1
|
Ma X, Liu B, Gong Z, Wang J, Qu Z, Cai J. Comparative proteomic analysis across the developmental stages of the Eimeria tenella. Genomics 2024; 116:110792. [PMID: 38215860 DOI: 10.1016/j.ygeno.2024.110792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Eimeria tenella is the main pathogen responsible for coccidiosis in chickens. The life cycle of E. tenella is, arguably, the least complex of all Coccidia, with only one host. However, it presents different developmental stages, either in the environment or in the host and either intracellular or extracellular. Its signaling and metabolic pathways change with its different developmental stages. Until now, little is known about the developmental regulation and transformation mechanisms of its life cycle. In this study, protein profiles from the five developmental stages, including unsporulated oocysts (USO), partially sporulated (7 h) oocysts (SO7h), sporulated oocysts (SO), sporozoites (S) and second-generation merozoites (M2), were harvested using the label-free quantitative proteomics approach. Then the differentially expressed proteins (DEPs) for these stages were identified. A total of 314, 432, 689, and 665 DEPs were identified from the comparison of SO7h vs USO, SO vs SO7h, S vs SO, and M2 vs S, respectively. By conducting weighted gene coexpression network analysis (WGCNA), six modules were dissected. Proteins in blue and brown modules were calculated to be significantly positively correlated with the E. tenella developmental stages of sporozoites (S) and second-generation merozoites (M2), respectively. In addition, hub proteins with high intra-module degree were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway enrichment analyses revealed that hub proteins in blue modules were involved in electron transport chain and oxidative phosphorylation. Hub proteins in the brown module were involved in RNA splicing. These findings provide new clues and ideas to enhance our fundamental understanding of the molecular mechanisms underlying parasite development.
Collapse
Affiliation(s)
- Xueting Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Baohong Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China.
| | - Zhenxing Gong
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia Province 750021, China
| | - Jing Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Zigang Qu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Jianping Cai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China.
| |
Collapse
|
2
|
Yang Q, Zhou L, Tan Z, Zhu Y, Mo L, Fang C, Li J, Chen C, Luo Y, Wei H, Yin W, Huang J. TLR7 enhancing follicular helper T (Tfh) cells response in C57BL/6 mice infected with Plasmodium yoelii NSM TLR7 mediated Tfh cells in P. yoelii infected mice. Immunology 2024; 171:413-427. [PMID: 38150744 DOI: 10.1111/imm.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/26/2023] [Indexed: 12/29/2023] Open
Abstract
Toll-like receptors (TLRs) play an important role in inducing innate and acquired immune responses against infection. However, the effect of Toll-like receptor 7 (TLR7) on follicular helper T (Tfh) cells in mice infected with Plasmodium is still not clear. The results showed that the splenic CD4+ CXCR5+ PD-1+ Tfh cells were accumulated after Plasmodium yoelii NSM infection, the content of splenic Tfh cells was correlated to parasitemia and/or the red blood cells (RBCs) counts in the blood. Moreover, the expression of TLR7 was found higher than TLR2, TLR3 and TLR4 in splenic Tfh cells of the WT mice. TLR7 agonist R848 and the lysate of red blood cells of infected mice (iRBCs) could induce the activation and differentiation of splenic Tfh cells. Knockout of TLR7 leads to a decrease in the proportion of Tfh cells, down-regulated expression of functional molecules CD40L, IFN-γ, IL-21 and IL-10 in Tfh cells; decreased the proportion of plasma cells and antibody production and reduces the expression of STAT3 and Ikzf2 in Tfh cells. Administration of R848 could inhibit parasitemia, enhance splenic Tfh cell activation and increase STAT3 and Ikzf2 expression in Tfh cells. In summary, this study shows that TLR7 could regulate the function of Tfh cells, affecting the immune response in the spleen of Plasmodium yoelii NSM-infected mice.
