1
|
Bays HE. Obesity, dyslipidemia, and cardiovascular disease: A joint expert review from the Obesity Medicine Association and the National Lipid Association 2024. OBESITY PILLARS 2024; 10:100108. [PMID: 38706496 PMCID: PMC11066689 DOI: 10.1016/j.obpill.2024.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 05/07/2024]
Abstract
Background This joint expert review by the Obesity Medicine Association (OMA) and National Lipid Association (NLA) provides clinicians an overview of the pathophysiologic and clinical considerations regarding obesity, dyslipidemia, and cardiovascular disease (CVD) risk. Methods This joint expert review is based upon scientific evidence, clinical perspectives of the authors, and peer review by the OMA and NLA leadership. Results Among individuals with obesity, adipose tissue may store over 50% of the total body free cholesterol. Triglycerides may represent up to 99% of lipid species in adipose tissue. The potential for adipose tissue expansion accounts for the greatest weight variance among most individuals, with percent body fat ranging from less than 5% to over 60%. While population studies suggest a modest increase in blood low-density lipoprotein cholesterol (LDL-C) levels with excess adiposity, the adiposopathic dyslipidemia pattern most often described with an increase in adiposity includes elevated triglycerides, reduced high density lipoprotein cholesterol (HDL-C), increased non-HDL-C, elevated apolipoprotein B, increased LDL particle concentration, and increased small, dense LDL particles. Conclusions Obesity increases CVD risk, at least partially due to promotion of an adiposopathic, atherogenic lipid profile. Obesity also worsens other cardiometabolic risk factors. Among patients with obesity, interventions that reduce body weight and improve CVD outcomes are generally associated with improved lipid levels. Given the modest improvement in blood LDL-C with weight reduction in patients with overweight or obesity, early interventions to treat both excess adiposity and elevated atherogenic cholesterol (LDL-C and/or non-HDL-C) levels represent priorities in reducing the risk of CVD.
Collapse
Affiliation(s)
- Harold Edward Bays
- Corresponding author. Louisville Metabolic and Atherosclerosis Research Center, Louisville, KY, 40213, USA.
| |
Collapse
|
2
|
Bays HE, Kirkpatrick CF, Maki KC, Toth PP, Morgan RT, Tondt J, Christensen SM, Dixon DL, Jacobson TA. Obesity, dyslipidemia, and cardiovascular disease: A joint expert review from the Obesity Medicine Association and the National Lipid Association 2024. J Clin Lipidol 2024; 18:e320-e350. [PMID: 38664184 DOI: 10.1016/j.jacl.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
BACKGROUND This joint expert review by the Obesity Medicine Association (OMA) and National Lipid Association (NLA) provides clinicians an overview of the pathophysiologic and clinical considerations regarding obesity, dyslipidemia, and cardiovascular disease (CVD) risk. METHODS This joint expert review is based upon scientific evidence, clinical perspectives of the authors, and peer review by the OMA and NLA leadership. RESULTS Among individuals with obesity, adipose tissue may store over 50% of the total body free cholesterol. Triglycerides may represent up to 99% of lipid species in adipose tissue. The potential for adipose tissue expansion accounts for the greatest weight variance among most individuals, with percent body fat ranging from less than 5% to over 60%. While population studies suggest a modest increase in blood low-density lipoprotein cholesterol (LDL-C) levels with excess adiposity, the adiposopathic dyslipidemia pattern most often described with an increase in adiposity includes elevated triglycerides, reduced high-density lipoprotein cholesterol (HDL-C), increased non-HDL-C, elevated apolipoprotein B, increased LDL particle concentration, and increased small, dense LDL particles. CONCLUSIONS Obesity increases CVD risk, at least partially due to promotion of an adiposopathic, atherogenic lipid profile. Obesity also worsens other cardiometabolic risk factors. Among patients with obesity, interventions that reduce body weight and improve CVD outcomes are generally associated with improved lipid levels. Given the modest improvement in blood LDL-C with weight reduction in patients with overweight or obesity, early interventions to treat both excess adiposity and elevated atherogenic cholesterol (LDL-C and/or non-HDL-C) levels represent priorities in reducing the risk of CVD.
