Mengmeng Yuan
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Xinxin Xu
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Huini Yang
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Yao Yao
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Peng Hou
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Wei Yu
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| |
Collapse
|
6
|
Li H, Wu P. Epigenetics in thyroid cancer: a bibliometric analysis. Endocr Connect 2024; 13:e240087. [PMID: 38949925 PMCID: PMC11378139 DOI: 10.1530/ec-24-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
Background Epigenetics, which involves regulatory modifications that do not alter the DNA sequence itself, is crucial in the development and progression of thyroid cancer. This study aims to provide a comprehensive analysis of the epigenetic research landscape in thyroid cancer, highlighting current trends, major research areas, and potential future directions. Methods A bibliometric analysis was performed using data from the Web of Science Core Collection (WOSCC) up to 1 November 2023. Analytical tools such as VOSviewer, CiteSpace, and the R package 'bibliometrix' were employed for comprehensive data analysis and visualization. This process identified principal research themes, along with influential authors, institutions, and countries contributing to the field. Results The analysis reveals a marked increase in thyroid cancer epigenetics research over the past two decades. Emergent key themes include the exploration of molecular mechanisms and biomarkers, various subtypes of thyroid cancer, implications for therapeutic interventions, advancements in technologies and methodologies, and the scope of translational research. Research hotspots within these themes highlight intensive areas of study and the potential for significant breakthroughs. Conclusion This study presents an in-depth overview of the current state of epigenetics in thyroid cancer research. It underscores the potential of epigenetic strategies as viable therapeutic options and provides valuable insights for researchers and clinicians in advancing the understanding and treatment of this complex disease. Future research is vital to fully leverage the therapeutic possibilities offered by epigenetics in the management of thyroid cancer.
Collapse
Affiliation(s)
- Hui Li
- Department of Thyroid Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, P. R. China
| | - Peng Wu
- Department of Thyroid Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, P. R. China
| |
Collapse
|
7
|
Ren X, Zhang J, Song Z, Li Q, Zhang D, Li X, Yu J, Li Z, Wen Y, Zeng D, Zhang X, Tang Z. Detection of malignant lesions in cytologically indeterminate thyroid nodules using a dual-layer spectral detector CT-clinical nomogram. Front Oncol 2024; 14:1357419. [PMID: 38863637 PMCID: PMC11165073 DOI: 10.3389/fonc.2024.1357419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/02/2024] [Indexed: 06/13/2024] Open
Abstract
Purpose To evaluate the capability of dual-layer detector spectral CT (DLCT) quantitative parameters in conjunction with clinical variables to detect malignant lesions in cytologically indeterminate thyroid nodules (TNs). Materials and methods Data from 107 patients with cytologically indeterminate TNs who underwent DLCT scans were retrospectively reviewed and randomly divided into training and validation sets (7:3 ratio). DLCT quantitative parameters (iodine concentration (IC), NICP (IC nodule/IC thyroid parenchyma), NICA (IC nodule/IC ipsilateral carotid artery), attenuation on the slope of spectral HU curve and effective atomic number), along with clinical variables, were compared between benign and malignant cohorts through univariate analysis. Multivariable logistic regression analysis was employed to identify independent predictors which were used to construct the clinical model, DLCT model, and combined model. A nomogram was formulated based on optimal performing model, and its performance was assessed using receiver operating characteristic curve, calibration curve, and decision curve analysis. The nomogram was subsequently tested in the validation set. Results Independent predictors associated with malignant TNs with indeterminate cytology included NICP in the arterial phase, Hashimoto's Thyroiditis (HT), and BRAF V600E (all p < 0.05). The DLCT-clinical nomogram, incorporating the aforementioned variables, exhibited superior performance than the clinical model or DLCT model in both training set (AUC: 0.875 vs 0.792 vs 0.824) and validation set (AUC: 0.874 vs 0.792 vs 0.779). The DLCT-clinical nomogram demonstrated satisfactory calibration and clinical utility in both training set and validation set. Conclusion The DLCT-clinical nomogram emerges as an effective tool to detect malignant lesions in cytologically indeterminate TNs.
