1
|
Roy D, Bhattacharya B, Chakravarti R, Singh P, Arya M, Kundu A, Patil A, Siva B, Mehta S, Kazi TA, Ghosh D. LncRNAs in oncogenic microenvironment: from threat to therapy. Front Cell Dev Biol 2025; 12:1423279. [PMID: 40176927 PMCID: PMC11962222 DOI: 10.3389/fcell.2024.1423279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/09/2024] [Indexed: 04/05/2025] Open
Abstract
LncRNAs are RNA molecules of more than 200 nucleotides in length and participate in cellular metabolism and cellular responses through their diverse interactomedespite having no protein-coding capabilities. Such significant interactions also implicate the presence of lncRNAs in complex pathobiological pathways of various diseases, affecting cellular survival by modulating autophagy, inflammation and apoptosis. Proliferating cells harbour a complex microenvironment that mainly stimulate growth-specific activities such as DNA replication, repair, and protein synthesis. They also recognise damages at the macromolecular level, preventing them from reaching the next-generation. LncRNAs have shown significant association with the events occurring towards proliferation, regulating key events in dividing cells, and dysregulation of lncRNA transcriptome affects normal cellular life-cycle, promoting the development of cancer. Furthermore, lncRNAs also demonstrated an association with cancer growth and progression by regulating key pathways governing cell growth, epithelial-mesenchymal transition and metastasis. This makes lncRNAs an attractive target for the treatment of cancer and can also be used as a marker for the diagnosis and prognosis of diseases due to their differential expression in diseased samples. This review delves into the correlation of the lncRNA transcriptome with the fundamental cellular signalling and how this crosstalk shapes the complexity of the oncogenic microhabitat.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Kolkata, Kolkata, India
| |
Collapse
|
2
|
Zang Y, Li J, Wan B, Tai Y, Liu H, Li Q, Ji Y, Wang G. LOC730101 transmitted by exosomes facilitates laryngeal squamous cell carcinoma tumorigenesis via regulation of p38 MAPK gamma. Cell Signal 2024; 122:111336. [PMID: 39121975 DOI: 10.1016/j.cellsig.2024.111336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a prevalent human cancer with a complex pathogenesis that remains incompletely understood. Here, we unveil a long non-coding RNA (lncRNA) associated with LSCC tumorigenesis and progression. LOC730101 exhibits significant overexpression in human LSCC tissues, and elevated LOC730101 levels correlate with malignant clinicopathological characteristics. Moreover, we demonstrate that LOC730101 is encapsulated into exosomes in an hnRNPA2B1-dependent manner, serving as a promising plasma biomarker for discriminating LSCC patients from healthy individuals (AUC = 0.92 with 89.36% sensitivity and 86.36% specificity). Exosomes derived from LSCC cells enhance the viability, DNA synthesis rate, and invasiveness of normal nasopharynx epithelial cells, with pronounced effects observed upon LOC730101 overexpression. Additionally, exosomal LOC730101 promotes tumor growth in vivo. Mechanistically, exosomal LOC730101 internalization by normal nasopharynx epithelial cells leads to increased H3K4me3 levels on the p38 MAPK gamma (p38γ) promoter via direct interaction with hnRNPA2B1. This interaction activates p38γ transcription, ultimately driving LSCC tumorigenesis. Collectively, our findings uncover a novel exosomal lncRNA that mediates communication between normal and LSCC cells during LSCC carcinogenesis, suggesting that targeting LOC730101 may represent a promising therapeutic strategy for LSCC treatment.
Collapse
Affiliation(s)
- Yanzi Zang
- Department of Otolaryngology, People's Hospital of Henan Province, Zhengzhou City, 450003, China
| | - Jing Li
- Department of Otolaryngology, People's Hospital of Henan Province, Zhengzhou City, 450003, China
| | - Baoluo Wan
- Department of Otolaryngology, People's Hospital of Henan Province, Zhengzhou City, 450003, China
| | - Yong Tai
- Department of Otolaryngology, People's Hospital of Henan Province, Zhengzhou City, 450003, China
| | - Hongjian Liu
- Department of Otolaryngology, People's Hospital of Henan Province, Zhengzhou City, 450003, China
| | - Qian Li
- Department of Otolaryngology, People's Hospital of Henan Province, Zhengzhou City, 450003, China
| | - Yuzi Ji
- Department of Otolaryngology, People's Hospital of Henan Province, Zhengzhou City, 450003, China
| | - Guangke Wang
- Department of Otolaryngology, People's Hospital of Henan Province, Zhengzhou City, 450003, China.