Collapse
Affiliation(s)
- Quan Yang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lu Zhou
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhengrong Tan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yiqiang Zhu
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lengshan Mo
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chao Fang
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jiajie Li
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chen Chen
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Ying Luo
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Haixia Wei
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Weiguo Yin
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Jun Huang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Chandley P, Ranjan R, Kumar S, Rohatgi S. Host-parasite interactions during Plasmodium infection: Implications for immunotherapies. Front Immunol 2023; 13:1091961. [PMID: 36685595 PMCID: PMC9845897 DOI: 10.3389/fimmu.2022.1091961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Malaria is a global infectious disease that remains a leading cause of morbidity and mortality in the developing world. Multiple environmental and host and parasite factors govern the clinical outcomes of malaria. The host immune response against the Plasmodium parasite is heterogenous and stage-specific both in the human host and mosquito vector. The Plasmodium parasite virulence is predominantly associated with its ability to evade the host's immune response. Despite the availability of drug-based therapies, Plasmodium parasites can acquire drug resistance due to high antigenic variations and allelic polymorphisms. The lack of licensed vaccines against Plasmodium infection necessitates the development of effective, safe and successful therapeutics. To design an effective vaccine, it is important to study the immune evasion strategies and stage-specific Plasmodium proteins, which are targets of the host immune response. This review provides an overview of the host immune defense mechanisms and parasite immune evasion strategies during Plasmodium infection. Furthermore, we also summarize and discuss the current progress in various anti-malarial vaccine approaches, along with antibody-based therapy involving monoclonal antibodies, and research advancements in host-directed therapy, which can together open new avenues for developing novel immunotherapies against malaria infection and transmission.
Collapse
Affiliation(s)
- Pankaj Chandley
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Ravikant Ranjan
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Soma Rohatgi
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India,*Correspondence: Soma Rohatgi,
| |
Collapse
|
4
|
Musasia FK, Nkumama IN, Frank R, Kipkemboi V, Schneider M, Mwai K, Odera DO, Rosenkranz M, Fürle K, Kimani D, Tuju J, Njuguna P, Hamaluba M, Kapulu MC, Wardemann H, Osier FHA. Phagocytosis of Plasmodium falciparum ring-stage parasites predicts protection against malaria. Nat Commun 2022; 13:4098. [PMID: 35835738 PMCID: PMC9281573 DOI: 10.1038/s41467-022-31640-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/27/2022] [Indexed: 01/13/2023] Open
Abstract
Ring-infected erythrocytes are the predominant asexual stage in the peripheral circulation but are rarely investigated in the context of acquired immunity against Plasmodium falciparum malaria. Here we compare antibody-dependent phagocytosis of ring-infected parasite cultures in samples from a controlled human malaria infection (CHMI) study (NCT02739763). Protected volunteers did not develop clinical symptoms, maintained parasitaemia below a predefined threshold of 500 parasites/μl and were not treated until the end of the study. Antibody-dependent phagocytosis of both ring-infected and uninfected erythrocytes from parasite cultures was strongly correlated with protection. A surface proteomic analysis revealed the presence of merozoite proteins including erythrocyte binding antigen-175 and -140 on ring-infected and uninfected erythrocytes, providing an additional antibody-mediated protective mechanism for their activity beyond invasion-inhibition. Competition phagocytosis assays support the hypothesis that merozoite antigens are the key mediators of this functional activity. Targeting ring-stage parasites may contribute to the control of parasitaemia and prevention of clinical malaria.