Collapse
Affiliation(s)
- Harold Edward Bays
- Louisville Metabolic and Atherosclerosis Research Center, Clinical Associate Professor, University of Louisville School of Medicine, 3288 Illinois Avenue, Louisville KY 40213 (Dr Bays).
| | - Carol F Kirkpatrick
- Kasiska Division of Health Sciences, Idaho State University, Pocatello, ID (Dr Kirkpatrick).
| | - Kevin C Maki
- Indiana University School of Public Health, Bloomington, IN (Dr Maki).
| | - Peter P Toth
- CGH Medical Center, Department of Clinical Family and Community Medicine, University of Illinois School of Medicine, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine (Dr Toth).
| | - Ryan T Morgan
- Oklahoma State University Center for Health Sciences, Principal Investigator at Lynn Health Science Institute, 3555 NW 58th St., STE 910-W, Oklahoma City, OK 73112 (Dr Morgan).
| | - Justin Tondt
- Department of Family and Community Medicine, Penn State College of Medicine, Penn State Milton S. Hershey Medical Center (Dr Tondt)
| | | | - Dave L Dixon
- Deptartment of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University School of Pharmacy 410 N 12th Street, Box 980533, Richmond, VA 23298-0533 (Dr Dixon).
| | - Terry A Jacobson
- Lipid Clinic and Cardiovascular Risk Reduction Program, Emory University Department of Medicine, Atlanta, GA (Dr Jacobson).
| |
Collapse
|
3
|
Okeke ES, Feng W, Luo M, Mao G, Chen Y, Zhao T, Wu X, Yang L. RNA-Seq analysis offers insight into the TBBPA-DHEE-induced endocrine-disrupting effect and neurotoxicity in juvenile zebrafish (Danio rerio). Gen Comp Endocrinol 2024; 350:114469. [PMID: 38360373 DOI: 10.1016/j.ygcen.2024.114469] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/17/2024]
Abstract
Tetrabromobisphenol A bis(2-hydroxyethyl) ether (TBBPA-DHEE) is the major TBBPA derivative. It has been detected in different environmental samples. Previous studies show that TBBPA-DHEE caused neurotoxicity in rats. In this study, juvenile zebrafish were exposed to various concentrations of TBBPA-DHEE to ascertain the potential neurotoxicity of TBBPA-DHEE, the chemical, and its possible molecular mechanism of action. Behavioral analysis revealed that TBBPA-DHEE could significantly increase the swimming distance and speed in the 1.5 mg/L group compared to the control. In contrast, the swimming distance and speed were significantly reduced in the 0.05 and 0.3 mg/L groups, affecting learning, memory, and neurodevelopment. Similarly, TBBPA-DHEE exposure caused a concentration-dependent significant increase in the levels of excitatory neurotransmitters, namely, dopamine, norepinephrine, and epinephrine, which could be attributed to the change observed in zebrafish behavior. This demonstrates the neurotoxicity of TBBPA-DHEE on juvenile zebrafish. The concentration-dependent increase in the IBR value revealed by the IBR index reveals the noticeable neurotoxic effect of TBBPA-DHEE. Transcriptomic analysis shows that TBBPA-DHEE exposure activated the PPAR signaling pathways, resulting in a disturbance of fatty acid (FA) metabolism and changes in the transcript levels of genes involved in these pathways, which could lead to lipotoxicity and hepatotoxicity. Our findings demonstrate a distinct endocrine-disrupting response to TBBPA-DHEE exposure, possibly contributing to abnormal behavioral alterations. This study provides novel insights into underlying the mechanisms and effects of TBBPA-DHEE on aquatic organisms, which may be helpful forenvironmental/human health risk assessments of the emerging pollutant.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China; Department of Biochemistry, Faculty of Biological Sciences University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China.
