1
|
Jin H, Liang G, Huang W, Wang Z, Wu L, Li Y. AGR2 activates the TGF-β/Smad signaling pathway to promote epithelial-mesenchymal transition, invasion, and metastasis in nasopharyngeal carcinoma. Eur Arch Otorhinolaryngol 2025; 282:2411-2418. [PMID: 40119906 DOI: 10.1007/s00405-025-09328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/03/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Anterior gradient 2 protein (AGR2) is associated with tumorigenesis and metastasis in different cancers. However, its role in nasopharyngeal carcinoma (NPC) remains unknown. This study aimed to explore the effect of AGR2 on epithelial-mesenchymal transition (EMT) in NPC and its underlying mechanisms. METHODS AGR2 expression was analyzed in cancerous and para-cancerous tissues from ten NPC patients using RT-qPCR. Western blotting was used to determine the AGR2 protein levels in two NPC cell lines and a nasopharyngeal epithelial cell line. AGR2 was overexpressed or knocked out in NPC cells and its effects on cell viability, migration, invasion, and EMT markers were evaluated in vitro. RESULT AGR2 expression was significantly higher in NPC tissues compared to adjacent normal tissues. Similarly, NPC cell lines exhibited increased AGR2 levels compared to the nasopharyngeal epithelial cell line. AGR2 knockout significantly reduced cell viability, migration, and invasion. It also decreased N-cadherin protein levels while increasing E-cadherin, α-SMA, and vimentin expression. Conversely, AGR2 overexpression produced the opposite effects. Furthermore, AGR2 deletion inactivated the TGF-β/Smad signaling pathway. CONCLUSION AGR2 promotes tumor progression and EMT in NPC through activation of the TGF-β/Smad signaling pathway. These findings suggest that AGR2 may serve as a potential biomarker and therapeutic target for NPC.
Collapse
Affiliation(s)
- Hui Jin
- Department of Otolaryngology, Wuhan Third Hospital, No. 241 Pengliuyang Road, Wuchang District, Wuhan City, 430000, Hubei Province, China
| | - Gengtian Liang
- Department of Otolaryngology, Wuhan Third Hospital, No. 241 Pengliuyang Road, Wuchang District, Wuhan City, 430000, Hubei Province, China.
| | - Wenxia Huang
- Department of Otolaryngology, Wuhan Third Hospital, No. 241 Pengliuyang Road, Wuchang District, Wuhan City, 430000, Hubei Province, China
| | - Zhen Wang
- Department of Otolaryngology, Wuhan Third Hospital, No. 241 Pengliuyang Road, Wuchang District, Wuhan City, 430000, Hubei Province, China
| | - Longjun Wu
- Department of Otolaryngology, Wuhan Third Hospital, No. 241 Pengliuyang Road, Wuchang District, Wuhan City, 430000, Hubei Province, China
| | - Yaping Li
- Department of Cardiology, Wuhan Third Hospital, Wuhan, 430000, Hubei Province, China
| |
Collapse
|
2
|
Lu J, Wu H, Zhan P, Lu Y, Fang Q, Luo C, Wang F, Wen J, Xie C, Yin Z. PSMD14-mediated deubiquitination of CARM1 facilitates the proliferation and metastasis of hepatocellular carcinoma by inducing the transcriptional activation of FERMT1. Cell Death Dis 2025; 16:141. [PMID: 40016178 PMCID: PMC11868421 DOI: 10.1038/s41419-025-07416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/13/2025] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
Hepatocellular carcinoma (HCC) is a highly potent malignancy. The enzyme coactivator-associated arginine methyltransferase 1 (CARM1) is highly expressed in different types of cancer. However, the precise levels of expression, clinical significance, biological functions, and molecular mechanisms of CARM1 in HCC, particularly related to the downstream genes regulated by CARM1 through histone arginine methylation, remain unclear. In this study, we presented findings from the TCGA database and clinical samples, which collectively demonstrated the overexpression of CARM1 in HCC. Additionally, we found that the upregulation of CARM1 was mediated by PSMD14-induced deubiquitination. CARM1 promoted the proliferation and metastasis of HCC cells in vitro and in vivo. Mechanistic investigations further revealed that FERMT1 is a downstream gene of CARM1, and CARM1 activates the transcription of FERMT1 through the dimethylation of arginine 17 on histone 3 (H3R17me2). Additionally, administering SGC2085, a CARM1 inhibitor, effectively suppressed the malignant behaviors of HCC cells. To summarize, our findings provided strong evidence that CARM1 can serve as a key oncoprotein; thus, it holds promise as a therapeutic target for HCC.