Collapse
Affiliation(s)
- Fauzia K. Musasia
- grid.5253.10000 0001 0328 4908Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Irene N. Nkumama
- grid.5253.10000 0001 0328 4908Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany ,grid.33058.3d0000 0001 0155 5938Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Roland Frank
- grid.5253.10000 0001 0328 4908Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Victor Kipkemboi
- grid.5253.10000 0001 0328 4908Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany ,grid.449481.40000 0004 0427 2011Department of Biotechnology, Hochschule Rhein-Waal, Kleve, Germany
| | - Martin Schneider
- grid.7497.d0000 0004 0492 0584Genomics and Proteomics Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Kennedy Mwai
- grid.33058.3d0000 0001 0155 5938Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya ,grid.11951.3d0000 0004 1937 1135Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Dennis O. Odera
- grid.5253.10000 0001 0328 4908Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany ,grid.33058.3d0000 0001 0155 5938Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Micha Rosenkranz
- grid.5253.10000 0001 0328 4908Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Kristin Fürle
- grid.5253.10000 0001 0328 4908Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Domitila Kimani
- grid.33058.3d0000 0001 0155 5938Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya
| | - James Tuju
- grid.33058.3d0000 0001 0155 5938Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Patricia Njuguna
- grid.33058.3d0000 0001 0155 5938Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Mainga Hamaluba
- grid.33058.3d0000 0001 0155 5938Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Melissa C. Kapulu
- grid.33058.3d0000 0001 0155 5938Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Hedda Wardemann
- grid.7497.d0000 0004 0492 0584Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | - Faith H. A. Osier
- grid.5253.10000 0001 0328 4908Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany ,grid.33058.3d0000 0001 0155 5938Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya ,grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
5
|
Sližienė A, Plečkaitytė M, Zaveckas M, Juškaitė K, Rudokas V, Žvirblis G, Žvirblienė A. Monoclonal antibodies against the newly identified allergen β-enolase from common carp (Cyprinus carpio). FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2028741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Aistė Sližienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Milda Plečkaitytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mindaugas Zaveckas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Karolina Juškaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Rudokas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Gintautas Žvirblis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aurelija Žvirblienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
6
|
Xie H, Xie S, Wang M, Wei H, Huang H, Xie A, Li J, Fang C, Shi F, Yang Q, Qi Y, Yin Z, Wang X, Huang J. Properties and Roles of γδT Cells in Plasmodium yoelii nigeriensis NSM Infected C57BL/6 Mice. Front Cell Infect Microbiol 2022; 11:788546. [PMID: 35127555 PMCID: PMC8811364 DOI: 10.3389/fcimb.2021.788546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022] Open
Abstract
Background Many kinds of immune cells are involved in malaria infection. γδT cells represent a special type of immune cell between natural and adaptive immune cells that play critical roles in anti-parasite infection. Methods In this study, malaria infection model was constructed. Distribution of γδT cells in various immune organs and dynamic changes of γδT cells in the spleens of C57BL/6 mice after infection were detected by flow cytometry. And activation status of γδT cells was detected by flow cytometry. Then γδT cells in naive and infected mice were sorted and performed single-cell RNA sequencing (scRNA-seq). Finally, γδTCR KO mice model was constructed and the effect of γδT cell depletion on mouse T and B cell immunity against Plasmodium infection was explored. Results Here, splenic γδT cells were found to increase significantly on day 14 after Plasmodium yoelii nigeriensis NSM infection in C57BL/6 mice. Higher level of CD69, ICOS and PD-1, lower level of CD62L, and decreased IFN-γ producing after stimulation by PMA and ionomycin were found in γδT cells from infected mice, compared with naive mice. Moreover, 11 clusters were identified in γδT cells by scRNA-seq based t-SNE analysis. Cluster 4, 5, and 7 in γδT cells from infected mice were found the expression of numerous genes involved in immune response. In the same time, the GO enrichment analysis revealed that the marker genes in the infection group were involved in innate and adaptive immunity, pathway enrichment analysis identified the marker genes in the infected group shared many key signalling molecules with other cells or against pathogen infection. Furthermore, increased parasitaemia, decreased numbers of RBC and PLT, and increased numbers of WBC were found in the peripheral blood from γδTCR KO mice. Finally, lower IFN-γ and CD69 expressing CD4+ and CD8+ T cells, lower B cell percentage and numbers, and less CD69 expressing B cells were found in the spleen from γδTCR KO infected mice, and lower levels of IgG and IgM antibodies in the serum were also observed than WT mice. Conclusions Overall, this study demonstrates the diversity of γδT cells in the spleen of Plasmodium yoelii nigeriensis NSM infected C57BL/6 mice at both the protein and RNA levels, and suggests that the expansion of γδT cells in cluster 4, 5 and 7 could promote both cellular and humoral immune responses.
