1
|
Adouni M, Alkhatib F, Hajji R, Faisal TR. Effects of overweight and obesity on lower limb walking characteristics from joint kinematics to muscle activations. Gait Posture 2024; 113:337-344. [PMID: 39032386 DOI: 10.1016/j.gaitpost.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/16/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Obesity is a crucial factor that increases the risk of initiating and advancing knee osteoarthritis. However, it remains unclear how obesity directly impacts the biomechanical experience of the lower limb joints, potentially triggering or exacerbating joint degeneration. This study investigated the interactive effects of BMI augmentation on lower limb kinematics, kinetics, and muscle activations during walking. METHODOLOGY A group of 60 participants underwent a three-dimensional gait analysis. These individuals were categorized into three groups based on their body mass index (BMI): those with a BMI below 25 were classified as having a healthy weight, those with a BMI between 25 and 30 were categorized as overweight, and those with a BMI exceeding 30 were considered obese. This study analyzed the gait of 60 participants categorized by BMI. During walking trials, they recorded ground reaction forces electromyography of leg muscles like the gastrocnemii, hamstrings, and quadriceps. Lower limb joint angles and net moments were also calculated. Statistical mapping identified variations in kinematic, kinetic, and muscle activation patterns across the stance phase between BMI groups. RESULTS The results displayed distinct biomechanical patterns in obese individuals. Notably, there was a significant increase in flexion observed in the hip and knee joints (P < 0.001) during the initial stance phase and an increase in hip and knee adduction angles and moments throughout the entire stance phase (P < 0.001). Additionally, muscle activations underwent significant changes (P < 0.01), with a positive correlation noted with the BMI factor. This correlation was most pronounced during the early stance phase for the quadriceps and hamstring muscles and the late stance phase for the gastrocnemius. CONCLUSION These findings represent a comprehensive picture that contributes to understanding how excess weight and obesity influence joint biomechanics, highlighting the associated risk of joint osteoarthritis.
Collapse
Affiliation(s)
- Malek Adouni
- Biomedical and Instrumentation Engineering Program, Abdullah Al Salem University, Khalidiya, Kuwait; Department of Physical Medicine and Rehabilitation, Northwestern University, 345 East Superior Street, Chicago, IL 60611, USA.
| | - Fadi Alkhatib
- Department of Mechanical Engineering, Australian University, P.O. Box 1411, East Mushrif, Kuwait
| | - Raouf Hajji
- Medicine Faculty of Sousse, Department of Internal Medicine, Sidi Bouzid Hospital, University of Sousse, Tunisia
| | - Tanvir R Faisal
- Department of Mechanical Engineering, University of Louisiana at Lafayette, LA 70508, USA
| |
Collapse
|
2
|
Bo K, Xie X, Liu X, Ou J, Zhang Y, Wang X, Yang S, Zhang W, Zhang L, Chang J. Predicting incident radiographic knee osteoarthritis through quantitative meniscal lesion parameters: data from the osteoarthritis initiative. BMC Musculoskelet Disord 2024; 25:626. [PMID: 39107768 PMCID: PMC11304704 DOI: 10.1186/s12891-024-07706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND This study investigates the potential of novel meniscal parameters as predictive factors for incident radiographic knee osteoarthritis (ROA) over a span of four years, as part of the Osteoarthritis Initiative (OAI) study. OBJECTIVES Quantitative measurements of meniscal parameters alteration could serve as predictors of OA's occurrence and progression. METHODS AND MATERIALS A nested matched case-control study design was used to select participants from OAI study. Case knees (n = 178) were defined as those with incident ROA (Kellgren Lawrence Grade (KLG) 0 or 1 at baseline (BL), evolving into KLG 2 or above by year 4). Control knees were matched one-to-one by sex, age and radiographic status with case knees. The mean distance from medial-to-lateral meniscal lesions [Mean(MLD)], mean value of tibial plateau width [Mean(TPW)] and the mean of the relative percentage of the medial-to-lateral meniscal lesions distance [Mean(RMLD)] were evaluated through coronal T2-weighted turbo spin echo (TSE) MRI at P-0 (visit when incident ROA was found on radiograph), P-1(one year prior to P-0) and baseline, respectively. Using the imaging data of one patient, the mechanism was investigated by finite element analysis. RESULTS Participants were on average 60.22 years old, predominantly female (66.7%) and overweight (mean BMI: 28.15). Mean(MLD) and Mean(RMLD) were significantly greater for incident knees compared to no incident knees at baseline, P-1 and P-0. [Mean(MLD), Mean(RMLD); (42.56-49.73) mean ± (7.70-9.52) mm SD vs. (38.14-40.78) mean ± (5.51-7.05)mm SD; (58.61-68.95) mean ± (8.52-11.40) mm SD vs. (52.52-56.35) mean ± (6.53-7.85)mm SD, respectively]. Baseline Mean(MLD) and Mean(RMLD), [Adjusted OR, 95%CI: 1.11(1.07 to 1.16) and 1.13(1.09 to 1.17), respectively], were associated with incident ROA during 4 years, However, Mean(TPW) [Adjusted OR, 95%CI: 0.98(0.94 to 1.02)] was not associated with incident ROA during 4 years. While Mean(TPW) at P-1 and P-0 was not associated with the risk of incident ROA, Mean(MLD) and Mean(RMLD) at P-1 and P-0 were significantly positively associated with the risk of incident ROA. CONCLUSIONS The meniscal parameters alteration could be an important imaging biomarker to predict the occurrence of ROA.