Collapse
Affiliation(s)
- Jing Lu
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Huita Wu
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
- Department of Oncology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ping Zhan
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Yuyan Lu
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Qinliang Fang
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Changhong Luo
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Fuqiang Wang
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Liver Diseases, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Xiamen, Fujian Province, China.
| | - Jing Wen
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Liver Diseases, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Xiamen, Fujian Province, China.
| | - Chengrong Xie
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian Province, China.
| | - Zhenyu Yin
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian Province, China.
| |
Collapse
|
3
|
Ni Y, Cao J, Li Y, Qi X. SOX11 silence inhibits atherosclerosis progression in ApoE-deficient mice by alleviating endothelial dysfunction. Exp Cell Res 2025; 445:114422. [PMID: 39805338 DOI: 10.1016/j.yexcr.2025.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/02/2025] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
SRY-Box Transcription Factor-11 (SOX11) is a transcriptional regulatory factor that plays a crucial role in inflammatory responses. However, its involvement in atherosclerosis (AS), a cardiovascular disease driven by endothelial cell inflammation, remains unknown. This study aims to elucidate the role of SOX11 in AS. The expression of SOX11 was found to be elevated in the aortic tissue of AS mice induced by feeding ApoE-deficient mice a high-fat diet. Knockdown of SOX11 using lentiviral-mediated SOX11-specific shRNA via tail vein injection resulted in a reduction in plaque area and lipid deposition within plaques at the aortic root. Furthermore, silencing SOX11 led to decreased expression of cell adhesion factors Intercellular Cell Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1, as well as reduced levels of inflammatory factors Interleukin (IL)-6, IL-1β, and chemokine Monocyte Chemotactic Protein-1. In the human umbilical vein endothelial cells (HUVECs) induced by Tumor Necrosis Factor (TNF)-α, increased inflammation was observed at the cellular level, along with enhanced monocyte adhesion. Infection of HUVECs with lentivirus carrying specific shRNA targeting SOX11 inhibited inflammatory response. Mechanistically, chromatin immunoprecipitation (ChIP)-PCR results revealed that SOX11 bound to the promoters of downstream target genes Tumor Necrosis Factor Receptor-Associated Factor-1 (TRAF1), Cluster of Differentiation (CD)40, and CD36, positively regulating their transcription. In conclusion, SOX11 plays a pivotal role in promoting endothelial cell inflammation. Suppression of SOX11 reduces endothelial cell inflammation by inhibiting the transcription of TRAF1, CD40, and CD36, thereby impeding the progression of atherosclerosis.
Collapse
Affiliation(s)
- Yanhui Ni
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Department of Cardiology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Jingjing Cao
- Department of Rheumatology and Immunology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Yuxuan Li
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Xiaoyong Qi
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Department of Cardiology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
4
|
Jang JH, Jung J, Kang HG, Kim W, Kim WJ, Lee H, Cho JY, Hong R, Kim JW, Chung JY, Chun KH, Kim SJ. Kindlin-1 promotes gastric cancer cell motility through the Wnt/β-catenin signaling pathway. Sci Rep 2025; 15:2481. [PMID: 39833319 PMCID: PMC11756408 DOI: 10.1038/s41598-025-86220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Despite advances in gastric cancer diagnosis and treatment, its prognosis remains poor owing to aggressive tumor progression and metastasis. As understanding the relevant molecular mechanisms is essential to effectively improve patient outcomes, we elucidated the role of Kindlin-1 in gastric cancer progression and metastasis. Kindlin-1 expression was analyzed in 359 gastric cancer tissue samples provided by Kangnam Sacred Heart Hospital and publicly available GSE datasets. Kindlin-1 showed significantly higher expression in gastric cancer tissues than that in normal tissues, and high Kindlin-1 expression was associated with poor prognosis. Further, the mRNA and protein expression of Kindlin-1 were high in gastric cancer cell lines, where they were associated with increased proliferation, migration, and invasion. Our findings demonstrated that Kindlin-1 regulated epithelial-mesenchymal transition-related genes through interaction with activated Wnt/β-catenin signaling. Notably, Kindlin-1 enhanced β-catenin expression and promoted its nuclear translocation from the cytoplasm, increasing TCF4 transcriptional activity and inducing gastric cancer progression and metastasis. Overall, these findings demonstrate that Kindlin-1 is upregulated in gastric cancer and activates Wnt/β-catenin signaling to promote cell proliferation and motility.