| |
Collapse
|
3
|
Marima R, Basera A, Miya T, Damane BP, Kandhavelu J, Mirza S, Penny C, Dlamini Z. Exosomal long non-coding RNAs in cancer: Interplay, modulation, and therapeutic avenues. Noncoding RNA Res 2024; 9:887-900. [PMID: 38616862 PMCID: PMC11015109 DOI: 10.1016/j.ncrna.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
In the intricate field of cancer biology, researchers are increasingly intrigued by the emerging role of exosomal long non-coding RNAs (lncRNAs) due to their multifaceted interactions, complex modulation mechanisms, and potential therapeutic applications. These exosomal lncRNAs, carried within extracellular vesicles, play a vital partin tumorigenesis and disease progression by facilitating communication networks between tumor cells and their local microenvironment, making them an ideal candidates for use in a liquid biopsy approach. However, exosomal lncRNAs remain an understudied area, especially in cancer biology. Therefore this review aims to comprehensively explore the dynamic interplay between exosomal lncRNAs and various cellular components, including interactions with tumor-stroma, immune modulation, and drug resistance mechanisms. Understanding the regulatory functions of exosomal lncRNAs in these processes can potentially unveil novel diagnostic markers and therapeutic targets for cancer. Additionally, the emergence of RNA-based therapeutics presents exciting opportunities for targeting exosomal lncRNAs, offering innovative strategies to combat cancer progression and improve treatment outcomes. Thus, this review provides insights into the current understanding of exosomal lncRNAs in cancer biology, highlighting their crucial roles, regulatory mechanisms, and the evolving landscape of therapeutic interventions. Furthermore, we have also discussed the advantage of exosomes as therapeutic carriers of lncRNAs for the development of personalized targeted therapy for cancer patients.
Collapse
Affiliation(s)
- Rahaba Marima
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| | - Afra Basera
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, South Africa
| | - Thabiso Miya
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Pretoria, 0028, South Africa
| | - Jeyalakshmi Kandhavelu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Sheefa Mirza
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Clement Penny
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| |
Collapse
|
4
|
Guo Z, Guan K, Bao M, He B, Lu J. LINC-PINT plays an anti-tumor role in nasopharyngeal carcinoma by binding to XRCC6 and affecting its function. Pathol Res Pract 2024; 260:155460. [PMID: 39032384 DOI: 10.1016/j.prp.2024.155460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND LINC-PINT was downregulated in nasopharyngeal carcinoma (NPC) and correlated with treatment efficiency of NPC. However, the underlying mechanism of LINC-PINT in NPC has not yet been fully explored. METHOD We used CellTiter luminescent assay, clone formation assay, Hoechst staining, and SYTO-9/PI staining to examine cell viability and cell apoptosis regulated by LINC-PINT in NPC cells. Xenograft tumor model, HE staining, Ki67 staining, and TUNEL assay were conducted to assess the role of LINC-PINT in vivo. Bioinformatics and RNA immunoprecipitation assay was performed to identify the binding protein of LINC-PINT. Fluorescence in situ hybridization and immunofluorescence were utilized to measure the colocalization of XRCC6 with LINC-PINT and DNA-PKcs. Mito-Tracker red CMXRos staining was used to label mitochondria in cells specifically. RESULT We found LINC-PINT was downregulated in many tumors (including NPC) and associated with poor prognosis. The cell viability was significantly inhibited and cell apoptosis was remarkably promoted in LINC-PINT overexpressed cells in contrast to control cells. The growth of tumor xenografts was significantly suppressed and the tumor weight was significantly decreased in LINC-PINT overexpression group compared to the control group. Correspondingly, the positive Ki67 foci was decreased while TUNEL foci was increased in LINC-PINT overexpression group. Mechanically, we verified XRCC6 as a new binding protein of LINC-PINT through RNA binding domains prediction, RIP and colocalization of LINC-PINT and XRCC6. By binding to XRCC6, LINC-PINT interfered the formation of DNA-PK complex, regulated mitochondria accumulation status and affected the modification of apoptosis proteins, leading to more cell apoptosis. CONCLUSION Our study provided the first evidence that LINC-PINT promotes cell apoptosis in NPC by binding to XRCC6 and affecting its function.