Collapse
Affiliation(s)
- Kaida Bo
- The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, 230000, China
| | - Xiangpeng Xie
- The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, 230000, China
| | - Xin Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230000, China
| | - Jianliang Ou
- The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, 230000, China
| | - Yuanyi Zhang
- The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, 230000, China
| | - Xu Wang
- The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, 230000, China
| | - Shuo Yang
- The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, 230000, China
| | - Wei Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230000, China
| | - Lelei Zhang
- The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, 230000, China
| | - Jun Chang
- The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, 230000, China.
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230000, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Life Sciences, Anhui Medical University, Hefei, 230000, China.
| |
Collapse
|
3
|
Shu J, Zheng N, Teng H, Tsai TY, Liu Z. In vivo biomechanical dynamic simulation of a healthy knee during the single-leg lunge and its experiment validation. Med Eng Phys 2024; 129:104183. [PMID: 38906571 DOI: 10.1016/j.medengphy.2024.104183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/28/2024] [Accepted: 05/17/2024] [Indexed: 06/23/2024]
Abstract
Biomechanical modeling of the knee during motion is a pivotal component in disease treatment, implant designs, and rehabilitation strategies. Historically, dynamic simulations of the knee have been scant. This study uniquely integrates a dual fluoroscopic imaging system (DFIS) to investigate the in vivo dynamic behavior of the meniscus during functional activities using a finite element (FE) model. The model was subsequently validated through experiments. Motion capture of a single-leg lunge was executed by DFIS. The motion model was reconstructed using 2D-to-3D registration in conjunction with computed tomography (CT) scans. Both CT and magnetic resonance imaging (MRI) data facilitated the development of the knee FE model. In vivo knee displacements and rotations were utilized as driving conditions for the FE model. Moreover, a 3D-printed model, accompanied with digital imaging correlation (DIC), was used to evaluate the accuracy of the FE model. To a better inner view of knees during the DIC analysis, tibia and femur were crafted by transparent resin. The availability of the FE model was guaranteed by the similar strain distribution of the DIC and FE simulation. Subsequent modeling revealed that the compressive stress distribution between the medial and lateral menisci was balanced in the standing posture. As the flexion angle increased, the medial meniscus bore the primary compressive load, with peak stresses occurring between 60 and 80° of flexion. The simulation of a healthy knee provides a critical theoretical foundation for addressing knee pathologies and advancing prosthetic designs.
Collapse
Affiliation(s)
- Jingheng Shu
- Key Lab for Biomechanical Engineering of Sichuan Province, Sichuan University, Chengdu, China; Yibin Institute of Industrial Technology/Sichuan University Yibin Park, Yibin, China
| | - Nan Zheng
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China; Engineering Research Center for Digital Medicine of the Ministry of Education, Shanghai, China
| | - Haidong Teng
- Key Lab for Biomechanical Engineering of Sichuan Province, Sichuan University, Chengdu, China; Yibin Institute of Industrial Technology/Sichuan University Yibin Park, Yibin, China
| | - Tsung-Yuan Tsai
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China; Engineering Research Center for Digital Medicine of the Ministry of Education, Shanghai, China.
| | - Zhan Liu
- Key Lab for Biomechanical Engineering of Sichuan Province, Sichuan University, Chengdu, China; Yibin Institute of Industrial Technology/Sichuan University Yibin Park, Yibin, China.