Collapse
Affiliation(s)
- Jun-Ho Jang
- Department of Integrative Biological Sciences and BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea
| | - Jiyoon Jung
- Department of Pathology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 07441, Republic of Korea
| | - Hyeon-Gu Kang
- Department of Integrative Biological Sciences and BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare and Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
| | - Woong Kim
- Institute of Well-Aging Medicare and Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
| | - Won-Jin Kim
- Department of Integrative Biological Sciences and BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare and Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
| | - Hana Lee
- Department of Integrative Biological Sciences and BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare and Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
| | - Ju Yeon Cho
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Ran Hong
- Department of Pathology, College of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Jeong Won Kim
- Department of Pathology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 07441, Republic of Korea
| | - Joon-Yong Chung
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Seok-Jun Kim
- Department of Integrative Biological Sciences and BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea.
- Institute of Well-Aging Medicare and Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea.
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
5
|
Wang Y, Qin Y, Wu C, Chen J, Zhang Y, Chen Y, Xie X, Gao X, Sun C, Liu S. OSU-T315 overcomes immunosuppression in triple-negative breast cancer by targeting the ILK/NF-κB signaling pathway to enhance immunotherapeutic efficacy. Int Immunopharmacol 2024; 143:113530. [PMID: 39515039 DOI: 10.1016/j.intimp.2024.113530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/15/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Triple negative breast cancer (TNBC) is an aggressive and immunogenic subtype of breast cancer. The absence of biomarker has given immune checkpoint inhibitors (ICIs) a broad prospect in this type of breast cancer. The infiltration of regulatory T cells (Tregs) expressing transcription factor forkhead box P3 (Foxp3) in the tumor microenvironment (TME) is the key factor leading to ICIs resistance. Therefore, elimination of tumor antigen-specific Tregs may be an important aspect of improving ICIs efficacy. In this study, it based on the Gene Expression Omnibus and The Cancer Genome Atlas database, along with in vivo and in vitro experimental models, to verified that the high expression of integrin-linked kinase (ILK) in TNBC is the key differential factor leading to the high infiltration of Foxp3+-Tregs in the TME. Then, we selected ILK-specific inhibitor, OSU-T315, to intervene in vitro and vivo. Importantly, we found that OSU-T315 blocked the secretion of CCL17/CCL22 in tumor cells by inhibiting the ILK/NF-κB pathway, resulting in the apoptosis of Foxp3+-Tregs and decreased programmed cell death-1 (PD-1) expression. Therefore, our findings indicate a novel mechanism of OSU-T315 with potential therapeutic application in TNBC.
Collapse
Affiliation(s)
- Yi Wang
- Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang 310000, China; Integrated Traditional Chinese and Western Medicine Breast Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China; Postgraduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuenong Qin
- Integrated Traditional Chinese and Western Medicine Breast Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Chunyu Wu
- Integrated Traditional Chinese and Western Medicine Breast Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Jiajing Chen
- Integrated Traditional Chinese and Western Medicine Breast Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Yang Zhang
- Thyroid and Breast Surgery Department, Affiliated Hospital to Shandong University of Traditional Chinese Medicine, Shandong 250000, China
| | - Yueqiang Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaohong Xie
- Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang 310000, China
| | - Xiufei Gao
- Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang 310000, China
| | - Chenping Sun
- Integrated Traditional Chinese and Western Medicine Breast Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China.