Collapse
Affiliation(s)
- Xiaofang Ren
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Jiayan Zhang
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Zuhua Song
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Qian Li
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Dan Zhang
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Xiaojiao Li
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Jiayi Yu
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Zongwen Li
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Youjia Wen
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Dan Zeng
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Xiaodi Zhang
- Department of Clinical and Technical Support, Philips Healthcare, Chengdu, China
| | - Zhuoyue Tang
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
8
|
Fan T, Jiang L, Zhou X, Chi H, Zeng X. Deciphering the dual roles of PHD finger proteins from oncogenic drivers to tumor suppressors. Front Cell Dev Biol 2024; 12:1403396. [PMID: 38813086 PMCID: PMC11133592 DOI: 10.3389/fcell.2024.1403396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
PHD (plant homeodomain) finger proteins emerge as central epigenetic readers and modulators in cancer biology, orchestrating a broad spectrum of cellular processes pivotal to oncogenesis and tumor suppression. This review delineates the dualistic roles of PHD fingers in cancer, highlighting their involvement in chromatin remodeling, gene expression regulation, and interactions with cellular signaling networks. PHD fingers' ability to interpret specific histone modifications underscores their influence on gene expression patterns, impacting crucial cancer-related processes such as cell proliferation, DNA repair, and apoptosis. The review delves into the oncogenic potential of certain PHD finger proteins, exemplified by PHF1 and PHF8, which promote tumor progression through epigenetic dysregulation and modulation of signaling pathways like Wnt and TGFβ. Conversely, it discusses the tumor-suppressive functions of PHD finger proteins, such as PHF2 and members of the ING family, which uphold genomic stability and inhibit tumor growth through their interactions with chromatin and transcriptional regulators. Additionally, the review explores the therapeutic potential of targeting PHD finger proteins in cancer treatment, considering their pivotal roles in regulating cancer stem cells and influencing the immune response to cancer therapy. Through a comprehensive synthesis of current insights, this review underscores the complex but promising landscape of PHD finger proteins in cancer biology, advocating for further research to unlock novel therapeutic avenues that leverage their unique cellular roles.
Collapse
Affiliation(s)
- Tingyu Fan
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, Sichuan, China
| | - Xuancheng Zhou
- Clinical Medical College, Southwest Medical University, Luzhou, Sichuan, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, Sichuan, China
| | - Xi Zeng
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
9
|
Jin X, Yin Z, Li X, Guo H, Wang B, Zhang S, Li Y. TIM3 activates the ERK1/2 pathway to promote invasion and migration of thyroid tumors. PLoS One 2024; 19:e0297695. [PMID: 38568917 PMCID: PMC10990238 DOI: 10.1371/journal.pone.0297695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/10/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND This study aims to study the possible action mechanism of T-cell immunoglobulin and mucin domain 3 (TIM3) on the migratory and invasive abilities of thyroid carcinoma (TC) cells. METHODS GSE104005 and GSE138198 datasets were downloaded from the GEO database for identifying differentially expressed genes (DEGs). Functional enrichment analysis and protein-protein interaction (PPI) analysis were performed on the common DEGs in GSE104005 and GSE138198 datasets. Subsequently, in order to understand the effect of a common DEG (TIM3) on TC cells, we performed in vitro experiments using FRO cells. The migratory and invasive abilities of FRO cells were detected by wound scratch assay and Transwell assay. Proteins expression levels of the phosphorylated (p)-extracellular signal-regulated kinase (ERK)1/2, matrix metalloproteinase-2 (MMP-2) and MMP-9 were determined via Western blotting after ERK1/2 inhibition in TIM3-NC group and TIM3-mimic group. RESULTS 316 common DEGs were identified in GSE104005 and GSE138198 datasets. These DEGs were involved in the biological process of ERK1 and ERK2 cascade. TIM3 was significantly up-regulated in TC. In vitro cell experiments showed that TIM3 could promote migration and invasion of TC cells. Moreover, TIM3 may affect the migration, invasive abilities of TC cells by activating the ERK1/2 pathway. CONCLUSION The above results indicate that TIM3 may affect the migratory and invasive of TC cells by activating the ERK1/2 pathway.