| | - Mengna Luo
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China
| | - Ting Zhao
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
4
|
Andonian BJ, Ross LM, Sudnick AM, Johnson JL, Pieper CF, Belski KB, Counts JD, King AP, Wallis JT, Bennett WC, Gillespie JC, Moertl KM, Richard D, Huebner JL, Connelly MA, Siegler IC, Kraus WE, Bales CW, Porter Starr KN, Huffman KM. Effect of Remotely Supervised Weight Loss and Exercise Training Versus Lifestyle Counseling on Cardiovascular Risk and Clinical Outcomes in Older Adults With Rheumatoid Arthritis: A Randomized Controlled Trial. ACR Open Rheumatol 2024; 6:124-136. [PMID: 38126260 PMCID: PMC10933621 DOI: 10.1002/acr2.11639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVE To compare a remotely supervised weight loss and exercise intervention to lifestyle counseling for effects on cardiovascular disease risk, disease activity, and patient-reported outcomes in older patients with rheumatoid arthritis (RA) and overweight/obesity. METHODS Twenty older (60-80 years), previously sedentary participants with seropositive RA and overweight/obesity were randomized to 16 weeks of either Supervised Weight loss and Exercise Training (SWET) or Counseling Health As Treatment (CHAT). The SWET group completed aerobic training (150 minutes/week moderate-to-vigorous intensity), resistance training (two days/week), and a hypocaloric diet (7% weight loss goal). The CHAT control group completed two lifestyle counseling sessions followed by monthly check-ins. The primary outcome was a composite metabolic syndrome z-score (MSSc) derived from fasting glucose, triglycerides, high density lipoprotein-cholesterol, minimal waist circumference, and mean arterial pressure. Secondary outcomes included RA disease activity and patient-reported outcomes. RESULTS Both groups improved MSSc (absolute change -1.67 ± 0.64 in SWET; -1.34 ± 1.30 in CHAT; P < 0.01 for both groups) with no between-group difference. Compared with CHAT, SWET significantly improved body weight, fat mass, Disease Activity Score-28 C-reactive protein, and patient-reported physical health, physical function, mental health, and fatigue (P < 0.04 for all between-group comparisons). Based on canonical correlations for fat mass, cardiorespiratory fitness, and leg strength, component-specific effects were strongest for (1) weight loss improving MSSc, physical health, and mental health; (2) aerobic training improving physical function and fatigue; and (3) resistance training improving Disease Activity Score-28 C-reactive protein. CONCLUSION In older patients with RA and overweight/obesity, 16 weeks of remotely supervised weight loss, aerobic training, and resistance training improve cardiometabolic health, patient-reported outcomes, and disease activity. Less intensive lifestyle counseling similarly improves cardiovascular disease risk profiles, suggesting an important role for integrative interventions in the routine clinical care of this at-risk RA population.
Collapse
Affiliation(s)
- Brian J. Andonian
- Duke University School of Medicine, Duke Molecular Physiology InstituteDurhamNorth Carolina
| | - Leanna M. Ross
- Duke University School of Medicine and Durham VA Medical CenterDurhamNorth Carolina
| | - Alyssa M. Sudnick
- Duke University School of Medicine and Durham VA Medical CenterDurhamNorth Carolina
| | - Johanna L. Johnson
- Duke University School of Medicine and Durham VA Medical CenterDurhamNorth Carolina
| | - Carl F. Pieper
- Duke University School of Medicine, Duke Molecular Physiology InstituteDurhamNorth Carolina
| | - Kelsey B. Belski
- Duke University School of Medicine and Durham VA Medical CenterDurhamNorth Carolina
| | - Julie D. Counts
- Duke University School of Medicine and Durham VA Medical CenterDurhamNorth Carolina
| | | | | | - William C. Bennett
- Duke University School of Medicine and Durham VA Medical CenterDurhamNorth Carolina
| | - Jillian C. Gillespie
- Duke University School of Medicine and Durham VA Medical CenterDurhamNorth Carolina
| | - Kaileigh M. Moertl
- Duke University School of Medicine and Durham VA Medical CenterDurhamNorth Carolina
| | - Dylan Richard
- Duke University School of Medicine and Durham VA Medical CenterDurhamNorth Carolina
| | - Janet L. Huebner
- Duke University School of Medicine and Durham VA Medical CenterDurhamNorth Carolina
| | | | - Ilene C. Siegler
- Duke University School of Medicine, Duke Molecular Physiology InstituteDurhamNorth Carolina
| | - William E. Kraus
- Duke University School of Medicine and Durham VA Medical CenterDurhamNorth Carolina
| | | | | | - Kim M. Huffman
- Duke University School of Medicine, Duke Molecular Physiology InstituteDurhamNorth Carolina
| |
Collapse
|
5
|
Interaction between Apo A-II -265T > C polymorphism and dietary total antioxidant capacity on some oxidative stress and inflammatory markers in patients with type 2 diabetes mellitus. Br J Nutr 2022; 128:13-29. [PMID: 34372957 DOI: 10.1017/s0007114521002993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This work aims to examine the interaction between apo A2 (Apo A-II) -265T > C SNP and dietary total antioxidant capacity (DTAC) on inflammation and oxidative stress in patients with type 2 diabetes mellitus. The present cross-sectional study included 180 patients (35-65 years) with identified Apo A-II genotype. Dietary intakes were assessed by a FFQ. DTAC was computed using the international databases. IL-18 (IL18), high-sensitivity C-reactive protein (hs-CRP), pentraxin (PTX3), serum total antioxidant capacity (TAC), superoxide dismutase (SOD) activity and 8-isoprostaneF2α (PGF2α) markers were obtained according to standard protocols. General linear model was used to evaluate the interaction. The interaction of gene and DTAC (PFRAP = 0·039 and PORAC = 0·042) on PGF2α level was significant after adjusting for confounders. A significant interaction was observed on IL18 level (PORAC = 0·018 and PFRAP = 0·048) and SOD (PTEAC = 0·037) in obese patients. Among patients whose DTAC was higher than the median intake, the levels of hs-CRP and PGF2α were significantly higher only in individuals with CC genotype. Serum TAC (PFRAP = 0·030, PORAC = 0·049) and SOD were significantly lower in the CC genotype. There was a favourable relationship between the high-DTAC and SOD (obese: PTEAC = 0·034, non-obese: PFRAP = 0·001, PTRAP < 0·0001, PTEAC = 0·003 and PORAC = 0·001) and PGF2α (non-obese: PORAC = 0·024) in T-allele carriers. The rs5082 SNP interacts with DTAC to influence several cardiometabolic risk factors. Also, we found dietary recommendations for antioxidant-rich foods intake might be useful in the prevention of diabetes complications in the T carrier more effectively than the CC genotype. Future large studies are required to confirm these results.