| | - Sheng Liu
- Integrated Traditional Chinese and Western Medicine Breast Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China; Postgraduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
Guo W, Liu M, Luo W, Peng J, Liu F, Ma X, Wang L, Yang S. FERMT1 promotes epithelial-mesenchymal transition of hepatocellular carcinoma by activating EGFR/AKT/β-catenin and EGFR/ERK pathways. Transl Oncol 2024; 50:102144. [PMID: 39353234 PMCID: PMC11472111 DOI: 10.1016/j.tranon.2024.102144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 07/10/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the effects of fermitin family member 1 (FERMT1) on epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma (HCC) via the EGFR/AKT/β-catenin and EGFR/ERK pathways. METHODS The expression of FERMT1 encoding protein kindlin-1 in HCC tissues was determined by immunohistochemistry, and FERMT1 mRNA expression in HCC tissues and cell lines was analyzed by qRT-PCR. After the FERMT1 expression of SNU182 and SNU387 interfered with siRNA, the cell viability, invasion, migration, and EMT were tested by CCK-8, transwell invasion, scratching, immunofluorescence/WB, respectively. Similarly, the effects of FERMT1 on the viability and metastasis of HCC were investigated in transplanted tumor and lung metastasis mouse models. The protein expressions of EGFR/AKT/β-catenin and EGFR/ERK pathways were analyzed by WB. In addition, the relationship between FERMT1 and EGFR was further determined by immunofluorescence double staining and Co-IP. RESULTS FERMT1 was significantly upregulated in HCC, and silencing FERMT1 inhibited the viability, invasion, migration, and EMT of HCC. Silencing FERMT1 also inhibited the activation of EGFR/AKT/β-catenin and EGFR/ERK pathways. In addition, inhibition of EGFR, AKT, or ERK confirmed that EGFR/AKT/β-catenin and EGFR/ERK pathways were involved in the promoting effects of FERMT1 on HCC. Co-IP and immunofluorescence experiments confirmed the targeting relationship between FERMT1 and EGFR. CONCLUSION FERMT1 was highly expressed in HCC and promoted viability, invasion, migration, and EMT of HCC by targeting EGFR to activate the EGFR/AKT/β-catenin and EGFR/ERK pathways. Our study revealed the role of FERMT1 in HCC and suggested that FERMT1 exerts biological effects through activating the EGFR/AKT/β-catenin and EGFR/ERK pathways.
Collapse
Affiliation(s)
- Wubin Guo
- Department of General Surgery, The Affifiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China; National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Mengnan Liu
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China; National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Wei Luo
- Department of General Surgery, The Affifiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jing Peng
- Department of General Surgery, The Affifiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Fei Liu
- Department of General Surgery, The Affifiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xin Ma
- Department of General Surgery, The Affifiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Li Wang
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China; National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Sijin Yang
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China; National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Zhang Q, Yang Q, Shen F, Wang L, Luo J. Identification of a novel FERMT1 variant causing kindler syndrome and a review of the clinical and molecular genetic features in Chinese patients. Front Pediatr 2024; 12:1425030. [PMID: 39309641 PMCID: PMC11415864 DOI: 10.3389/fped.2024.1425030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Background Kindler Syndrome (KS, OMIM #173650), a rare autosomal recessive genetic disorder, is characterized by a spectrum of symptoms such as cutaneous fragility, blistering, photosensitivity, and mucosal involvement. These symptoms result from variations in the FERMT1 gene (Fermitin family member 1, OMIM: 607900), encoding kindlin-1, an essential component of focal adhesions. Objective This study aims to ascertain the potential pathogenicity of a FERMT1 variant identified in a Chinese patient and to explore the phenotypic and molecular genetic characteristics of all reported cases of Kindler Syndrome in the Chinese population. Methods Whole-exome sequencing (WES) was performed on the patient to identify candidate variants associated with KS, and Sanger sequencing was utilized to authenticate their presence and origin. To further assess the potential impact of these genetic variants, we employed a variety of in silico prediction tools. Concurrently, a review of various databases was undertaken to ascertain and consolidate information regarding cases of KS in Chinese families. Results We identified a novel likely pathogenic frameshift variant in the FERMT1 gene, specifically c.567_579delTATATATGACCCC (p.Ile190Serfs*10). The clinical presentation of this patient aligns with the diagnostic criteria for KS. The literature review reveals that the core clinical features of KS reported in the Chinese population include skin abnormalities (100%), as well as hyperkeratosis of the palms and soles (91.70%). Other clinical phenotypes encompass nail abnormalities (77.78%), abnormalities of the fingers/toes (75.00%), oral damage (70.00%), eye abnormalities (57.14%), and constipation (50.00%). Conclusion Our study enriches the genetic landscape of KS in the Chinese population and augments the understanding of phenotypic variability resulting from FERMT1 gene variants. The findings hold considerable significance for refining variant-based screening, genetic diagnosis, and comprehending the molecular pathogenesis underlying FERMT1-related disorders.