| |
Collapse
|
4
|
Lee BH, Kang Y, Cho SH, Moon M, Sim JA, Kim J. Comparison of tibial fracture plate length, placement, and fibular integrity effects on plate integrity through finite element analysis. Sci Rep 2024; 14:14538. [PMID: 38914709 PMCID: PMC11196683 DOI: 10.1038/s41598-024-64990-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
Minimally invasive plate osteosynthesis is the most commonly used minimally invasive surgery technique for tibial fractures, possibly involving single or dual plate methods. Herein, we performed a finite element analysis to investigate plate strength according to the plate type, length, and presence of a fibula by constructing a three-dimensional tibia model. A thickness of 20 mm was cut 50 mm distal from the lateral plateau, and the ligaments were created. Plates were modeled with lengths of 150, 200, and 250 mm and mounted to the tibia. Screws were arranged to avoid overlapping in the dual plating. The von-Mises stress applied to the plates was measured by applying a load of 1 body weight. Dual plates showed the least stress with low displacement, followed by medial and lateral plates. As the plate length increased, the average stress gradually decreased, increasing plate safety. The difference in the influence of the fibula depending on the presence of proximal fibula osteotomy showed that the average stress increased by 35% following proximal fibula osteotomy in the D1(Plate type: Dual plate, Medial plate length: 150 mm, Lateral plate length: 200 mm, Non Proximal fibula osteotomy) and D1P(Plate type: Dual plate, Medial plate length: 150 mm, Lateral plate length: 200 mm, Proximal fibula osteotomy) models, confirming the necessity of the fibula model. There is no consensus guideline for treatment of this kind of fracture case. A single fracture plate can decrease the risk of skin damage, ligament damage, and wound infection, but because of its design, it cannot provide sufficient stability and satisfactory reduction of the condylar fragment, especially in cases of comminution or coronal fracture. So, these results will help clinicians make an informed choice on which plate to use in patients with tibial fractures.
Collapse
Affiliation(s)
- Byung Hoon Lee
- Department of Orthopaedic Surgery, Gachon University College of Medicine, 21, Namdong-Daero 774 Beon-Gil, Namdong-Gu, Incheon, Republic of Korea
| | - Yeokyung Kang
- Central Research and Development Center, Corentec Company Ltd., 33-2, Banpo-Daero 20-Gil, Seocho-Gu, Seoul, Republic of Korea
| | - Sung Ha Cho
- Department of Orthopaedic Surgery, Gachon University College of Medicine, 21, Namdong-Daero 774 Beon-Gil, Namdong-Gu, Incheon, Republic of Korea
| | - Myung Moon
- Gachon University College of Medicine, Incheon, Republic of Korea
| | - Jae Ang Sim
- Department of Orthopaedic Surgery, Gachon University College of Medicine, 21, Namdong-Daero 774 Beon-Gil, Namdong-Gu, Incheon, Republic of Korea.
| | - Jungsung Kim
- Central Research and Development Center, Corentec Company Ltd., 33-2, Banpo-Daero 20-Gil, Seocho-Gu, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Zhang H, Ma J, Tian A, lu B, Bai H, Dai J, Wu Y, Chen J, Luo W, Ma X. Analysis of cartilage loading and injury correlation in knee varus deformity. Medicine (Baltimore) 2024; 103:e38065. [PMID: 38728521 PMCID: PMC11081555 DOI: 10.1097/md.0000000000038065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Knee varus (KV) deformity leads to abnormal forces in the different compartments of the joint cavity and abnormal mechanical loading thus leading to knee osteoarthritis (KOA). This study used computer-aided design to create 3-dimensional simulation models of KOA with varying varus angles to analyze stress distribution within the knee joint cavity using finite element analysis for different varus KOA models and to compare intra-articular loads among these models. Additionally, we developed a cartilage loading model of static KV deformity to correlate with dynamic clinical cases of cartilage injury. Different KV angle models were accurately simulated with computer-aided design, and the KV angles were divided into (0°, 3°, 6°, 9°, 12°, 15°, and 18°) 7 knee models, and then processed with finite element software, and the Von-Mises stress distribution and peak values of the cartilage of the femoral condyles, medial tibial plateau, and lateral plateau were obtained by simulating the human body weight in axial loading while performing the static extension position. Finally, intraoperative endoscopy visualization of cartilage injuries in clinical cases corresponding to KV deformity subgroups was combined to find cartilage loading and injury correlations. With increasing varus angle, there was a significant increase in lower limb mechanical axial inward excursion and peak Von-Mises stress in the medial interstitial compartment. Analysis of patients' clinical data demonstrated a significant correlation between varus deformity angle and cartilage damage in the knee, medial plateau, and patellofemoral intercompartment. Larger varus deformity angles could be associated with higher medial cartilage stress loads and increased cartilage damage in the corresponding peak stress area. When the varus angle exceeds 6°, there is an increased risk of cartilage damage, emphasizing the importance of early surgical correction to prevent further deformity and restore knee function.