Collapse
Affiliation(s)
- Zhen Guo
- Hunan Provincial Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China; The First Clinical College, Changsha Medical University, Changsha 410219, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China.
| | - KeYan Guan
- Hunan Provincial Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China.
| | - MeiHua Bao
- Hunan Provincial Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China.
| | - BinSheng He
- Hunan Provincial Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China.
| | - JiaoYang Lu
- Hunan Provincial Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China; School of Nursing, Changsha Medical University, Changsha 410219, China.
| |
Collapse
|
5
|
Al-Temaimi R, Alroughani R. miR-24-3p and miR-484 are potential biomarkers for neurodegeneration in multiple sclerosis. Heliyon 2024; 10:e32685. [PMID: 38975190 PMCID: PMC11225755 DOI: 10.1016/j.heliyon.2024.e32685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Multiple sclerosis (MS) is a complex, neurodegenerative chronic disorder. Circulating diagnostic biomarkers for MS have remained elusive, and those proposed so far have limited sensitivity and specificity to MS. Plasma-circulating microRNAs (miRNAs) have advantageous biochemical and physiological attributes that can be utilized in clinical testing and disease monitoring. MS miRNA expression microarray datasets analysis resulted in four candidate miRNAs that were assessed for their expression in a separate MS case-control study. Only miR-24-3p was downregulated in all MS patients compared to healthy controls. MiR-484 was significantly upregulated in relapsing-remitting MS (RRMS) patients compared to healthy controls. Mir-146-5p and miR-484 were significantly downregulated in secondary-progressive MS (SPMS) compared to RRMS. MiR-484 downregulation was associated with worsening disability and increased lipocalin-2 levels. Mir-342-3p and miR-24-3p downregulation were associated with increased semaphorin-3A levels in MS and RRMS patients. In conclusion, mir-24-3p downregulation is diagnostic of MS, and mir-484 upregulation and downregulation are potential biomarkers for RRMS and SPMS conversion, respectively. The differential expression of miR-146a-3p in MS subtypes suggests its potential as an SPMS transition biomarker. The association of downregulated mir-24-3p and mir-484 with increased neurodegeneration biomarkers suggests they play a role in MS pathogenesis and neurodegeneration.
Collapse
Affiliation(s)
- Rabeah Al-Temaimi
- Human Genetics Unit, Department of Pathology, College of Medicine, Kuwait University, Jabriya, Kuwait
| | | |
Collapse
|
6
|
Li K, Xie T, Li Y, Huang X. LncRNAs act as modulators of macrophages within the tumor microenvironment. Carcinogenesis 2024; 45:363-377. [PMID: 38459912 DOI: 10.1093/carcin/bgae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have been established as pivotal players in various cellular processes, encompassing the regulation of transcription, translation and post-translational modulation of proteins, thereby influencing cellular functions. Notably, lncRNAs exert a regulatory influence on diverse biological processes, particularly in the context of tumor development. Tumor-associated macrophages (TAMs) exhibit the M2 phenotype, exerting significant impact on crucial processes such as tumor initiation, angiogenesis, metastasis and immune evasion. Elevated infiltration of TAMs into the tumor microenvironment (TME) is closely associated with a poor prognosis in various cancers. LncRNAs within TAMs play a direct role in regulating cellular processes. Functioning as integral components of tumor-derived exosomes, lncRNAs prompt the M2-like polarization of macrophages. Concurrently, reports indicate that lncRNAs in tumor cells contribute to the expression and release of molecules that modulate TAMs within the TME. These actions of lncRNAs induce the recruitment, infiltration and M2 polarization of TAMs, thereby providing critical support for tumor development. In this review, we survey recent studies elucidating the impact of lncRNAs on macrophage recruitment, polarization and function across different types of cancers.
