1
|
Hypnozoite dynamics for Plasmodium vivax malaria: the epidemiological effects of radical cure. J Theor Biol 2022; 537:111014. [PMID: 35016895 DOI: 10.1016/j.jtbi.2022.111014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/30/2021] [Accepted: 01/03/2022] [Indexed: 01/27/2023]
Abstract
Malaria is a mosquito-borne disease with a devastating global impact. Plasmodium vivax is a major cause of human malaria beyond sub-Saharan Africa. Relapsing infections, driven by a reservoir of liver-stage parasites known as hypnozoites, present unique challenges for the control of P. vivax malaria. Following indeterminate dormancy periods, hypnozoites may activate to trigger relapses. Clearance of the hypnozoite reservoir through drug treatment (radical cure) has been proposed as a potential tool for the elimination of P. vivax malaria. Here, we introduce a stochastic, within-host model to jointly characterise hypnozoite and infection dynamics for an individual in a general transmission setting, allowing for radical cure. We begin by extending an existing activation-clearance model for a single hypnozoite, adapted to both short- and long-latency strains, to include drug treatment. We then embed this activation-clearance model in an epidemiological framework accounting for repeated mosquito inoculation and the administration of radical cure. By constructing an open network of infinite server queues, we derive analytic expressions for several quantities of epidemiological significance, including the size of the hypnozoite reservoir; the relapse rate; the relative contribution of relapses to the infection burden; the distribution of multiple infections; the cumulative number of recurrences over time, and the time to first recurrence following drug treatment. We derive from first principles the functional dependence between within-host and transmission parameters and patterns of blood- and liver-stage infection, whilst allowing for treatment under a mass drug administration regime. To yield population-level insights, our analytic within-host distributions can be embedded in multiscale models. Our work thus contributes to the epidemiological understanding of the effects of radical cure on P. vivax malaria.
Collapse
|
2
|
Ahmad SS, Rahi M, Sharma A. Relapses of Plasmodium vivax malaria threaten disease elimination: time to deploy tafenoquine in India? BMJ Glob Health 2021; 6:bmjgh-2020-004558. [PMID: 33619041 PMCID: PMC7903102 DOI: 10.1136/bmjgh-2020-004558] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Affiliation(s)
- Sundus Shafat Ahmad
- Parasite and Host Biology, National Institute of Malaria Research, New Delhi, Delhi, India
| | - Manju Rahi
- Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, Delhi, India
| | - Amit Sharma
- Parasite and Host Biology, National Institute of Malaria Research, New Delhi, Delhi, India
| |
Collapse
|
3
|
Pasay CJ, Yakob L, Meredith HR, Stewart R, Mills PC, Dekkers MH, Ong O, Llewellyn S, Hugo RLE, McCarthy JS, Devine GJ. Treatment of pigs with endectocides as a complementary tool for combating malaria transmission by Anopheles farauti (s.s.) in Papua New Guinea. Parasit Vectors 2019; 12:124. [PMID: 30890165 PMCID: PMC6423892 DOI: 10.1186/s13071-019-3392-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/08/2019] [Indexed: 11/24/2022] Open
Abstract
Background Outdoor, early-biting, zoophagic behaviours by Anopheles farauti (s.s.) can compromise the effectiveness of bed nets for malaria control. In the Western Pacific region, pigs and dogs represent significant alternative blood sources for mosquitoes. Treating these animals with endectocides may impact mosquito survival and complement control measures. This hypothesis was explored using membrane feeding assays (MFAs), direct feeds on treated pigs, pharmacokinetic analyses and a transmission model. Results Ivermectin was 375-fold more mosquitocidal than moxidectin (24 h LC50 = 17.8 ng/ml vs 6.7 µg/ml) in MFAs, and reduced mosquito fecundity by > 50% at ≥ 5 ng/ml. Treatment of pigs with subcutaneous doses of 0.6 mg/kg ivermectin caused 100% mosquito mortality 8 days after administration. Lethal effects persisted for up to 15 days after administration (75% death within 10 days). Conclusion The application of these empirical data to a unique malaria transmission model that used a three-host system (humans, pigs and dogs) predicts that the application of ivermectin will cause a significant reduction in the entomological inoculation rate (EIR = 100 to 0.35). However, this is contingent on local malaria vectors sourcing a significant proportion of their blood meals from pigs. This provides significant insights on the benefits of deploying endectocides alongside long-lasting insecticide-treated nets (LLINs) to address residual malaria transmission. Electronic supplementary material The online version of this article (10.1186/s13071-019-3392-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cielo J Pasay
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
| | - Laith Yakob
- Department of Disease Control, School of Hygiene and Tropical Medicine, London, London, UK