Collapse
Affiliation(s)
- Hongjie Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Tianjin Orthopedic Research Institute, Tianjin, PR China
- Kunming Medical University Affiliated Dehong Hospital/Dehongzhou People’s Hospital, Mangshi, China
| | - Jianxiong Ma
- Tianjin University Tianjin Hospital, Tianjin, PR China
- Tianjin Orthopedic Research Institute, Tianjin, PR China
| | - Aixian Tian
- Tianjin University Tianjin Hospital, Tianjin, PR China
- Tianjin Orthopedic Research Institute, Tianjin, PR China
| | - Bin lu
- Tianjin University Tianjin Hospital, Tianjin, PR China
- Tianjin Orthopedic Research Institute, Tianjin, PR China
| | - Haohao Bai
- Tianjin University Tianjin Hospital, Tianjin, PR China
- Tianjin Orthopedic Research Institute, Tianjin, PR China
| | - Jing Dai
- Tianjin Medical University, Tianjin, PR China
| | - Yanfei Wu
- Tianjin Medical University, Tianjin, PR China
| | - Jiahui Chen
- Tianjin Medical University, Tianjin, PR China
| | - Wei Luo
- Tianjin University Tianjin Hospital, Tianjin, PR China
| | - Xinlong Ma
- Tianjin University Tianjin Hospital, Tianjin, PR China
- Tianjin Orthopedic Research Institute, Tianjin, PR China
| |
Collapse
|
6
|
Yuan B, Mo Z, Zhang K, Zhu X, Yan S, Zeng J. The effect of different posterior inclinations of tibial component on tibiofemoral contact pressures after unicompartmental knee arthroplasty. J Orthop Surg Res 2023; 18:909. [PMID: 38031176 PMCID: PMC10685639 DOI: 10.1186/s13018-023-04222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/19/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Different posterior inclinations of tibial component after unicompartmental knee arthroplasty (UKA) may lead to different biomechanical characteristics of the knee joint. This finite element study was designed to investigate the tibiofemoral contact pressures after UKA with different posterior inclinations of tibial component. METHODS Finite element model of a healthy knee joint was constructed, and mobile-bearing (MB) UKA models with 5 different posterior inclinations (3°, 5°, 7°, 9° and 11°) of tibial components were simulated. The maximum contact pressures of tibial plateau cartilage in the lateral compartment and polyethylene insert in the medial compartment were calculated based on the ground reaction force and the angle of the knee flexion obtained by 3D motion capture system. RESULTS The loading ratio of medial and lateral compartments during standing stance (medial 54.49%, lateral 45.51%) and tibial anterior displacement (134 N, 3.89 mm) of healthy knee was basically consistent with previous experimental data. The maximum contact pressures of the medial meniscus and lateral tibial plateau cartilage of the healthy knee during standing stance were 2.14 MPa and 1.57 MPa, respectively. At the static standing phase, the maximum contact pressures of the polyethylene insert decreased from 17.90 to 17.29 Mpa, and the maximum contact pressures of the tibial plateau cartilage in the lateral compartment increased from 0.81 to 0.92 Mpa following an increase in the posterior inclination of the tibial component. At the first peak of ground reaction force, the maximum contact pressures of polyethylene insert increased from 22.37 to 25.16 MPa, and the maximum contact pressures of tibial plateau cartilage in the lateral compartment increased from 3.03 to 3.33 MPa, with the increase in the posterior inclination of the tibial component. At the second peak of ground reaction force, the maximum contact pressures of polyethylene insert decreased from 2.34 to 2.22 MPa with the increase in posterior inclination of tibial component. CONCLUSION The preoperative and postoperative finite element models of MB UKA were well established. The results showed that the maximum contact pressures of the polyethylene insert did not change significantly with the increase in the posterior inclination of the tibial prosthesis, while the maximum contact pressures of the tibial plateau cartilage of the lateral compartment increased when the posterior inclination of the tibial prosthesis was > 7°. Our results also show that the maximum contact pressures were greater with an excessive inclination angle (11°) of the tibial component, and the pressures of the tibial plateau cartilage in the lateral compartment were more concentrated on the posterior area. This study, therefore, proposes that excessive osteotomy should be avoided.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Bone and Joint Surgery, Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, Tongzhou District, Beijing, 101149, China
| | - Zhongjun Mo
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, National Research Centre for Rehabilitation Technical Aids, Beijing, 100176, China
| | - Kuan Zhang
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Xu Zhu
- Department of Bone and Joint Surgery, Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, Tongzhou District, Beijing, 101149, China
| | - Songhua Yan
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Jizhou Zeng
- Department of Bone and Joint Surgery, Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, Tongzhou District, Beijing, 101149, China.