Collapse
Affiliation(s)
- Kangning Li
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tao Xie
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Chak PT, Kam NW, Choi TH, Dai W, Kwong DLW. Unfolding the Complexity of Exosome-Cellular Interactions on Tumour Immunity and Their Clinical Prospects in Nasopharyngeal Carcinoma. Cancers (Basel) 2024; 16:919. [PMID: 38473281 DOI: 10.3390/cancers16050919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy situated in the posterolateral nasopharynx. NPC poses grave concerns in Southeast Asia due to its late diagnosis. Together with resistance to standard treatment combining chemo- and radiotherapy, NPC presents high metastatic rates and common recurrence. Despite advancements in immune-checkpoint inhibitors (ICIs) and cytotoxic-T-lymphocytes (CTLs)-based cellular therapy, the exhaustive T cell profile and other signs of immunosuppression within the NPC tumour microenvironment (TME) remain as concerns to immunotherapy response. Exosomes, extracellular vesicles of 30-150 nm in diameter, are increasingly studied and linked to tumourigenesis in oncology. These bilipid-membrane-bound vesicles are packaged with a variety of signalling molecules, mediating cell-cell communications. Within the TME, exosomes can originate from tumour, immune, or stromal cells. Although there are studies on tumour-derived exosomes (TEX) in NPC and their effects on tumour processes like angiogenesis, metastasis, therapeutic resistance, there is a lack of research on their involvement in immune evasion. In this review, we aim to enhance the comprehension of how NPC TEX contribute to cellular immunosuppression. Furthermore, considering the detectability of TEX in bodily fluids, we will also discuss the potential development of TEX-related biomarkers for liquid biopsy in NPC as this could facilitate early diagnosis and prognostication of the disease.
Collapse
Affiliation(s)
- Paak-Ting Chak
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Ngar-Woon Kam
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, New Territories, Hong Kong 999077, China
| | - Tsz-Ho Choi
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Wei Dai
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
8
|
Hou W, Xu L, Su T, Wu Y, Liu Y, Wei Y. Hypoxia Induces Tumor-Derived Exosome SNHG16 to Mediate Nasopharyngeal Carcinoma Progression through the miR-23b-5p/MCM6 Pathway. Appl Biochem Biotechnol 2024; 196:275-295. [PMID: 37119503 DOI: 10.1007/s12010-023-04558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
This study aims to investigate the mechanism of tumor-derived exosomal (EVs) SNHG16 in promoting the progression of nasopharyngeal carcinoma (NPC). QRT-PCR was used to detect the expression of SNHG16, miR-23b-5p and MCM6 in NPC. MTT, flow cytometry and transwell were used to detect the effects of them on the proliferation, cycle, apoptosis and invasion ability of NPC. Transmission electron microscopy, Western blotting and BCA were used to verify the regulation of exosome secretion under different oxygen environments. Our results showed that hypoxia induces tumor-derived exosome SNHG16 to mediate NPC progression through the miR-23b-5p/MCM6 pathway.
Collapse
Affiliation(s)
- Wei Hou
- Department of Otolaryngology, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Lu Xu
- Department of Otolaryngology, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Tao Su
- Department of Otolaryngology, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Yunxiao Wu
- Department of Neurology, Yang Ling Demonstration Zone Hospital, Yangling, 712100, Shaanxi, China
| | - Yujuan Liu
- Department of Otolaryngology, Yang Ling Demonstration Zone Hospital, Yangling, 712100, Shaanxi, China
| | - Yangao Wei
- Department of Otolaryngology, Yang Ling Demonstration Zone Hospital, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
9
|
Jia D, He Y, Zhang Y. Long Non-coding RNAs Regulating Macrophage Polarization in Liver Cancer. Curr Pharm Des 2024; 30:2120-2128. [PMID: 38859791 DOI: 10.2174/0113816128311861240523075218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/24/2024] [Indexed: 06/12/2024]
Abstract