Collapse
Affiliation(s)
- Xiao Jin
- Department of Thyroid and Breast Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhibo Yin
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoyu Li
- Department of Thyroid and Breast Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hao Guo
- Department of Thyroid and Breast Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bo Wang
- Department of Thyroid and Breast Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shanshan Zhang
- Department of Thyroid and Breast Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong Li
- The Third Department of External Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
10
|
Upadhyay S, Dubey PK. Gene variants polymorphisms and uterine leiomyoma: an updated review. Front Genet 2024; 15:1330807. [PMID: 38572418 PMCID: PMC10987786 DOI: 10.3389/fgene.2024.1330807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 04/05/2024] Open
Abstract
Uterine leiomyoma, commonly referred to as fibroids, is a benign tumor that develops in the muscular wall of the uterus. These growths are non-cancerous and can vary in size, ranging from tiny nodules to larger masses. Uterine leiomyomas often occur during a woman's reproductive years and can lead to symptoms such as heavy menstrual bleeding, pelvic pain, and pressure on nearby organs. While the exact cause is not fully understood, hormonal factors, particularly estrogen and progesterone, are believed to play a role in their development. The exploration of connections between genetic variants and uterine leiomyoma has captivated scientific attention for numerous years. The results from investigations remain a subject of intrigue within the scientific community. To date, the findings regarding the relationships between single nucleotide polymorphisms (SNPs) and uterine leiomyoma have exhibited some inconsistencies. However, amidst these inconsistencies, several promising outcomes have emerged that hold the potential to shape future research endeavors. These promising leads could pave the way for the development of innovative targeted therapies and novel prognostic biomarkers. This review specifically centers on accentuating the existing literature data concerning genetic variants that have been explored for their potential connections to uterine leiomyoma. Additionally, it underscores the prospects of employing genetic variations as diagnostic and prognostic biomarkers for individuals diagnosed with uterine leiomyoma.
Collapse
Affiliation(s)
| | - Pawan K. Dubey
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
11
|
Chen L, Tao G, Yang M. Machine-learning-based prediction of a diagnostic model using autophagy-related genes based on RNA sequencing for patients with papillary thyroid carcinoma. Open Med (Wars) 2024; 19:20240896. [PMID: 38463514 PMCID: PMC10921443 DOI: 10.1515/med-2024-0896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 03/12/2024] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer and belongs to the category of malignant tumors of the thyroid gland. Autophagy plays an important role in PTC. The purpose of this study is to develop a novel diagnostic model using autophagy-related genes (ARGs) in patients. In this study, RNA sequencing data of PTC samples and normal samples were obtained from GSE33630 and GSE29265. Then, we analyzed GSE33630 datasets and identified 127 DE-ARGs. Functional enrichment analysis suggested that 127 DE-ARGs were mainly enriched in pathways in cancer, protein processing in endoplasmic reticulum, toll-like receptor pathway, MAPK pathway, apoptosis, neurotrophin signaling pathway, and regulation of autophagy. Subsequently, CALCOCO2, DAPK1, and RAC1 among the 127 DE-ARGs were identified as diagnostic genes by support vector machine recursive feature elimination and least absolute shrinkage and selection operator algorithms. Then, we developed a novel diagnostic model using CALCOCO2, DAPK1, and RAC1 and its diagnostic value was confirmed in GSE29265 and our cohorts. Importantly, CALCOCO2 may be a critical regulator involved in immune microenvironment because its expression was related to many types of immune cells. Overall, we developed a novel diagnostic model using CALCOCO2, DAPK1, and RAC1 which can be used as diagnostic markers of PTC.
Collapse
Affiliation(s)
- Lin Chen
- Department of Endocrinology and Metabolism, People’s Hospital of Chongqing Liang jiang New Area, Chongqing, China
| | - Gaofeng Tao
- Department of Medicine and Education, People’s Hospital of Chongqing Liang jiang New Area, Chongqing, China
| | - Mei Yang
- Department of Endocrinology and Metabolism, People’s Hospital of Chongqing Liang jiang New Area, Chongqing, China
| |
Collapse
|
12
|
Chen S, Huang M, Xu D, Li M. Epigenetic regulation in epilepsy: A novel mechanism and therapeutic strategy for epilepsy. Neurochem Int 2024; 173:105657. [PMID: 38145842 DOI: 10.1016/j.neuint.2023.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