Collapse
|
6
|
Pan X. The Roles of Fatty Acids and Apolipoproteins in the Kidneys. Metabolites 2022; 12:metabo12050462. [PMID: 35629966 PMCID: PMC9145954 DOI: 10.3390/metabo12050462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
The kidneys are organs that require energy from the metabolism of fatty acids and glucose; several studies have shown that the kidneys are metabolically active tissues with an estimated energy requirement similar to that of the heart. The kidneys may regulate the normal and pathological function of circulating lipids in the body, and their glomerular filtration barrier prevents large molecules or large lipoprotein particles from being filtered into pre-urine. Given the permeable nature of the kidneys, renal lipid metabolism plays an important role in affecting the rest of the body and the kidneys. Lipid metabolism in the kidneys is important because of the exchange of free fatty acids and apolipoproteins from the peripheral circulation. Apolipoproteins have important roles in the transport and metabolism of lipids within the glomeruli and renal tubules. Indeed, evidence indicates that apolipoproteins have multiple functions in regulating lipid import, transport, synthesis, storage, oxidation and export, and they are important for normal physiological function. Apolipoproteins are also risk factors for several renal diseases; for example, apolipoprotein L polymorphisms induce kidney diseases. Furthermore, renal apolipoprotein gene expression is substantially regulated under various physiological and disease conditions. This review is aimed at describing recent clinical and basic studies on the major roles and functions of apolipoproteins in the kidneys.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, NY 11501, USA;
- Diabetes and Obesity Research Center, NYU Langone Hospital—Long Island, Mineola, New York, NY 11501, USA
| |
Collapse
|
7
|
Naharudin MN, Yusof A. The effect of 10 days of energy-deficit diet and high-intensity exercise training on the plasma high-density-lipoprotein (HDL) level among healthy collegiate males. Eur J Sport Sci 2021; 22:826-835. [PMID: 33357008 DOI: 10.1080/17461391.2020.1869836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ABSTRACTAn energy-deficit (ED) diet increases lipid mobilisation, while endurance exercise improves lipid profile by promoting formation of high-density lipoproteins (HDLs) among moderately active population. However, it is not clear whether ED with high-intensity exercise training can improve lipid profiles. Therefore, 20 recreationally active males (20.3 ± 2.7 years old with peak oxygen consumption (V˙O2peak) of 2.8 ± 0.2 L min-1) with HDL concentration of 1.44 ± 0.32 mmol L-1, were evenly allocated to either an ED group (1590 ± 79 kcal day-1: 40% of total caloric omitted at lunchtime) or a control (CON) group (2570 ± 139 kcal day-1). Participants in both groups performed high-intensity cycling at 90% V˙O2peak at a constant workload for 8 min, 2 h after breakfast on day D0, D2, D4, D6, D8 and D10 (Dn is day number), after which blood samples were collected. In ED, compared to D0, triglycerides (TG) decreased on D6-10 (p < .01) while total low-density lipoprotein (LDL), total cholesterol (TC) increased on D2-10, while HDL progressively increased on D6-10 (p = .01) with a final value of 1.67 ± 0.24 mmol L-1. In CON, there were no changes in TG, TC and HDL while LDL was reduced on D8-10 (p = .01). Moreover, the proportions of TC/HDL and LDL/HDL increased in ED on D2-10 and D2-8 (p = .05), respectively, while LDL/HDL in CON was reduced on D8-10 (p = .01). In brief, 10 days of ED and a series of high-intensity exercise sessions show progressive elevation of HDL which suggest longer period is required to observe changes in lipid ratios.
Collapse
Affiliation(s)
| | - Ashril Yusof
- Centre for Sport and Exercise Sciences, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|