Primary liver cancer is the second leading cause of cancer-related death worldwide. At present, liver cancer is often in an advanced stage once diagnosed, and treatment effects are generally poor. Therefore, there is an urgent need for other powerful treatments. Macrophages are an important component of the tumor microenvironment, and macrophage polarization is crucial to tumor proliferation and differentiation. Regulatory interactions between macrophage subtypes, such as M1 and M2, lead to a number of clinical outcomes, including tumor progression and metastasis. So, it is important to study the drivers of this process. Long non-coding RNA has been widely proven to be of great value in the early diagnosis and treatment of tumors. Many studies have shown that long non-coding RNA participates in macrophage polarization through its ability to drive M1 or M2 polarization, thereby participating in the occurrence and development of liver cancer. In this article, we systematically elaborated on the long non-coding RNAs involved in the polarization of liver cancer macrophages, hoping to provide a new idea for the early diagnosis and treatment of liver cancer. Liver cancer- related studies were retrieved from PubMed. Based on our identification of lncRNA and macrophage polarization as powerful therapies for liver cancer, we analyzed research articles in the PubMed system in the last ten years on the crosstalk between lncRNA and macrophage polarization. By targeting M1/M2 macrophage polarization, lncRNA may promote or suppress liver cancer, and the references are determined primarily by the article's impact factor. Consequently, the specific mechanism of action between lncRNA and M1/M2 macrophage polarization was explored, along with the role of their crosstalk in the occurrence, proliferation, and metastasis of liver cancer. LncRNA is bidirectionally expressed in liver cancer and can target macrophage polarization to regulate tumor behavior. LncRNA mainly functions as ceRNA and can participate in the crosstalk between liver cancer cells and macrophages through extracellular vesicles. LncRNA can potentially participate in the immunotherapy of liver cancer by targeting macrophages and becoming a new biomolecular marker of liver cancer.
Collapse
Affiliation(s)
- Dengke Jia
- Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Yaping He
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yawu Zhang
- Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Hepato-Biliary-Pancreatic Institute, Lanzhou University Second Hospital, Lanzhou 730000, China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China
| |
Collapse
|
10
|
Wu W, He J. Unveiling the functional paradigm of exosome-derived long non-coding RNAs (lncRNAs) in cancer: based on a narrative review and systematic review. J Cancer Res Clin Oncol 2023; 149:15219-15247. [PMID: 37578522 DOI: 10.1007/s00432-023-05273-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND AND PURPOSE The intricate mechanisms underlying intercellular communication within the tumor microenvironment remain largely elusive. Recently, attention has shifted towards exploring the intercellular signaling mediated by exosomal long non-coding RNAs (lncRNAs) within this context. This comprehensive systematic review aims to elucidate the functional paradigm of exosome-derived lncRNAs in cancer. MATERIALS AND METHODS The review provides a comprehensive narrative of lncRNA definition, characteristics, as well as the formation, sorting, and uptake processes of exosome-derived lncRNAs. Additionally, it describes comprehensive technology for exosome research and nucleic acid drug loading. This review further systematically examines the cellular origins, functional roles, and underlying mechanisms of exosome-derived lncRNAs in recipient cells within the cancer setting. RESULTS The functional paradigm of exosome-derived lncRNAs in cancer mainly depends on the source cells and sorting mechanism of exosomal lncRNAs, the recipient cells and uptake mechanisms of exosomal lncRNAs, and the specific molecular mechanisms of lncRNAs in recipient cells. The source cells of exosomal lncRNAs mainly involved in the current review included tumor cells, cancer stem cells, normal cells, macrophages, and cancer-associated fibroblasts. CONCLUSION This synthesis of knowledge offers valuable insights for accurately identifying exosomal lncRNAs with potential as tumor biomarkers. Moreover, it aids in the selection of appropriate targeting strategies and preclinical models, thereby facilitating the clinical translation of exosomal lncRNAs as promising therapeutic targets against cancer. Through a comprehensive understanding of the functional role of exosome-derived lncRNAs in cancer, this review paves the way for advancements in personalized medicine and improved treatment outcomes.