Epilepsy is a common neurological disorder characterized by recurrent seizures with excessive and abnormal neuronal discharges. Epileptogenesis is usually involved in neuropathological processes such as ion channel dysfunction, neuronal injury, inflammatory response, synaptic plasticity, gliocyte proliferation and mossy fiber sprouting, currently the pathogenesis of epilepsy is not yet completely understood. A growing body of studies have shown that epigenetic regulation, such as histone modifications, DNA methylation, noncoding RNAs (ncRNAs), N6-methyladenosine (m6A) and restrictive element-1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) are also involved in epilepsy. Through epigenetic studies, we found that the synaptic dysfunction, nerve damage, cognitive dysfunction and brain development abnormalities are affected by epigenetic regulation of epilepsy-related genes in patients with epilepsy. However, the functional roles of epigenetics in pathogenesis and treatment of epilepsy are still to be explored. Therefore, profiling the array of genes that are epigenetically dysregulated in epileptogenesis is likely to advance our understanding of the mechanisms underlying the pathophysiology of epilepsy and may for the amelioration of these serious human conditions provide novel insight into therapeutic strategies and diagnostic biomarkers for epilepsy to improve serious human condition.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Ming Huang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
13
|
Yarahmadi A, Afkhami H. The role of microbiomes in gastrointestinal cancers: new insights. Front Oncol 2024; 13:1344328. [PMID: 38361500 PMCID: PMC10867565 DOI: 10.3389/fonc.2023.1344328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 02/17/2024] Open
Abstract
Gastrointestinal (GI) cancers constitute more than 33% of new cancer cases worldwide and pose a considerable burden on public health. There exists a growing body of evidence that has systematically recorded an upward trajectory in GI malignancies within the last 5 to 10 years, thus presenting a formidable menace to the health of the human population. The perturbations in GI microbiota may have a noteworthy influence on the advancement of GI cancers; however, the precise mechanisms behind this association are still not comprehensively understood. Some bacteria have been observed to support cancer development, while others seem to provide a safeguard against it. Recent studies have indicated that alterations in the composition and abundance of microbiomes could be associated with the progression of various GI cancers, such as colorectal, gastric, hepatic, and esophageal cancers. Within this comprehensive analysis, we examine the significance of microbiomes, particularly those located in the intestines, in GI cancers. Furthermore, we explore the impact of microbiomes on various treatment modalities for GI cancer, including chemotherapy, immunotherapy, and radiotherapy. Additionally, we delve into the intricate mechanisms through which intestinal microbes influence the efficacy of GI cancer treatments.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
14
|
Soboska K, Kusiński M, Pawelczyk K, Migdalska-Sęk M, Brzeziańska-Lasota E, Czarnecka-Chrebelska KH. Expression of RASSF1A, DIRAS3, and AKAP9 Genes in Thyroid Lesions: Implications for Differential Diagnosis and Prognosis of Thyroid Carcinomas. Int J Mol Sci 2024; 25:562. [PMID: 38203733 PMCID: PMC10778957 DOI: 10.3390/ijms25010562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Thyroid carcinoma is the primary endocrine malignancy worldwide. The preoperative examination of thyroid tissue lesion is often unclear. Approximately 25% of thyroid cancers cannot be diagnosed definitively without post-surgery histopathological examination. The assessment of diagnostic and differential markers of thyroid cancers is needed to improve preoperative diagnosis and reduce unnecessary treatments. Here, we assessed the expression of RASSF1A, DIRAS3, and AKAP9 genes, and the presence of BRAF V600E point mutation in benign and malignant thyroid lesions in a Polish cohort (120 patients). We have also performed a comparative analysis of gene expression using data obtained from the Gene Expression Omnibus (GEO) database (307 samples). The expression of RASSF1A and DIRAS3 was decreased, whereas AKAP9's was increased in pathologically changed thyroid compared with normal thyroid tissue, and significantly correlated with e.g., histopathological type of lesion papillary thyroid cancer (PTC) vs follicular thyroid cancer (FTC), patient's age, tumour stage, or its encapsulation. The receiver operating characteristic (ROC) analysis for the more aggressive FTC subtype differential marker suggests value in estimating RASSF1A and AKAP9 expression, with their area under curve (AUC), specificity, and sensitivity at 0.743 (95% CI: 0.548-0.938), 82.2%, and 66.7%; for RASSF1A, and 0.848 (95% CI: 0.698-0.998), 54.8%, and 100%, for AKAP9. Our research gives new insight into the basis of the aggressiveness and progression of thyroid cancers, and provides information on potential differential markers that may improve preoperative diagnosis.
Collapse
Affiliation(s)
- Kamila Soboska
- Department of Biomedicine and Genetics, Medical University of Lodz, 251 Str. Pomorska, 92-213 Lodz, Poland (M.M.-S.)
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Michał Kusiński
- Department of Endocrine, General and Vascular Surgery, Medical University of Lodz, 62 Str. Pabianicka, 93-513 Lodz, Poland;
| | - Karol Pawelczyk
- Department of Biomedicine and Genetics, Medical University of Lodz, 251 Str. Pomorska, 92-213 Lodz, Poland (M.M.-S.)