Collapse
Affiliation(s)
- Hongyan Xie
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shihao Xie
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mei Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haixia Wei
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - He Huang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Anqi Xie
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiajie Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feihu Shi
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Quan Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanwei Qi
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhinan Yin
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xinhua Wang, ; Jun Huang,
| | - Jun Huang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xinhua Wang, ; Jun Huang,
| |
Collapse
|
7
|
Identification of Plasmodium falciparum-specific protein PIESP2 as a novel virulence factor related to cerebral malaria. Int J Biol Macromol 2021; 177:535-547. [PMID: 33631268 DOI: 10.1016/j.ijbiomac.2021.02.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/21/2021] [Accepted: 02/19/2021] [Indexed: 01/23/2023]
Abstract
Cerebral malaria (CM) is the most severe complication caused by Plasmodium falciparum infection. The pathophysiological changes caused by parasite virulence factors and the human immune response to parasites contribute to CM. To date, very few parasite virulence proteins have been found to participate in CM. Here, we employed comparative genomics analysis and identified parasite-infected erythrocyte specific protein 2 (PIESP2) to be a CM-related protein. We conducted further experimental investigations and found that PIESP2 is an immunogenic protein. PIESP2 expression begins at the early trophozoite stage and progressively increases with parasite development. Although PIESP2 proteins mainly reside within infected red blood cells (IRBCs), some of them are present on the IRBC surface at the pigmented stage. Moreover, blockage of PIESP2 by antiserum apparently inhibited the adhesion of IRBCs to brain microvascular endothelial cells (BMECs). Western blot analysis detected the binding of PIESP2 to BMECs. Transcriptional analysis revealed that the binding of PIESP2 to BMECs can increase the expression of genes involved in the inflammatory response but decrease the expression of genes related to the anchoring junction. Overall, PIESP2 might be associated with CM by mediating the sequestration of IRBCs, inducing the inflammation response, and impairing the integrity of blood-brain barrier.
Collapse
|
8
|
Zhou BH, Ding HY, Yang JY, Chai J, Guo HW, Wang HW. Effects of diclazuril on the expression of enolase in second-generation merozoites of Eimeria tenella. Poult Sci 2020; 99:6402-6409. [PMID: 33248555 PMCID: PMC7705050 DOI: 10.1016/j.psj.2020.09.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 01/25/2023] Open
Abstract
Eimeria tenella is an obligate intracellular parasite of the chicken cecum; it brings huge economic loss to the chicken industry. Enolase is a multifunctional glycolytic enzyme involved in many processes of parasites, such as infection and migration. In this study, the effect of diclazuril on the expression of enolase in second-generation merozoites of E. tenella (EtENO) was reported. The prokaryotic expression plasmid pET-28a-EtENO was constructed and transformed into Escherichia coli BL21 (DE3). Then, it was subjected to expression under the induction of isopropyl-β-D-1-thiogalactopyranoside. The expressed products were identified and purified. The purified EtENO protein was used for antibody preparation. The EtENO mRNA and protein expression levels were analyzed via real-time PCR and Western blotting. Localization of EtENO on the merozoites was examined by immunofluorescence technique. The mRNA and protein expression levels of EtENO were decreased by 36.3 and 40.36%, respectively, by diclazuril treatment. EtENO distributed in the surface, cytoplasm, and nucleus of the infected/control group. With diclazuril treatment, it was significantly reduced in the surface and cytoplasm and even disappeared in the nucleus of the infected/diclazuril group. These observations suggested that EtENO may play an important role in mechanism of diclazuril anticoccidial action and be a potential drug target for the intervention with E. tenella infection.
Collapse
Affiliation(s)
- Bian-Hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, People's Republic of China.