Collapse
Affiliation(s)
- Qiang Zhang
- Laboratory of Genetic Metabolism Center, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Hematology Laboratory, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Qi Yang
- Laboratory of Genetic Metabolism Center, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Fei Shen
- Laboratory of Genetic Metabolism Center, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Linlin Wang
- Laboratory of Genetic Metabolism Center, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsi Luo
- Laboratory of Genetic Metabolism Center, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
8
|
Dermitzakis I, Chatzi D, Kyriakoudi SA, Evangelidis N, Vakirlis E, Meditskou S, Theotokis P, Manthou ME. Skin Development and Disease: A Molecular Perspective. Curr Issues Mol Biol 2024; 46:8239-8267. [PMID: 39194704 DOI: 10.3390/cimb46080487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Skin, the largest organ in the human body, is a crucial protective barrier that plays essential roles in thermoregulation, sensation, and immune defence. This complex organ undergoes intricate processes of development. Skin development initiates during the embryonic stage, orchestrated by molecular cues that control epidermal specification, commitment, stratification, terminal differentiation, and appendage growth. Key signalling pathways are integral in coordinating the development of the epidermis, hair follicles, and sweat glands. The complex interplay among these pathways is vital for the appropriate formation and functionality of the skin. Disruptions in multiple molecular pathways can give rise to a spectrum of skin diseases, from congenital skin disorders to cancers. By delving into the molecular mechanisms implicated in developmental processes, as well as in the pathogenesis of diseases, this narrative review aims to present a comprehensive understanding of these aspects. Such knowledge paves the way for developing innovative targeted therapies and personalised treatment approaches for various skin conditions.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Chatzi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stella Aikaterini Kyriakoudi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Evangelidis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
9
|
Zhou Z, Lin J, Wang Y, Chen Y, Zhang Y, Ding X, Xu B. Acute radiation skin injury in stage III-IV head and neck cancer: scale correlates and predictive model. World J Surg Oncol 2024; 22:195. [PMID: 39054478 PMCID: PMC11271214 DOI: 10.1186/s12957-024-03490-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
PURPOSE Active radiation skin injury (ARSI) has the highest incidence of acute adverse reactions caused by radiotherapy (RT) in patients with head and neck cancer (HNC). This study aimed to screen risk factors that can facilitate the identification of HNC patients at high risk of ARSI. METHODS Data from 255 stage III-IV HNC patients who underwent intensity-modulated radiation therapy (IMRT) were collected. The data from our medical records, including clinical characteristics and hematological indices before RT, were retrospectively collected and arranged. The Common Terminology Criteria for Adverse Events Criteria (CTCAE), Radiation Therapy Oncology Group Criteria (RTOG), World Health Organization Criteria (WHO), Oncology Nursing Society (ONS), Acute Radiation Dermatitis Graduation Scale, Douglas & Fowler and Radiation Dermatitis Severity Scale (RDSS) were used to assess ARSI. Of these, CTCAE was used for further analysis. Binary logistic regression analyses were used to identity risk factors. To establish the correction between each risk factor and the ARSI score, the odds ratio (OR) and 95% confidence interval (CI) were computed. RESULTS The assessment results of the CTCAE with RTOG, WHO, ONS, Graduation Scale, Douglas & Fowler and RDSS have good consistency. After radiotherapy, 18.4% of patients had at least 3 (3 +) grade ARSI. Multivariate logistic regression analysis revealed that the KPS score, blood glucose level, white blood cell count, and plasma free thyroxine (FT4) concentration were independent risk factors for 3 + grade ARSI. A nomogram was constructed on the basis of these risk factors, which demonstrated good predictive power according to the area under the ROC curve (AUC). The satisfactory consistency and clinical efficacy of the nomogram were confirmed by calibration curves and decision curve analysis (DCA). CONCLUSION A low KPS score, high blood glucose level, high white blood cell count, and high thyroid hormone prior to radiotherapy for stage III-IV HNC are independent risk factors for grade 3 + RSI.