- Faculty of Medicine, Medical University of Lodz, Av. Kościuszki 4, 90-419 Lodz, Poland
| | - Monika Migdalska-Sęk
- Department of Biomedicine and Genetics, Medical University of Lodz, 251 Str. Pomorska, 92-213 Lodz, Poland (M.M.-S.)
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Medical University of Lodz, 251 Str. Pomorska, 92-213 Lodz, Poland (M.M.-S.)
| | | |
Collapse
|
15
|
Bhattacharya S, Mahato RK, Singh S, Bhatti GK, Mastana SS, Bhatti JS. Advances and challenges in thyroid cancer: The interplay of genetic modulators, targeted therapies, and AI-driven approaches. Life Sci 2023; 332:122110. [PMID: 37734434 DOI: 10.1016/j.lfs.2023.122110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Thyroid cancer continues to exhibit a rising incidence globally, predominantly affecting women. Despite stable mortality rates, the unique characteristics of thyroid carcinoma warrant a distinct approach. Differentiated thyroid cancer, comprising most cases, is effectively managed through standard treatments such as thyroidectomy and radioiodine therapy. However, rarer variants, including anaplastic thyroid carcinoma, necessitate specialized interventions, often employing targeted therapies. Although these drugs focus on symptom management, they are not curative. This review delves into the fundamental modulators of thyroid cancers, encompassing genetic, epigenetic, and non-coding RNA factors while exploring their intricate interplay and influence. Epigenetic modifications directly affect the expression of causal genes, while long non-coding RNAs impact the function and expression of micro-RNAs, culminating in tumorigenesis. Additionally, this article provides a concise overview of the advantages and disadvantages associated with pharmacological and non-pharmacological therapeutic interventions in thyroid cancer. Furthermore, with technological advancements, integrating modern software and computing into healthcare and medical practices has become increasingly prevalent. Artificial intelligence and machine learning techniques hold the potential to predict treatment outcomes, analyze data, and develop personalized therapeutic approaches catering to patient specificity. In thyroid cancer, cutting-edge machine learning and deep learning technologies analyze factors such as ultrasonography results for tumor textures and biopsy samples from fine needle aspirations, paving the way for a more accurate and effective therapeutic landscape in the near future.
Collapse
Affiliation(s)
- Srinjan Bhattacharya
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Rahul Kumar Mahato
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Satwinder Singh
- Department of Computer Science and Technology, Central University of Punjab, Bathinda 151401, Punjab, India.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Leicestershire, Loughborough LE11 3TU, UK.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India.
| |
Collapse
|
16
|
Hysek M, Hellgren SL, Condello V, Xu Y, Larsson C, Zedenius J, Juhlin CC. 5hmC Immunohistochemistry: A Predictor of TERT Promoter Mutational Status in Follicular Thyroid Carcinoma? J Histochem Cytochem 2023; 71:451-458. [PMID: 37486076 PMCID: PMC10424576 DOI: 10.1369/00221554231190437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) gene aberrancies correlate to adverse prognosis in follicular thyroid carcinoma (FTC). As loss of 5-hydroxymethylcytosine (5hmC) has been associated with TERT promoter mutations in papillary thyroid carcinoma, this study sought to analyze the levels of 5hmC in a cohort of follicular thyroid tumors with available TERT data. A total of 29 tumors (26 FTCs, 2 follicular thyroid tumors of uncertain malignant potential, and 1 oncocytic thyroid carcinoma) with known TERT promoter mutational status and TERT gene expression were assessed for 5hmC immunoreactivity using two antibodies (clones RM236 and 4D9.) Slides were analyzed using a semiquantitative scoring system. Of the 10 tumor cases with aberrant TERT, only 1 scored negative with both antibodies (1/10; 10%), whereas the remaining 9 cases (9/10; 90%) exhibited some positivity for at least one antibody. Of the 19 TERT wild-type tumors, no case was scored negative using RM236, and 2 cases (2/19; 11%) using 4D9. The differences between TERT promoter mutated and wild-type groups were non-significant. The sensitivity and specificity for 5hmC immunohistochemistry (IHC) to detect mutated cases were 10% and 100% (RM236) and 20% and 89% (4D9). Therefore, 5hmC IHC is not a sensitive marker for detecting TERT promoter mutations in follicular thyroid tumors.