Collapse
Affiliation(s)
- Wenhan Wu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Jia He
- Faculty Affairs and Human Resources Management Department, Southwest Medical University, Luzhou, China
| |
Collapse
|
11
|
Chen P, Wang D, Xiao T, Gu W, Yang H, Yang M, Wang H. ACSL4 promotes ferroptosis and M1 macrophage polarization to regulate the tumorigenesis of nasopharyngeal carcinoma. Int Immunopharmacol 2023; 122:110629. [PMID: 37451020 DOI: 10.1016/j.intimp.2023.110629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/29/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a head and neck malignant tumor with a high incidence and recurrence rate. The crosstalk between ferroptosis and tumor-associated macrophages (TAMs) is thought to have major implications in interfering with cancers. We intended to explore the effect of acyl-CoA synthetase long-chain family member 4 (ACSL4) on the pathogenesis of NPC via ferroptosis and TAMs. METHODS Differential genes in NPC patients were analyzed using publicly available databases, and the ferroptosis-related gene ACSL4 was identified. Expression of ACSL4 in NPC cell lines and xenografted mice was examined. Colony formation, cell proliferation, migration, and invasion were assessed. The abundance of epithelial-mesenchymal transition (EMT) markers (E-cadherin, N-cadherin, and Vimentin) was confirmed. Lipid peroxidation levels and related markers were measured. Clophosome was administered to determine the role of TAMs in NPC mice. RESULTS Low levels of ACSL4 were observed in NPC patients and CNE-2 and 5-8F cells. Erastin (a ferroptosis inducer) and ACSL4 increased lipid peroxidation, decreased cell viability, colony formation, cell proliferation, migration and invasion, and inhibited EMT. Moreover, Erastin and ACSL4 promoted M2 to M1 macrophage polarization. The effects of erastin and ACSL4 were additive. Ferrostatin-1, an inhibitor of ferroptosis, exerted the opposite effect and reversed the beneficial effects of ACSL4 overexpression. In xenograft mice, ACSL4 and clophosome hindered the growth of NPC, and extra clophosome slightly enhanced the antitumor effect of ACSL4. CONCLUSION Our findings indicated that ACSL4 inhibited the pathogenesis of NPC, at least through crosstalk between ferroptosis and macrophages, providing potential direction for NPC therapy.
Collapse
Affiliation(s)
- Pan Chen
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410031, Hunan, China
| | - Dan Wang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Hunan Clinical Research Center of Pediatric Cancer, Changsha 410013, Hunan, China
| | - Tengfei Xiao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410031, Hunan, China
| | - Wangning Gu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410031, Hunan, China
| | - Hongmin Yang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410031, Hunan, China
| | - Minghua Yang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Hunan Clinical Research Center of Pediatric Cancer, Changsha 410013, Hunan, China.
| | - Hui Wang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410031, Hunan, China.
| |
Collapse
|
12
|
Taghehchian N, Samsami Y, Maharati A, Zangouei AS, Boroumand-Noughabi S, Moghbeli M. Molecular biology of microRNA-342 during tumor progression and invasion. Pathol Res Pract 2023; 248:154672. [PMID: 37413875 DOI: 10.1016/j.prp.2023.154672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Cancer is considered as one of the main causes of human deaths and health challenges in the world. Various factors are involved in the high death rate of cancer patients, including late diagnosis and drug resistance that result in treatment failure and tumor recurrence. Invasive diagnostic methods are one of the main reasons of late tumor detection in cancer patients. Therefore, it is necessary to investigate the molecular tumor biology to introduce efficient non-invasive markers. MicroRNAs (miRNAs) are involved in regulation of the cellular mechanisms such as cell proliferation, apoptosis, and migration. MiRNAs deregulations have been also frequently shown in different tumor types. Here, we discussed the molecular mechanisms of miR-342 during tumor growth. MiR-342 mainly functions as a tumor suppressor by the regulation of transcription factors and signaling pathways such as WNT, PI3K/AKT, NF-kB, and MAPK. Therefore, miR-342 mimics can be used as a reliable therapeutic strategy to inhibit the tumor cells growth. The present review can also pave the way to introduce the miR-342 as a non-invasive diagnostic/prognostic marker in cancer patients.