Collapse
Affiliation(s)
- Zihan Zhou
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Junjian Lin
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ying Wang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yunhao Chen
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Zhang
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong, China
| | - Xingchen Ding
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), Fuzhou, Fujian, China.
- Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, Fujian, China.
| |
Collapse
|
10
|
Pan Z, Ke C, Zheng H, Guo X, Gao W, Huang X, Chen C, Xiong Y, Zheng S, Zheng F, Hu W. FERMT1 suppression induces anti-tumor effects and reduces stemness in glioma cancer cells. J Cancer Res Clin Oncol 2024; 150:338. [PMID: 38976072 PMCID: PMC11231014 DOI: 10.1007/s00432-024-05859-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
OBJECTIVE Glioma is a leading cause of mortality worldwide, its recurrence poses a major challenge in achieving effective treatment outcomes. Cancer stem cells (CSCs) have emerged as key contributors to tumor relapse and chemotherapy resistance, making them attractive targets for glioma cancer therapy. This study investigated the potential of FERMT1 as a prognostic biomarker and its role in regulating stemness through cell cycle in glioma. METHODS Using data from TCGA-GBM, GSE4290, GSE50161 and GSE147352 for analysis of FERMT1 expression in glioma tissues. Then, the effects of FERMT1 knockdown on cell cycle, proliferation, sphere formation ability, invasion and migration were investigated. The influences of FERMT1 on expression of glycolysis-related proteins and levels of ATP, glucose, lactate and G6PDH were also explored. Furthermore, the effects of FERMT1 knockdown on cellular metabolism were evidenced. RESULTS Significant upregulation of FERMT1 in glioma tissues was observed. Silencing FERMT1 not only affected the cell cycle but also led to a notable reduction in proliferation, invasion and migration. The expression of glycolysis-associated proteins including GLUT1, GLUT3, GLUT4, and SCO2 were reduced by FERMT1 knockdown, resulted in increased ATP and glucose as well as decreased lactic acid and G6PDH levels. FERMT1 knockdown also inhibited cellular metabolism. Moreover, FERMT1 knockdown significantly reduced sphere diameter, along with inhibiting the expression of transcription factors associated with stemness in glioma cells. CONCLUSION These findings demonstrated that FERMT1 could be an ideal target for the advancement of innovative strategies against glioma treatment via modulating cellular process involved in stemness regulation and metabolism.
Collapse
Affiliation(s)
- Zhigang Pan
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, 34# zhongshan North Road, Quanzhou, Fujian, 362000, China
| | - Chuhan Ke
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, 34# zhongshan North Road, Quanzhou, Fujian, 362000, China
| | - Hanlin Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, 34# zhongshan North Road, Quanzhou, Fujian, 362000, China
| | - Xiumei Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, 34# zhongshan North Road, Quanzhou, Fujian, 362000, China
| | - Wen Gao
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, 34# zhongshan North Road, Quanzhou, Fujian, 362000, China
| | - Xinyue Huang
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, 34# zhongshan North Road, Quanzhou, Fujian, 362000, China
| | - Chunhui Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, 34# zhongshan North Road, Quanzhou, Fujian, 362000, China
| | - Yu Xiong
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, 34# zhongshan North Road, Quanzhou, Fujian, 362000, China
| | - Shuni Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, 34# zhongshan North Road, Quanzhou, Fujian, 362000, China.
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, 34# zhongshan North Road, Quanzhou, Fujian, 362000, China.
| | - Weipeng Hu
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, 34# zhongshan North Road, Quanzhou, Fujian, 362000, China.