Collapse
Affiliation(s)
- Martin Hysek
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Samuel L. Hellgren
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Vincenzo Condello
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Yiyi Xu
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Jan Zedenius
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Breast, Endocrine Tumors, and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
| | - C. Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Zhang L, Li Z, Zhang M, Zou H, Bai Y, Liu Y, Lv J, Lv L, Liu P, Deng Z, Liu C. Advances in the molecular mechanism and targeted therapy of radioactive-iodine refractory differentiated thyroid cancer. Med Oncol 2023; 40:258. [PMID: 37524925 DOI: 10.1007/s12032-023-02098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/21/2023] [Indexed: 08/02/2023]
Abstract
Most patients with differentiated thyroid cancer have a good prognosis after radioactive iodine-131 treatment, but there are still a small number of patients who are not sensitive to radioiodine treatment and may subsequently show disease progression. Therefore, radioactive-iodine refractory differentiated thyroid cancer treated with radioiodine usually shows reduced radioiodine uptake. Thus, when sodium iodine symporter expression, basolateral membrane localization and recycling degradation are abnormal, radioactive-iodine refractory differentiated thyroid cancer may occur. In recent years, with the deepening of research into the pathogenesis of this disease, an increasing number of molecules have become or are expected to become therapeutic targets. The application of corresponding inhibitors or combined treatment regimens for different molecular targets may be effective for patients with advanced radioactive-iodine refractory differentiated thyroid cancer. Currently, some targeted drugs that can improve the progression-free survival of patients with radioactive-iodine refractory differentiated thyroid cancer, such as sorafenib and lenvatinib, have been approved by the FDA for the treatment of radioactive-iodine refractory differentiated thyroid cancer. However, due to the adverse reactions and drug resistance caused by some targeted drugs, their application is limited. In response to targeted drug resistance and high rates of adverse reactions, research into new treatment combinations is being carried out; in addition to kinase inhibitor therapy, gene therapy and rutin-assisted iodine-131 therapy for radioactive-iodine refractory thyroid cancer have also made some progress. Thus, this article mainly focuses on sodium iodide symporter changes leading to the main molecular mechanisms in radioactive-iodine refractory differentiated thyroid cancer, some targeted drug resistance mechanisms and promising new treatments.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Zhi Li
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Meng Zhang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Huangren Zou
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Yuke Bai
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Yanlin Liu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Juan Lv
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Ling Lv
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Pengjie Liu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Zhiyong Deng
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China.
| | - Chao Liu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| |
Collapse
|
18
|
Tiucă RA, Tiucă OM, Pașcanu IM. The Role of Genetic Polymorphisms in Differentiated Thyroid Cancer: A 2023 Update. Biomedicines 2023; 11:biomedicines11041075. [PMID: 37189693 DOI: 10.3390/biomedicines11041075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Thyroid cancer is the most common endocrine malignancy, with an increasing trend in the past decades. It has a variety of different histological subtypes, the most frequent one being differentiated thyroid cancer, which refers to papillary carcinoma, the most common histological type, followed by follicular carcinoma. Associations between genetic polymorphisms and thyroid cancer have been investigated over the years and are an intriguing topic for the scientific world. To date, the results of associations of single nucleotide polymorphisms, the most common genetic variations in the genome, with thyroid cancer have been inconsistent, but many promising results could potentially influence future research toward developing new targeted therapies and new prognostic biomarkers, thus consolidating a more personalized management for these patients. This review focuses on emphasizing the existing literature data regarding genetic polymorphisms investigated for their potential association with differentiated thyroid cancer and highlights the opportunity of using genetic variations as biomarkers of diagnosis and prognosis for thyroid cancer patients.