| | - Hannah R Meredith
- Department of Disease Control, School of Hygiene and Tropical Medicine, London, London, UK
| | - Romal Stewart
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Paul C Mills
- School of Veterinary Science, University of Queensland, Gatton, QLD, Australia
| | - Milou H Dekkers
- Queensland Animal Science Precinct, University of Queensland, Gatton, QLD, Australia
| | - Oselyne Ong
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Stacey Llewellyn
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - R Leon E Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - James S McCarthy
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Gregor J Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
| |
Collapse
|
4
|
Moreno-Gutierrez D, Llanos-Cuentas A, Luis Barboza J, Contreras-Mancilla J, Gamboa D, Rodriguez H, Carrasco-Escobar G, Boreux R, Hayette MP, Beutels P, Speybroeck N, Rosas-Aguirre A. Effectiveness of a Malaria Surveillance Strategy Based on Active Case Detection during High Transmission Season in the Peruvian Amazon. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15122670. [PMID: 30486449 PMCID: PMC6314008 DOI: 10.3390/ijerph15122670] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022]
Abstract
Background: Faced with the resurgence of malaria, malaria surveillance in the Peruvian Amazon incorporated consecutive active case detection (ACD) interventions using light microscopy (LM) as reactive measure in communities with an unusual high number of cases during high transmission season (HTS). We assessed the effectiveness in malaria detection of this local ACD-based strategy. Methods: A cohort study was conducted in June–July 2015 in Mazan, Loreto. Four consecutive ACD interventions at intervals of 10 days were conducted in four riverine communities (Gamitanacocha, Primero de Enero, Libertad and Urco Miraño). In each intervention, all inhabitants were visited at home, and finger-prick blood samples collected for immediate diagnosis by LM and on filter paper for later analysis by quantitative real-time polymerase chain reaction (qPCR). Effectiveness was calculated by dividing the number of malaria infections detected using LM by the number of malaria infections detected by delayed qPCR. Results: Most community inhabitants (88.1%, 822/933) were present in at least one of the four ACD interventions. A total of 451 infections were detected by qPCR in 446 participants (54.3% of total participants); five individuals had two infections. Plasmodium vivax was the predominant species (79.8%), followed by P. falciparum (15.3%) and P. vivax-P. falciparum co-infections (4.9%). Most qPCR-positive infections were asymptomatic (255/448, 56.9%). The ACD-strategy using LM had an effectiveness of 22.8% (detection of 103 of the total qPCR-positive infections). Children aged 5–14 years, and farming as main economic activity were associated with P. vivax infections. Conclusions: Although the ACD-strategy using LM increased the opportunity of detecting and treating malaria infections during HTS, the number of detected infections was considerably lower than the real burden of infections (those detected by qPCR).
Collapse
Affiliation(s)
- Diamantina Moreno-Gutierrez
- Facultad de Medicina Humana, Universidad Nacional de la Amazonía Peruana, Loreto 160, Peru.
- Research Institute of Health and Society (IRSS), Université catholique de Louvain, 1200 Brussels, Belgium.
- Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, 2000 Antwerp, Belgium.
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima 31, Peru.
- Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima 31, Peru.
| | - José Luis Barboza
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima 31, Peru.
| | - Juan Contreras-Mancilla
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima 31, Peru.
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima 31, Peru.
| | - Dionicia Gamboa
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima 31, Peru.
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima 31, Peru.
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima 31, Peru.
| | - Hugo Rodriguez
- Facultad de Medicina Humana, Universidad Nacional de la Amazonía Peruana, Loreto 160, Peru.
| | - Gabriel Carrasco-Escobar
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima 31, Peru.
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Raphaël Boreux
- Department of Clinical Microbiology, Center for Interdisciplinary Research on Medicines (CIRM), University Hospital of Liège, 4000 Liège, Belgium.
| | - Marie-Pierre Hayette
- Department of Clinical Microbiology, Center for Interdisciplinary Research on Medicines (CIRM), University Hospital of Liège, 4000 Liège, Belgium.
| | - Philippe Beutels
- Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, 2000 Antwerp, Belgium.
| | - Niko Speybroeck
- Research Institute of Health and Society (IRSS), Université catholique de Louvain, 1200 Brussels, Belgium.
| | - Angel Rosas-Aguirre
- Research Institute of Health and Society (IRSS), Université catholique de Louvain, 1200 Brussels, Belgium.