Collapse
Affiliation(s)
- Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Boroumand-Noughabi
- Department of Hematology and Blood Bank, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Ding C, Zhang K, Chen Y, Hu H. LncRNA TP73-AS1 enhances the malignant properties of colorectal cancer by increasing SPP-1 expression through miRNA-539-5p sponging. Pathol Res Pract 2023; 243:154365. [PMID: 36801509 DOI: 10.1016/j.prp.2023.154365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
Colorectal cancer (CC) is one of the most aggressive cancers, with a high mortality rate worldwide. This study focuses on the mechanism of CC to explore the effective therapeutic targets. We determined that LncRNA TP73-AS1 (TP-73-AS1) expression was significantly increased in CC tissues. TP73-AS1 silencing dynamically inhibited the proliferation, migratory and invasive capacity in CC cells. Mechanistically, we found that TP73-AS1 targeted miR-539-5p and miR-539-5p silencing could promote the migratory and invasive capacity in CC cells. Further study also confirmed that SPP-1 expression significantly increased after co-transfection of miR-539-5p inhibitors. Knockdown the SPP-1 can reverse malignant properties of CC cells. Si-TP73-AS1 suppressed the tumor growth of CC cells in vivo. In a word, we found that TP73-AS1 enhances the malignant properties of colorectal cancer by increasing SPP-1 expression through miRNA-539-5p sponging. And our study provides a potential therapeutic target of CC.
Collapse
Affiliation(s)
- Chuang Ding
- Soochow Univ, Gen Surg Dept, Affiliated Hosp 1, Suzhou 215006, Jiangsu, China
| | - Kaixin Zhang
- Department of Gastrointestinal Surgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian 223800, Jiangsu, China
| | - Yan Chen
- Department of Gastrointestinal Surgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian 223800, Jiangsu, China
| | - Hao Hu
- Soochow Univ, Gen Surg Dept, Affiliated Hosp 1, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
14
|
Chen QY, Gao B, Tong D, Huang C. Crosstalk between extracellular vesicles and tumor-associated macrophage in the tumor microenvironment. Cancer Lett 2023; 552:215979. [PMID: 36306939 DOI: 10.1016/j.canlet.2022.215979] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
In concert with hijacking key genes to drive tumor progression, cancer cells also have the unique ability to dynamically interact with host microenvironment and discreetly manipulate the surrounding stroma, also known as the tumor microenvironment (TME), to provide optimal conditions for tumor cells to thrive and evade host immunity. Complex cellular crosstalk and molecular signaling between cancer cells, surrounding non-malignant cells, and non-cellular components are involved in this process. While intercellular communication traditionally centers around chemokines, cytokines, inflammatory mediators, and growth factors, emerging pathways involving extracellular vesicles (EVs) are gaining increasing attention. The immunosuppressive TME is created and maintained in part by the large abundance of tumor-associated macrophages (TMAs), which are associated with drug resistance, poor prognosis, and have emerged as potential targets for cancer immunotherapy. TMAs are highly dynamic, and can be polarized into either M1 or M2-like macrophages. EVs are efficient cell-cell communication molecules that have been catapulted to the center of TMA polarization. In this article, we provide detailed examination of the determinative role of EVs in sustaining the TME through mediating crosstalk between tumor cells and tumor-associated macrophages.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Beibei Gao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Dongdong Tong
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Biomedical Experimental Center of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Environmenta and Genes Related to Diseases Key Laboratory of Education Ministry, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
15
|
Decoding Roles of Exosomal lncRNAs in Tumor-Immune Regulation and Therapeutic Potential. Cancers (Basel) 2022; 15:cancers15010286. [PMID: 36612282 PMCID: PMC9818565 DOI: 10.3390/cancers15010286] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Exosomes are nanovesicles secreted into biofluids by various cell types and have been implicated in different physiological and pathological processes. Interestingly, a plethora of studies emphasized the mediating role of exosomes in the bidirectional communication between donor and recipient cells. Among the various cargoes of exosomes, long non-coding RNAs (lncRNAs) have been identified as crucial regulators between cancer cells and immune cells in the tumor microenvironment (TME) that can interfere with innate and adaptive immune responses to affect the therapeutic efficiency. Recently, a few major studies have focused on the exosomal lncRNA-mediated interaction between cancer cells and immune cells infiltrated into TME. Nevertheless, a dearth of studies pertains to the immune regulating role of exosomal lncRNAs in cancer and is still in the early stages. Comprehensive mechanisms of exosomal lncRNAs in tumor immunity are not well understood. Herein, we provide an overview of the immunomodulatory function of exosomal lncRNAs in cancer and treatment resistance. In addition, we also summarize the potential therapeutic strategies toward exosomal lncRNAs in TME.