Collapse
Affiliation(s)
- Robert Aurelian Tiucă
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
- Department of Endocrinology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
- Compartment of Endocrinology, Mures County Clinical Hospital, 540139 Targu Mures, Romania
| | - Oana Mirela Tiucă
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
- Department of Dermatology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
- Dermatology Clinic, Mures County Clinical Hospital, 540015 Targu Mures, Romania
| | - Ionela Maria Pașcanu
- Department of Endocrinology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
- Compartment of Endocrinology, Mures County Clinical Hospital, 540139 Targu Mures, Romania
| |
Collapse
|
19
|
Targeting Tumor Microenvironment Akt Signaling Represents a Potential Therapeutic Strategy for Aggressive Thyroid Cancer. Int J Mol Sci 2023; 24:ijms24065471. [PMID: 36982542 PMCID: PMC10049397 DOI: 10.3390/ijms24065471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Effects of the tumor microenvironment (TME) stromal cells on progression in thyroid cancer are largely unexplored. Elucidating the effects and underlying mechanisms may facilitate the development of targeting therapy for aggressive cases of this disease. In this study, we investigated the impact of TME stromal cells on cancer stem-like cells (CSCs) in patient-relevant contexts where applying in vitro assays and xenograft models uncovered contributions of TME stromal cells to thyroid cancer progression. We found that TME stromal cells can enhance CSC self-renewal and invasiveness mainly via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. The disruption of Akt signaling could diminish the impact of TME stromal cells on CSC aggressiveness in vitro and reduce CSC tumorigenesis and metastasis in xenografts. Notably, disrupting Akt signaling did not cause detectable alterations in tumor histology and gene expression of major stromal components while it produced therapeutic benefits. In addition, using a clinical cohort, we discovered that papillary thyroid carcinomas with lymph node metastasis are more likely to have elevated Akt signaling compared with the ones without metastasis, suggesting the relevance of Akt-targeting. Overall, our results identify PI3K/Akt pathway-engaged contributions of TME stromal cells to thyroid tumor disease progression, illuminating TME Akt signaling as a therapeutic target in aggressive thyroid cancer.
Collapse
|
20
|
Jasmine F, Aschebrook-Kilfoy B, Rahman MM, Zaagman G, Grogan RH, Kamal M, Ahsan H, Kibriya MG. Association of DNA Promoter Methylation and BRAF Mutation in Thyroid Cancer. Curr Oncol 2023; 30:2978-2996. [PMID: 36975440 PMCID: PMC10047424 DOI: 10.3390/curroncol30030227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The BRAF V600E mutation and DNA promoter methylation play important roles in the pathogenesis of thyroid cancer (TC). However, the association of these genetic and epigenetic alterations is not clear. In this study, using paired tumor and surrounding normal tissue from the same patients, on a genome-wide scale we tried to identify (a) any association between BRAF mutation and DNA promoter methylation, and (b) if the molecular findings may provide a basis for therapeutic intervention. We included 40 patients with TC (female = 28, male = 12) without distant metastasis. BRAF mutation was present in 18 cases. We identified groups of differentially methylated loci (DML) that are found in (a) both BRAF mutant and wild type, (b) only in BRAF mutant tumors, and (c) only in BRAF wild type. BRAF mutation-specific promoter loci were more frequently hypomethylated, whereas BRAF wild-type-specific loci were more frequently hypermethylated. Common DML were enriched in cancer-related pathways, including the mismatch repair pathway and Wnt-signaling pathway. Wild-type-specific DML were enriched in RAS signaling. Methylation status of checkpoint signaling genes, as well as the T-cell inflamed genes, indicated an opportunity for the potential use of PDL1 inhibitors in BRAF mutant TC. Our study shows an association between BRAF mutation and methylation in TC that may have biological significance.
Collapse
Affiliation(s)
- Farzana Jasmine
- Institute for Population and Precision Health, Biological Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Briseis Aschebrook-Kilfoy
- Institute for Population and Precision Health, Biological Sciences, University of Chicago, Chicago, IL 60637, USA
- Department of Public Health Science, University of Chicago, Chicago, IL 60637, USA
| | - Mohammad M. Rahman
- Department of Pathology, Bangabandhu Sheikh Mujib Medical University, Dhaka 1000, Bangladesh
| | - Garrett Zaagman
- Institute for Population and Precision Health, Biological Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Raymon H. Grogan
- Department of Surgery, Baylor St. Luke’s Medical Center, Houston, TX 77030, USA
| | - Mohammed Kamal
- Department of Pathology, The Laboratory, Dhaka 1205, Bangladesh
| | - Habibul Ahsan
- Institute for Population and Precision Health, Biological Sciences, University of Chicago, Chicago, IL 60637, USA