| |
Collapse
|
11
|
Wang J, Zheng Q, Zhao Y, Chen S, Chen L. HMGB1 enhances the migratory and invasive abilities of A2780/DDP cells by facilitating epithelial to mesenchymal transition via GSK‑3β. Exp Ther Med 2024; 27:102. [PMID: 38356665 PMCID: PMC10865443 DOI: 10.3892/etm.2024.12390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/25/2023] [Indexed: 02/16/2024] Open
Abstract
The aim of the present study was to investigate the impact and mechanism of high mobility group box 1 (HMGB1) on the regulation of cell migration and invasion in A2780/DDP cisplatin-resistant ovarian cancer cells. After transfecting small interfering (si)RNA-HMGB1 into A2780/DDP cells, Transwell migration and invasion assays were conducted to assess alterations in the cell migratory and invasive abilities. Additionally, western blotting analyses were performed to examine changes in HMGB1, phosphorylated (p)-GSK-3β, GSK-3β, E-cadherin and vimentin expression levels. The results of the present study demonstrated that the migratory and invasive abilities of A2780/DDP cells were significantly higher compared with those of A2780 cells. Additionally, the expression levels of HMGB1, p-GSK-3β and the mesenchymal phenotype marker, vimentin, in A2780/DDP cells were significantly elevated relative to the levels in A2780 cells. Conversely, the expression level of the epithelial phenotype marker, E-cadherin, was markedly decreased compared with that in A2780 cells. Following transfection of A2780/DDP cells with siRNA-HMGB1, there was a significant reduction in the rate of cell migration and invasion. Simultaneously, the expression levels of HMGB1, p-GSK-3β and vimentin were downregulated while the level of E-cadherin was upregulated. It was therefore concluded that the high expression of HMGB1 in A2780/DDP cells enhanced the cell migration and invasion abilities by facilitating epithelial to mesenchymal transition via GSK-3β.
Collapse
Affiliation(s)
- Jinhua Wang
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Qiaomei Zheng
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yanjing Zhao
- Department of Surgery, 92403 Military Hospital, Fuzhou, Fujian 350015, P.R. China
| | - Shaozhan Chen
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Lihong Chen
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
12
|
Zheng CS, Huang WM, Xia HM, Mi JL, Li YQ, Liang HQ, Zhou L, Lu ZX, Wu F. Oncogenic and immunological roles of RACGAP1 in pan-cancer and its potential value in nasopharyngeal carcinoma. Apoptosis 2024; 29:243-266. [PMID: 37670104 DOI: 10.1007/s10495-023-01884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/07/2023]
Abstract
A particular GTPase-activating protein called RACGAP1 is involved in apoptosis, proliferation, invasion, metastasis, and drug resistance in a variety of malignancies. Nevertheless, the role of RACGAP1 in pan-cancer was less studied, and its value of the expression and prognostic of nasopharyngeal carcinoma (NPC) has not been explored. Hence, the goal of this study was to investigate the oncogenic and immunological roles of RACGAP1 in various cancers and its potential value in NPC. We comprehensively analyzed RACGAP1 expression, prognostic value, function, methylation levels, relationship with immune cells, immune infiltration, and immunotherapy response in pan-cancer utilizing multiple databases. The results discovered that RACGAP1 expression was elevated in most cancers and suggested poor prognosis, which could be related to the involvement of RACGAP1 in various cancer-related pathways such as the cell cycle and correlated with RACGAP1 methylation levels, immune cell infiltration and reaction to immunotherapy, and chemoresistance. RACGAP1 could inhibit anti-tumor immunity and immunotherapy responses by fostering immune cell infiltration and cytotoxic T lymphocyte dysfunction. Significantly, we validated that RACGAP1 mRNA and protein were highly expressed in NPC. The Gene Expression Omnibus database revealed that elevated RACGAP1 expression was associated with shorter PFS in patients with NPC, and RACGAP1 potentially influenced cell cycle progression, DNA replication, metabolism, and immune-related pathways, resulting in the recurrence and metastasis of NPC. This study indicated that RACGAP1 could be a potential biomarker in pan-cancer and NPC.
Collapse
Affiliation(s)
- Cheng-Shan Zheng
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Wei-Mei Huang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hong-Mei Xia
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Jing-Lin Mi
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Yuan-Qing Li
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Hui-Qing Liang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Li Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Zhou-Xue Lu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Fang Wu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China.