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, China.
| |
Collapse
|
7
|
Alonso MG, Yawny A, Bertolino G. A numerical study towards shape memory alloys application in orthotic management of pediatric knee lateral deviations. Sci Rep 2023; 13:2134. [PMID: 36747043 PMCID: PMC9902535 DOI: 10.1038/s41598-023-29254-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Exerting a constant load would likely improve orthosis effectiveness in treating knee lateral deviations during childhood and early adolescence. Shape memory alloys are potential candidates for such applications due to their so called pseudoelastic effect. The present study aims to quantitatively define the applicable mechanical loads, in order to reduce treatment duration while avoiding tissular damage and patient discomfort. This is essential for performing a more efficient design of correction devices. We use a patient-specific finite elements model of a pediatric knee to determine safe loading levels. The achievable correction rates are estimated using a stochastic three-dimensional growth model. Results are compared against those obtained for a mechanical stimulus decreasing in proportion to the achieved correction, emulating the behavior of conventional orthoses. A constant flexor moment of 1.1 Nm is estimated to change femorotibial angle at a rate of (7.4 ± 4.6) deg/year (mean ± std). This rate is similar to the achieved by more invasive growth modulation methods, and represents an improvement in the order of 25% in the necessary time for reducing deformities of (10 ± 5) deg by half, as compared with conventional orthoses.
Collapse
Affiliation(s)
- M G Alonso
- División Física de Metales, CNEA, 8400, Bariloche, Argentina.
- Instituto Balseiro, Universidad Nacional de Cuyo, Bariloche, Argentina.
| | - A Yawny
- División Física de Metales, CNEA, 8400, Bariloche, Argentina
- Instituto Balseiro, Universidad Nacional de Cuyo, Bariloche, Argentina
- CONICET, Patagonia Norte, 8400, Bariloche, Argentina
| | - G Bertolino
- División Física de Metales, CNEA, 8400, Bariloche, Argentina
- Instituto Balseiro, Universidad Nacional de Cuyo, Bariloche, Argentina
- CONICET, Patagonia Norte, 8400, Bariloche, Argentina
| |
Collapse
|
8
|
Wu Y, Jin X, Zhao X, Wang Y, Bai H, Lu B, Tong X, Ma J, Ma X. Computer-aided Design of Distal Femoral Osteotomy for the Valgus Knee and Effect of Correction Angle on Joint Loading by Finite Element Analysis. Orthop Surg 2022; 14:2904-2913. [PMID: 36151783 PMCID: PMC9627055 DOI: 10.1111/os.13440] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/30/2022] Open
Abstract
Objective Lateral open‐wedge distal femoral osteotomy (DFO) has been used to treat valgus deformity of the knee, with good clinical outcomes. However, there is a lack of biomechanical studies regarding the angle of correction. The objective of this study was to apply computer‐aided design (CAD) for osteotomy planning in a three‐dimensional (3D) anatomical model and to assess the biomechanical differences among the varying correction angles on joint loading by finite element analysis (FEA). Methods To model different angles of lateral open‐wedge DFO correction, the CAD software package Mimics 21.0 was used to accurately simulate the operated knee. The femur was cut to 0°, 2°, 4°, 6°, 8°, and 10° of varus (equivalent to hip‐knee‐ankle angles of 180°, 178°, 176°, 174°, 172°, and 170°, respectively). The original knee model and the corrected models were processed by FE software. Then, the FE models were subjected to an axial force to obtain the von Mises stress (VMS) and shear stress distributions within the femoral cartilages and menisci. Results Under a compressive load of 740 N, the highest VMS in lateral and medial compartments of the intact knee model was 3.418 and 3.303 MPa. The maximum value of both the VMS and the shear stress in the lateral compartment decreased as the varus angle increased, but the corresponding values in the medial compartment increased. When the hip‐knee‐ankle (HKA) angle was 180°, the VMS in the lateral and medial compartments was balanced (3.418 and 3.303 MPa, respectively). Meanwhile, when the HKA angle was 178° (3.488 and 3.625 MPa, respectively), the shear stress in the lateral and medial compartments was balanced. In addition, the magnitude of change in the stress was significantly higher in the medial compartment (90.9%) than in the lateral compartment (19.3%). Conclusion The optimal correction angle of the valgus knee is close to neutral alignment or slightly varus (0° ‐ 2°). Overcorrection is not recommended, as it can result in a steep increase of the stress within the medial compartment and may accelerate the process of medial compartment OA.