- Department of Public Health Science, University of Chicago, Chicago, IL 60637, USA
| | - Muhammad G. Kibriya
- Institute for Population and Precision Health, Biological Sciences, University of Chicago, Chicago, IL 60637, USA
- Department of Public Health Science, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
21
|
Ozisik H, Ozdil B, Suner A, Sipahi M, Erdogan M, Cetinkalp S, Ozgen G, Saygili F, Oktay G, Aktug H. The expression of HDAC9 and P300 in papillary thyroid carcinoma cell line. Pathol Res Pract 2023; 243:154385. [PMID: 36857949 DOI: 10.1016/j.prp.2023.154385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
PURPOSE Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer and accounts for 85-90% of all thyroid cancers. Metastatic differentiated thyroid cancer, radioiodine-refractory thyroid cancer, and anaplastic thyroid cancer still lack effective therapeutic options. Here, we aimed to assess HDAC9 and P300 expression in the papillary thyroid carcinoma cell line and compare them with normal thyroid cells. METHODS Nthy-ori-3-1, a normal thyroid cell line, and BCPAP, a PTC cell line, were cultured for 24 and 48 h and immunofluorescence staining was used to determine the levels of HDAC9 and P300 protein expression. HDAC9 paracrine release was assessed using an ELISA assay. RESULTS HDAC9 protein expression was higher in both cell groups at the 48th hour than at the 24th hour; however, P300 protein expression was lower in BCPAP cells at the 48th hour than at the 24th hour. In comparison to Nthy-ori-3-1, BCPAP expressed more HDAC9 and P300 proteins. HDAC9 secretion slightly increased in Nthy-ori-3-1 cells from 24 to 48 h. Furthermore, HDAC9 secretion in BCPAP cells dramatically decreased from 24 to 48 h. CONCLUSION Our findings revealed that the expression of HDAC9 and P300 was higher in the PTC cell line than in normal thyroid cells. This indicates that the acetylation mechanism in thyroid cancer cells is not the same as it is in healthy cells. Epigenetic studies may reveal the mechanisms underlying PTC with further analysis.
Collapse
Affiliation(s)
- Hatice Ozisik
- Ege University, Department of Endocrinology and Metabolism, İzmir, Turkey.
| | - Berrin Ozdil
- Ege University, Department of Histology and Embryology, İzmir, Turkey; Department of Histology and Embryology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Aslı Suner
- Ege University, Department of Biostatistics and Medical Informatics, İzmir, Turkey
| | - Murat Sipahi
- Dokuz Eylül University, Institue of Health Sciences, Department of Biochemistry, İzmir, Turkey
| | - Mehmet Erdogan
- Ege University, Department of Endocrinology and Metabolism, İzmir, Turkey
| | - Sevki Cetinkalp
- Ege University, Department of Endocrinology and Metabolism, İzmir, Turkey
| | - Gokhan Ozgen
- Ege University, Department of Endocrinology and Metabolism, İzmir, Turkey
| | - Fusun Saygili
- Ege University, Department of Endocrinology and Metabolism, İzmir, Turkey
| | - Gulgun Oktay
- Dokuz Eylül University, Department of Medical Biochemistry, İzmir, Turkey
| | - Huseyin Aktug
- Ege University, Department of Histology and Embryology, İzmir, Turkey
| |
Collapse
|
22
|
TTN mutations predict a poor prognosis in patients with thyroid cancer. Biosci Rep 2022; 42:231494. [PMID: 35766333 PMCID: PMC9310696 DOI: 10.1042/bsr20221168] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE We aimed to investigate the relationship between titin (TTN) gene mutations and thyroid cancer (THCA) and to explore the feasibility of the TTN gene as a potential prognostic indicator of THCA. METHODS From TCGA-THCA cohort, we performed a series of analyses to evaluate the prognostic value and potential mechanism of TTN in THCA. These patients were divided into the mutant-type (MUT) group and the wild-type (WT) group. Differentially expressed genes (DEGs) in the two groups were screened using the 'DESeq2' R package. Functional enrichment analysis was performed, and the protein-protein interaction (PPI) network, transcription factor (TF)-target interaction networks, and competitive endogenous RNA (ceRNA) regulatory networks were established for the DEGs. The TIMER database was applied for immune cell infiltration. Survival analysis and Cox regression analysis were used to analyze the potential prognostic value of the TTN gene. RESULTS Differential expression analysis showed that 409 genes were significantly up-regulated and 36 genes were down-regulated. Functional enrichment analysis revealed that TTN gene mutations played a potential role in the development of THCA. Analysis of the immune microenvironment indicated that TTN gene mutations were significantly associated with enrichment of M0 macrophages. Survival analysis showed that the MUT group predicted poorer prognosis than the WT group. Cox regression analysis demonstrated that TTN gene mutations were an independent risk factor for THCA. Nomograms also confirmed the prognostic values of the TTN gene in THCA. Conclusions In summary, our results demonstrated that TTN gene mutations predict poor prognosis in patients with THCA. This is the first study to research TTN gene mutations in THCA and to investigate their prognostic value in THCA.
Collapse
|