| | - Hai-Yan Ding
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, People's Republic of China
| | - Jing-Yun Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, People's Republic of China
| | - Jun Chai
- School of Information Technology and Urban Construction, Luoyang Polytechnic, Luoyang 471934, Henan, People's Republic of China
| | - Hong-Wei Guo
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, Henan, People's Republic of China
| | - Hong-Wei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, People's Republic of China
| |
Collapse
|
9
|
Lambraño J, Curtidor H, Avendaño C, Díaz-Arévalo D, Roa L, Vanegas M, Patarroyo ME, Patarroyo MA. Preliminary Evaluation of the Safety and Immunogenicity of an Antimalarial Vaccine Candidate Modified Peptide (IMPIPS) Mixture in a Murine Model. J Immunol Res 2019; 2019:3832513. [PMID: 32083140 PMCID: PMC7012257 DOI: 10.1155/2019/3832513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/03/2019] [Indexed: 11/22/2022] Open
Abstract
Malaria continues being a high-impact disease regarding public health worldwide; the WHO report for malaria in 2018 estimated that ~219 million cases occurred in 2017, mostly caused by the parasite Plasmodium falciparum. The disease cost the lives of more than 400,000 people, mainly in Africa. In spite of great efforts aimed at developing better prevention (i.e., a highly effective vaccine), diagnosis, and treatment methods for malaria, no efficient solution to this disease has been advanced to date. The Fundación Instituto de Inmunología de Colombia (FIDIC) has been developing studies aimed at furthering the search for vaccine candidates for controlling P. falciparum malaria. However, vaccine development involves safety and immunogenicity studies regarding their formulation in animal models before proceeding to clinical studies. The present work has thus been aimed at evaluating the safety and immunogenicity of a mixture of 23 chemically synthesised, modified peptides (immune protection-inducing protein structure (IMPIPS)) derived from different P. falciparum proteins. Single and repeat dose assays were thus used with male and female BALB/c mice which were immunised with the IMPIPS mixture. It was found that single and repeat dose immunisation with the IMPIPS mixture was safe, both locally and systemically. It was observed that the antibodies so stimulated recognised the parasite's native proteins and inhibited merozoite invasion of red blood cells in vitro when evaluating the humoral immune response induced by the IMPIPS mixture. Such results suggested that the IMPIPS peptide mixture could be a safe candidate to be tested during the next stage involved in developing an antimalarial vaccine, evaluating local safety, immunogenicity, and protection in a nonhuman primate model.
Collapse
Affiliation(s)
- Jennifer Lambraño
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Master's Programme in Biochemistry, Medical School, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Catalina Avendaño
- Faculty of Animal Science, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - Diana Díaz-Arévalo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Leonardo Roa
- Faculty of Animal Science, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - Magnolia Vanegas
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Manuel E. Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Pathology Department, Medical School, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Manuel A. Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
10
|
Antibody recognition of bacterial surfaces and extracellular polysaccharides. Curr Opin Struct Biol 2019; 62:48-55. [PMID: 31874385 DOI: 10.1016/j.sbi.2019.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/21/2019] [Accepted: 12/02/2019] [Indexed: 01/08/2023]
Abstract
Because of the ongoing increase in antibiotic-resistant microbes, new strategies such as therapeutic antibodies and effective vaccines are required. Bacterial carbohydrates are known to be particularly antigenic, and several monoclonal antibodies that target bacterial polysaccharides have been generated, with more in current development. This review examines the known 3D crystal structures of anti-bacterial antibodies and the structural basis for carbohydrate recognition and explores the potential mechanisms for antibody-dependent bacterial cell death. Understanding the key interactions between an antibody and its polysaccharide target on the surface of bacteria or in biofilms can provide essential information for the development of more specific and effective antibody therapeutics as well as carbohydrate-based vaccines.
Collapse
|
11
|
Didiasova M, Schaefer L, Wygrecka M. When Place Matters: Shuttling of Enolase-1 Across Cellular Compartments. Front Cell Dev Biol 2019; 7:61. [PMID: 31106201 PMCID: PMC6498095 DOI: 10.3389/fcell.2019.00061] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/05/2019] [Indexed: 12/22/2022] Open
Abstract
Enolase is a glycolytic enzyme, which catalyzes the inter-conversion of 2-phosphoglycerate to phosphoenolpyruvate. Altered expression of this enzyme is frequently observed in cancer and accounts for the Warburg effect, an adaptive response of tumor cells to hypoxia. In addition to its catalytic function, ENO-1 exhibits other activities, which strongly depend on its cellular and extracellular localization. For example, the association of ENO-1 with mitochondria membrane was found to be important for the stability of the mitochondrial membrane, and ENO-1 sequestration on the cell surface was crucial for plasmin-mediated pericellular proteolysis. The latter activity of ENO-1 enables many pathogens but also immune and cancer cells to invade the tissue, leading further to infection, inflammation or metastasis formation. The ability of ENO-1 to conduct so many diverse processes is reflected by its contribution to a high number of pathologies, including type 2 diabetes, cardiovascular hypertrophy, fungal and bacterial infections, cancer, systemic lupus erythematosus, hepatic fibrosis, Alzheimer's disease, rheumatoid arthritis, and systemic sclerosis. These unexpected non-catalytic functions of ENO-1 and their contributions to diseases are the subjects of this review.
Collapse
Affiliation(s)
- Miroslava Didiasova
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University Frankfurt, Frankfurt, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|