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima 31, Peru.
| |
Collapse
|
5
|
Plasmodium vivax and Plasmodium falciparum infection dynamics: re-infections, recrudescences and relapses. Malar J 2018; 17:170. [PMID: 29665803 PMCID: PMC5905131 DOI: 10.1186/s12936-018-2318-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
Background In malaria endemic populations, complex patterns of Plasmodium vivax and Plasmodium falciparum blood-stage infection dynamics may be observed. Genotyping samples from longitudinal cohort studies for merozoite surface protein (msp) variants increases the information available in the data, allowing multiple infecting parasite clones in a single individual to be identified. msp genotyped samples from two longitudinal cohorts in Papua New Guinea (PNG) and Thailand were analysed using a statistical model where the times of acquisition and clearance of each clone in every individual were estimated using a process of data augmentation. Results For the populations analysed, the duration of blood-stage P. falciparum infection was estimated as 36 (95% Credible Interval (CrI): 29, 44) days in PNG, and 135 (95% CrI 94, 191) days in Thailand. Experiments on simulated data indicated that it was not possible to accurately estimate the duration of blood-stage P. vivax infections due to the lack of identifiability between a single blood-stage infection and multiple, sequential blood-stage infections caused by relapses. Despite this limitation, the method and data point towards short duration of blood-stage P. vivax infection with a lower bound of 24 days in PNG, and 29 days in Thailand. On an individual level, P. vivax recurrences cannot be definitively classified into re-infections, recrudescences or relapses, but a probabilistic relapse phenotype can be assigned to each P. vivax sample, allowing investigation of the association between epidemiological covariates and the incidence of relapses. Conclusion The statistical model developed here provides a useful new tool for in-depth analysis of malaria data from longitudinal cohort studies, and future application to data sets with multi-locus genotyping will allow more detailed investigation of infection dynamics. Electronic supplementary material The online version of this article (10.1186/s12936-018-2318-1) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Payne RO, Griffin PM, McCarthy JS, Draper SJ. Plasmodium vivax Controlled Human Malaria Infection - Progress and Prospects. Trends Parasitol 2017; 33:141-150. [PMID: 27956060 PMCID: PMC5270241 DOI: 10.1016/j.pt.2016.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 02/06/2023]
Abstract
Modern controlled human malaria infection (CHMI) clinical trials have almost entirely focussed on Plasmodium falciparum, providing a highly informative means to investigate host-pathogen interactions as well as assess potential new prophylactic and therapeutic interventions. However, in recent years, there has been renewed interest in Plasmodium vivax, with CHMI models developed by groups in Colombia, the USA, and Australia. This review summarizes the published experiences, and examines the advantages and disadvantages of the different models that initiate infection either by mosquito bite or using a blood-stage inoculum. As for P. falciparum, CHMI studies with P. vivax will provide a platform for early proof-of-concept testing of drugs and vaccines, accelerating the development of novel interventions.
Collapse
Affiliation(s)
- Ruth O Payne
- The Jenner Institute Laboratories, Old Road Campus Research Building, University of Oxford, Oxford, OX3 7DQ, UK; The Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, OX3 7LE, UK.
| | - Paul M Griffin
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Queensland 4006, Australia; Q-Pharm Pty Ltd, Brisbane, Australia; Department of Medicine and Infectious Diseases, Mater Hospital and Mater Medical Research Institute, Brisbane, Australia; The University of Queensland, Brisbane, Australia
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Queensland 4006, Australia; The University of Queensland, Brisbane, Australia
| | - Simon J Draper
- The Jenner Institute Laboratories, Old Road Campus Research Building, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
7
|
White MT, Shirreff G, Karl S, Ghani AC, Mueller I. Variation in relapse frequency and the transmission potential of Plasmodium vivax malaria. Proc Biol Sci 2016; 283:20160048. [PMID: 27030414 PMCID: PMC4822465 DOI: 10.1098/rspb.2016.0048] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/03/2016] [Indexed: 12/11/2022] Open
Abstract
There is substantial variation in the relapse frequency of Plasmodium vivax malaria, with fast-relapsing strains in tropical areas, and slow-relapsing strains in temperate areas with seasonal transmission. We hypothesize that much of the phenotypic diversity in P. vivax relapses arises from selection of relapse frequency to optimize transmission potential in a given environment, in a process similar to the virulence trade-off hypothesis. We develop mathematical models of P. vivax transmission and calculate the basic reproduction number R0 to investigate how transmission potential varies with relapse frequency and seasonality. In tropical zones with year-round transmission, transmission potential is optimized at intermediate relapse frequencies of two to three months: slower-relapsing strains increase the opportunity for onward transmission to mosquitoes, but also increase the risk of being outcompeted by faster-relapsing strains. Seasonality is an important driver of relapse frequency for temperate strains, with the time to first relapse predicted to be six to nine months, coinciding with the duration between seasonal transmission peaks. We predict that there is a threshold degree of seasonality, below which fast-relapsing tropical strains are selected for, and above which slow-relapsing temperate strains dominate, providing an explanation for the observed global distribution of relapse phenotypes.
Collapse
Affiliation(s)
- Michael T White
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - George Shirreff
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Stephan Karl
- Division of Population Health and Immunity, Walter and Eliza Hall Institute, Melbourne, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Azra C Ghani
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Ivo Mueller
- Division of Population Health and Immunity, Walter and Eliza Hall Institute, Melbourne, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia Centre de Recerca en Salut Internacional de Barcelona, 08036 Barcelona, Spain
| |
Collapse
|