| |
Collapse
|
13
|
Liu B, Feng Y, Xie N, Yang Y, Yang D. FERMT1 promotes cell migration and invasion in non-small cell lung cancer via regulating PKP3-mediated activation of p38 MAPK signaling. BMC Cancer 2024; 24:58. [PMID: 38200443 PMCID: PMC10782736 DOI: 10.1186/s12885-023-11812-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Fermitin family member 1 (FERMT1) is highly expressed in many tumors and acts as an oncogene. Nonetheless, the precise function of FERMT1 in non-small cell lung cancer (NSCLC) has not been clearly elucidated. METHODS Bioinformatics software predicted the FERMT1 expression in NSCLC. Transwell assays facilitated the detection of NSCLC cell migration and invasion. Western blotting techniques were employed to detect the protein levels regulated by FERMT1. RESULTS FERMT1 exhibited high expression levels in NSCLC and was linked to the patients' poor prognosis, as determined by a variety of bioinformatics predictions combined with experimental verification. FERMT1 promoted the migration and invasion of NSCLC and regulated epithelial to mesenchymal transition (EMT) -related markers. Further studies showed that FERMT1 could up-regulate the expression level of plakophilin 3(PKP3). Further research has indicated that FERMT1 can promote cell migration and invasion via up-regulating PKP3 expression. By exploring downstream signaling pathways, we found that FERMT1 has the capability to activate the p38 mitogen-activated protein kinases (p38 MAPK) signaling pathway, and knocking down PKP3 can counteract the activation induced by FERMT1 overexpression. CONCLUSIONS FERMT1 was highly expressed in NSCLC and can activate the p38 MAPK signaling pathway through up-regulation of PKP3, thus promoting the invasion and migration of NSCLC.
Collapse
Affiliation(s)
- Bao Liu
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, 150081, Heilongjiang, Harbin, China
| | - Yan Feng
- Department of Medical Oncology, Beidahuang Industry Group General Hospital, 150000, Heilongjiang, Harbin, China
| | - Naiying Xie
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, 150081, Heilongjiang, Harbin, China
| | - Yang Yang
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, 150081, Heilongjiang, Harbin, China
| | - Dameng Yang
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, 150000, Harbin City, Heilongjiang Province, China.
| |
Collapse
|
14
|
Gong B, Wang L, Zhang H, Wang Q, Li W. Amplifying T cell-mediated antitumor immune responses in nonsmall cell lung cancer through photodynamic therapy and anti-PD1. Cell Biochem Funct 2024; 42:e3925. [PMID: 38269509 DOI: 10.1002/cbf.3925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Photodynamic therapy (PDT) is nowadays widely employed in cancer treatment. We sought to assess the efficacy of combining PDT with anti-programmed cell death protein 1 (PD1) and to investigate the associated mechanisms in nonsmall cell lung cancer (NSCLC). We established a xenograft tumor model in C57BL/6J mice using Lewis lung carcinoma (LLC) cells, recorded tumor growth, and quantified reactive oxygen species (ROS) levels using a ROS detection kit. Pathological changes were assessed through H&E staining, while immunofluorescence (IF) was used to determine the expression of CD8 and Foxp3. Transcriptomic analysis was conducted, analyzing differential expressed genes (DEGs) among control, PDT, and PDT combined with anti-PD1 (PDT+anti-PD1) groups. Functional enrichment analysis via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed. The Cancer Genome Atlas (TCGA) database was utilized to analyze the expression of aminolevulinate synthase gene (ALAS2), integrin alpha10 (ITGA10), ATP1A2, a disintegrin and metalloprotease 12 (ADAM12), and Lox1 in lung adenocarcinoma and adjacent tissues, with concurrent immune infiltration analysis. Quantitative real-time polymerase chain reaction and western blot were employed to measure mRNA and protein expression levels. Treatment with PDT combined with anti-PD1 significantly inhibited tumor growth and increased the number of CD8+ cells while decreasing Foxp3+ cells. Immune infiltration results presented ALAS2, ADAM12, and ITGA10 were associated with various types of T cells or macrophages. Additionally, the expression levels of EGFR, ERK, and PI3K/Akt were suppressed after PDT with anti-PD1 treatment. Our findings collectively suggest that PDT combined with anti-PD1 treatment could enhance the infiltration of CD8+ T cells, suppressing tumor growth, and this effect was associated with ALAS2, ITGA10, and ADAM12. The underlying mechanism might be linked to EGFR, ERK, and PI3K/Akt signaling. Overall, this study provides valuable insights into the application of PDT combined with anti-PD1 treatment in NSCLC.
Collapse
Affiliation(s)
- Beilei Gong
- Anhui Medical University, Hefei, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Clinical and Preclinical Key Laboratory of Respiratory Disease in Anhui Province, Bengbu, China
| | - Liping Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Han Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qingkai Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wei Li
- Anhui Medical University, Hefei, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Clinical and Preclinical Key Laboratory of Respiratory Disease in Anhui Province, Bengbu, China
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, China
| |
Collapse
|