Collapse
|
16
|
Upregulation of miR-222-3p alleviates the symptom of aortic dissection through targeting STAT3. Life Sci 2022; 310:121051. [DOI: 10.1016/j.lfs.2022.121051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
|
17
|
Wang S, Sun J, Dastgheyb RM, Li Z. Tumor-derived extracellular vesicles modulate innate immune responses to affect tumor progression. Front Immunol 2022; 13:1045624. [PMID: 36405712 PMCID: PMC9667034 DOI: 10.3389/fimmu.2022.1045624] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/18/2022] [Indexed: 04/23/2024] Open
Abstract
Immune cells are capable of influencing tumor progression in the tumor microenvironment (TME). Meanwhile, one mechanism by which tumor modulate immune cells function is through extracellular vesicles (EVs), which are cell-derived extracellular membrane vesicles. EVs can act as mediators of intercellular communication and can deliver nucleic acids, proteins, lipids, and other signaling molecules between cells. In recent years, studies have found that EVs play a crucial role in the communication between tumor cells and immune cells. Innate immunity is the first-line response of the immune system against tumor progression. Therefore, tumor cell-derived EVs (TDEVs) which modulate the functional change of innate immune cells serve important functions in the context of tumor progression. Emerging evidence has shown that TDEVs dually enhance or suppress innate immunity through various pathways. This review aims to summarize the influence of TDEVs on macrophages, dendritic cells, neutrophils, and natural killer cells. We also summarize their further effects on the progression of tumors, which may provide new ideas for developing novel tumor therapies targeting EVs.
Collapse
Affiliation(s)
- Siqi Wang
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Jiaxin Sun
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Raha M. Dastgheyb
- School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Zhigang Li
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
18
|
Zhang LJ, Chen F, Liang XR, Ponnusamy M, Qin H, Lin ZJ. Crosstalk among long non-coding RNA, tumor-associated macrophages and small extracellular vesicles in tumorigenesis and dissemination. Front Oncol 2022; 12:1008856. [PMID: 36263199 PMCID: PMC9574020 DOI: 10.3389/fonc.2022.1008856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), which lack protein-coding ability, can regulate cancer cell growth, proliferation, invasion, and metastasis. Tumor-associated macrophages (TAMs) are key components of the tumor microenvironment that have a significant impact on cancer progression. Small extracellular vesicles (sEV) are crucial mediators of intercellular communications. Cancer cell and macrophage-derived sEV can carry lncRNAs that influence the onset and progression of cancer. Dysregulation of lncRNAs, TAMs, and sEV is widely observed in tumors which makes them valuable targets for cancer immunotherapy. In this review, we summarize current updates on the interactions among sEV, lncRNAs, and TAMs in tumors and provide new perspectives on cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Li-jie Zhang
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Feng Chen
- Department of General Surgery, Weifang Traditional Chinese Hospital, Weifang, China
| | - Xiao-ru Liang
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | | | - Hao Qin
- Department of Public Health, Weifang Medical University, Weifang, China
| | - Zhi-juan Lin
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
- *Correspondence: Zhi-juan Lin,
| |
Collapse
|
19
|
Jiang J, Ying H. Revealing the crosstalk between nasopharyngeal carcinoma and immune cells in the tumor microenvironment. J Exp Clin Cancer Res 2022; 41:244. [PMID: 35964134 PMCID: PMC9375932 DOI: 10.1186/s13046-022-02457-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 01/13/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) arises from the epithelial cells located in the nasopharynx and has a distinct geographic distribution. Chronic Epstein-Barr virus (EBV) infection, as its most common causative agents, can be detected in 100% of NPC types. In-depth studies of the cellular and molecular events leading to immunosuppression in NPC have revealed new therapeutic targets and diverse combinations that promise to benefit patients with highly refractory, advanced and metastatic NPC. This paper reviews the mechanisms by which NPC cells to circumvent immune surveillance and approaches being attempted to restore immunity. We integrate existing insights into anti-NPC immunity and molecular signaling pathways as well as targeting therapies in anticipation of broader applicability and effectiveness in advanced metastatic NPC.
Collapse
|