Collapse
Affiliation(s)
- Yanfei Wu
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China.,Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xin Jin
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xingwen Zhao
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China.,Tianjin Hospital, Tianjin University, Tianjin, China
| | - Ying Wang
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Haohao Bai
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Bin Lu
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xue Tong
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Jianxiong Ma
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xinlong Ma
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China.,Tianjin Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
9
|
Du M, Sun J, Liu Y, Wang Y, Yan S, Zeng J, Zhang K. Tibio-Femoral Contact Force Distribution of Knee Before and After Total Knee Arthroplasty: Combined Finite Element and Gait Analysis. Orthop Surg 2022; 14:1836-1845. [PMID: 35768396 PMCID: PMC9363749 DOI: 10.1111/os.13361] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 12/03/2022] Open
Abstract
Objective To assess the tibio‐femoral contact forces before and after total knee arthroplasty (TKA) in patients with knee osteoarthritis (KOA) by three‐dimensional (3D) finite element analysis (FEA) models and gait analysis. Methods Two hospitalized patients with Kellgren–Lawrence grade IV varus KOA and two healthy subjects were enrolled in this study. Both patients underwent unilateral TKA. FEA models were established based on CT and MR images of the knees of the patients with KOA and healthy subjects. Gait analysis was performed using a three‐dimensional motion capture system with a force plate. Three direction forces at the ankle joints were calculated by inverse dynamic analysis, which provided the load for the FEA models. The total contact forces of the knee joints were also calculated by inverse dynamic analysis to enable comparisons with the results from the FEA models. The total knee contact forces, maximum von Mises stress, and stress distribution of the medial plateau were compared between the patients and healthy subjects. The distributions of the medial plateau force at 2 and 6 months postoperatively were compared with the distributions of the forces preoperatively and those in the healthy subjects. Results During static standing, the medial plateau bore the most of the total contact forces in the knees with varus KOA (90.78% for patient 1 and 93.53% for patient 2) compared with 64.75 ± 3.34% of the total force in the healthy knees. At the first and second peaks of the ground reaction force during the stance phase of a gait cycle, the medial plateau bore a much higher percentage of contact forces in patients with KOA (74.78% and 86.48%, respectively, for patient 1; 70.68% and 83.56%, respectively, for patient 2) than healthy subjects (61.06% ± 3.43% at the first peak and 72.09% ± 1.83% at the second peak). Two months after TKA, the percentages of contact forces on the medial tibial plateau were 79.65%–85.19% at the first and second peaks of ground reaction forces during the stance phase of a gait cycle, and the percentages decreased to 53.99% – 68.13% 6 months after TKA. Conclusion FEA showed that TKA effectively restored the distribution of tibio‐femoral contact forces during static standing and walking, especially 6 months after the surgery. The changes in the gait were consistent with the changes in the contact force distribution calculated by the FEA model.
Collapse
Affiliation(s)
- Mingming Du
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Jun Sun
- Department of Radiology, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Yancheng Liu
- Department of Bone and Soft Tissue Tumors, Tianjin Hospital, Tianjin, China
| | - Yingpeng Wang
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Songhua Yan
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Jizhou Zeng
- Department of Orthopedics, Beijing Lu He Hospital, Capital Medical University, Beijing, China
| | - Kuan Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Barkaoui A, Ait Oumghar I, Ben Kahla R. Review on the use of medical imaging in orthopedic biomechanics: finite element studies. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2021. [DOI: 10.1080/21681163.2021.1888317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Abdelwahed Barkaoui
- Laboratoire des Énergies Renouvelables et Matériaux Avancés, Université Internationale de Rabat, Sala Al Jadida Morocco
| | - Imane Ait Oumghar
- Laboratoire des Énergies Renouvelables et Matériaux Avancés, Université Internationale de Rabat, Sala Al Jadida Morocco
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France
| | - Rabeb Ben Kahla
- Laboratoire de Systémes et de Mécanique Appliquée, Ecole Polytechnique de Tunis, Université de Carthage, Tunis, Tunisia
- Ecole Nationale d’Ingénieurs de Tunis, Université de Tunis el Manar, Campus Universitaire, Tunis, Tunisia
| |
Collapse
|
11
|
Zainal Abidin NA, Abdul Wahab AH, Abdul Rahim RA, Abdul Kadir MR, Ramlee MH. Biomechanical analysis of three different types of fixators for anterior cruciate ligament reconstruction via finite element method: a patient-specific study. Med Biol Eng Comput 2021; 59:1945-1960. [PMID: 34392448 DOI: 10.1007/s11517-021-02419-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/26/2021] [Indexed: 01/11/2023]
Abstract
Complication rates of anterior cruciate ligament reconstruction (ACL-R) were reported to be around 15% although it is a common arthroscopic procedure with good outcomes. Breakage and migration of fixators are still possible even months after surgery. A fixator with optimum stability can minimise those two complications. Factors that affect the stability of a fixator are its configuration, material, and design. Thus, this paper aims to analyse the biomechanical effects of different types of fixators (cross-pin, interference screw, and cortical button) towards the stability of the knee joint after ACL-R. In this study, finite element modelling and analyses of a knee joint attached with double semitendinosus graft and fixators were carried out. Mimics and 3-Matic softwares were used in the development of the knee joint models. Meanwhile, the graft and fixators were designed by using SolidWorks software. Once the meshes of all models were finished in 3-Matic, simulation of the configurations was done using MSC Marc Mentat software. A 100-N anterior tibial load was applied onto the tibia to simulate the anterior drawer test. Based on the findings, cross-pin was found to have optimum stability in terms of stress and strain at the femoral fixation site for better treatment of ACL-R.
Collapse
Affiliation(s)
- Nur Afikah Zainal Abidin
- Medical Devices & Technology Centre (MEDiTEC), Institute of Human Centered Engineering (iHumEn), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.,Bioinspired Devices and Tissue Engineering (BIOINSPIRA) Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Abdul Hadi Abdul Wahab
- Centre for Multimodal Signal Processing, Faculty of Engineering and Technology, Tunku Abdul Rahman Universiti College, Jalan Genting Kelang, 53300, Setapak, Kuala Lumpur, Malaysia.,Department of Electrical and Electronics Engineering, Faculty of Engineering and Technology, Tunku Abdul Rahman Universiti College, Jalan Genting Kelang, 53300, Setapak, Kuala Lumpur, Malaysia
| | - Rabiatul Adibah Abdul Rahim
- Medical Devices & Technology Centre (MEDiTEC), Institute of Human Centered Engineering (iHumEn), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Mohammed Rafiq Abdul Kadir
- Bioinspired Devices and Tissue Engineering (BIOINSPIRA) Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.,Sports Innovation and Technology Centre (SITC), Institute of Human Centered Engineering (iHumEn), Universiti Teknologi Malaysia, UTM, 81310, Johor Bahru, Johor, Malaysia
| | - Muhammad Hanif Ramlee
- Medical Devices & Technology Centre (MEDiTEC), Institute of Human Centered Engineering (iHumEn), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia. .,Bioinspired Devices and Tissue Engineering (BIOINSPIRA) Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| |
Collapse
|
12
|
ABIDIN NURAFIKAHZAINAL, KADIR MOHAMMEDRAFIQABDUL, RAMLEE MUHAMMADHANIF. BIOMECHANICAL EFFECTS OF DIFFERENT LENGTHS OF CROSS-PINS IN ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION: A FINITE ELEMENT ANALYSIS. J MECH MED BIOL 2020. [DOI: 10.1142/s0219519420500475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Complication rates of anterior cruciate ligament reconstruction (ACL-R) were reported to be around 15%. Although it is a very common arthroscopic surgery with good outcomes, breakage and migration of fixators are still possible to occur due to stability issue. One of the factors that affects the mechanical stability of fixators is its length. Therefore, the aim of this paper is to analyze the biomechanical effects of different lengths of fixators (cross-pin technique) towards the stabilities of the knee joint after ACL-R. Finite element analyses of knee joint with DST grafts and fixators were carried out. Mimics and 3-Matic were used in the development of knee joint models, while the grafts and fixators were designed by using SolidWorks software. All models were remeshed in the 3-Matic and numerical analysis was performed via MSC.Marc Mentat software. A 100 N anterior tibial load was applied onto the tibia to simulate the anterior drawer test after the surgery and proximal femur was fixed at all degrees of freedom. Based on the findings, cross-pin with 40[Formula: see text]mm in length provided the most favorable option for better treatment of ACL-R, where it could promote osseointegration and preventing fracture.
Collapse
Affiliation(s)
- NUR AFIKAH ZAINAL ABIDIN
- Medical Devices & Technology Centre (MEDiTEC), Institute of Human Centered Engineering (iHumEn), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
- Bioinspired Devices and Tissue Engineering Group (BIOINSPIRA), Faculty of Engineering, School of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - MOHAMMED RAFIQ ABDUL KADIR
- Bioinspired Devices and Tissue Engineering Group (BIOINSPIRA), Faculty of Engineering, School of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
- Sports Innovation and Technology Centre (SITC), Institute of Human Centered Engineering (iHumEn), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - MUHAMMAD HANIF RAMLEE
- Medical Devices & Technology Centre (MEDiTEC), Institute of Human Centered Engineering (iHumEn), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
- Bioinspired Devices and Tissue Engineering Group (BIOINSPIRA), Faculty of Engineering, School of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| |
Collapse
|
13
|
Diffo Kaze A, Maas S, Arnoux PJ, Wolf C, Pape D. A finite element model of the lower limb during stance phase of gait cycle including the muscle forces. Biomed Eng Online 2017; 16:138. [PMID: 29212516 PMCID: PMC5719616 DOI: 10.1186/s12938-017-0428-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/29/2017] [Indexed: 11/23/2022] Open
Abstract
Background Results of finite element (FE) analyses can give insight into musculoskeletal diseases if physiological boundary conditions, which include the muscle forces during specific activities of daily life, are considered in the FE modelling. So far, many simplifications of the boundary conditions are currently made. This study presents an approach for FE modelling of the lower limb for which muscle forces were included. Methods The stance phase of normal gait was simulated. Muscle forces were calculated using a musculoskeletal rigid body (RB) model of the human body, and were subsequently applied to a FE model of the lower limb. It was shown that the inertial forces are negligible during the stance phase of normal gait. The contact surfaces between the parts within the knee were modelled as bonded. Weak springs were attached to the distal tibia for numerical reasons. Results Hip joint reaction forces from the RB model and those from the FE model were similar in magnitude with relative differences less than 16%. The forces of the weak spring were negligible compared to the applied muscle forces. The maximal strain was 0.23% in the proximal region of the femoral diaphysis and 1.7% in the contact zone between the tibia and the fibula. Conclusions The presented approach based on FE modelling by including muscle forces from inverse dynamic analysis of musculoskeletal RB model can be used to perform analyses of the lower limb with very realistic boundary conditions. In the present form, this model can be used to better understand the loading, stresses and strains of bones in the knee area and hence to analyse osteotomy fixation devices.
Collapse
Affiliation(s)
- Arnaud Diffo Kaze
- Faculty of Science, Technology and Communication, University of Luxembourg, 6 Rue R. Coudenhove-Kalergi, 1359, Luxembourg, Luxembourg. .,Department of Orthopedic Surgery, Centre Hospitalier de Luxembourg, 76 Rue d'Eich, 1460, Luxembourg, Luxembourg. .,Cartilage Net of the Greater Region, 66421, Homburg/Saar, Germany.
| | - Stefan Maas
- Faculty of Science, Technology and Communication, University of Luxembourg, 6 Rue R. Coudenhove-Kalergi, 1359, Luxembourg, Luxembourg.,Cartilage Net of the Greater Region, 66421, Homburg/Saar, Germany
| | - Pierre-Jean Arnoux
- Laboratoire de Biomécanique Appliquée, UMRT24 IFSTTAR-Université de la Méditerranée, Boulevard Pierre Dramard, 13916, Marseille Cedex 20, France
| | - Claude Wolf
- Faculty of Science, Technology and Communication, University of Luxembourg, 6 Rue R. Coudenhove-Kalergi, 1359, Luxembourg, Luxembourg
| | - Dietrich Pape
- Department of Orthopedic Surgery, Centre Hospitalier de Luxembourg, 76 Rue d'Eich, 1460, Luxembourg, Luxembourg.,Sports Medicine Research Laboratory, Public Research Centre for Health, Luxembourg, Centre Médical de La Fondation Norbert Metz, 76 Rue d'Eich, 1460, Luxembourg, Luxembourg.,Cartilage Net of the Greater Region, 66421, Homburg/Saar, Germany
| |
Collapse
|
14
|
Liukkonen MK, Mononen ME, Klets O, Arokoski JP, Saarakkala S, Korhonen RK. Simulation of Subject-Specific Progression of Knee Osteoarthritis and Comparison to Experimental Follow-up Data: Data from the Osteoarthritis Initiative. Sci Rep 2017; 7:9177. [PMID: 28835668 PMCID: PMC5569023 DOI: 10.1038/s41598-017-09013-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/21/2017] [Indexed: 01/05/2023] Open
Abstract
Economic costs of osteoarthritis (OA) are considerable. However, there are no clinical tools to predict the progression of OA or guide patients to a correct treatment for preventing OA. We tested the ability of our cartilage degeneration algorithm to predict the subject-specific development of OA and separate groups with different OA levels. The algorithm was able to predict OA progression similarly with the experimental follow-up data and separate subjects with radiographical OA (Kellgren-Lawrence (KL) grade 2 and 3) from healthy subjects (KL0). Maximum degeneration and degenerated volumes within cartilage were significantly higher (p < 0.05) in OA compared to healthy subjects, KL3 group showing the highest degeneration values. Presented algorithm shows a great potential to predict subject-specific progression of knee OA and has a clinical potential by simulating the effect of interventions on the progression of OA, thus helping decision making in an attempt to delay or prevent further OA symptoms.
Collapse
Affiliation(s)
- Mimmi K Liukkonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Olesya Klets
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jari P Arokoski
- Department of Physical and Rehabilitation Medicine, Helsinki University Hospital, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
15
|
Tang D, Li ZY. Preface: Computational and experimental methods for biological research: cardiovascular diseases and beyond. Biomed Eng Online 2016; 15:157. [PMID: 28155696 PMCID: PMC5259905 DOI: 10.1186/s12938-016-0269-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Dalin Tang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
- Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA 01609 USA
| | - Zhi-Yong Li
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| |
Collapse
|