9
|
Maier-Hein L, Reinke A, Godau P, Tizabi MD, Buettner F, Christodoulou E, Glocker B, Isensee F, Kleesiek J, Kozubek M, Reyes M, Riegler MA, Wiesenfarth M, Kavur AE, Sudre CH, Baumgartner M, Eisenmann M, Heckmann-Nötzel D, Rädsch T, Acion L, Antonelli M, Arbel T, Bakas S, Benis A, Blaschko MB, Cardoso MJ, Cheplygina V, Cimini BA, Collins GS, Farahani K, Ferrer L, Galdran A, van Ginneken B, Haase R, Hashimoto DA, Hoffman MM, Huisman M, Jannin P, Kahn CE, Kainmueller D, Kainz B, Karargyris A, Karthikesalingam A, Kofler F, Kopp-Schneider A, Kreshuk A, Kurc T, Landman BA, Litjens G, Madani A, Maier-Hein K, Martel AL, Mattson P, Meijering E, Menze B, Moons KGM, Müller H, Nichyporuk B, Nickel F, Petersen J, Rajpoot N, Rieke N, Saez-Rodriguez J, Sánchez CI, Shetty S, van Smeden M, Summers RM, Taha AA, Tiulpin A, Tsaftaris SA, Van Calster B, Varoquaux G, Jäger PF. Metrics reloaded: recommendations for image analysis validation. Nat Methods 2024; 21:195-212. [PMID: 38347141 PMCID: PMC11182665 DOI: 10.1038/s41592-023-02151-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/12/2023] [Indexed: 02/15/2024]
Abstract
Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint-a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases.
Collapse
Affiliation(s)
- Lena Maier-Hein
- German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Medical Systems, Heidelberg, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, HI Helmholtz Imaging, Heidelberg, Germany.
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany.
- Medical Faculty, Heidelberg University, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Medical Center Heidelberg, Heidelberg, Germany.
| | - Annika Reinke
- German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Medical Systems, Heidelberg, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, HI Helmholtz Imaging, Heidelberg, Germany.
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany.
| | - Patrick Godau
- German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Medical Systems, Heidelberg, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Medical Center Heidelberg, Heidelberg, Germany
| | - Minu D Tizabi
- German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Medical Systems, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Medical Center Heidelberg, Heidelberg, Germany
| | - Florian Buettner
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and UCT Frankfurt-Marburg, Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
- Department of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Informatics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Insititute, Frankfurt am Main, Germany
| | - Evangelia Christodoulou
- German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Medical Systems, Heidelberg, Germany
| | - Ben Glocker
- Department of Computing, Imperial College London, South Kensington Campus, London, UK
| | - Fabian Isensee
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, HI Applied Computer Vision Lab, Heidelberg, Germany
| | - Jens Kleesiek
- Institute for AI in Medicine, University Medicine Essen, Essen, Germany
| | - Michal Kozubek
- Centre for Biomedical Image Analysis and Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Mauricio Reyes
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Radiation Oncology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Michael A Riegler
- Simula Metropolitan Center for Digital Engineering, Oslo, Norway
- Department of Computer Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Manuel Wiesenfarth
- German Cancer Research Center (DKFZ) Heidelberg, Division of Biostatistics, Heidelberg, Germany
| | - A Emre Kavur
- German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Medical Systems, Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, HI Applied Computer Vision Lab, Heidelberg, Germany
| | - Carole H Sudre
- MRC Unit for Lifelong Health and Ageing at UCL and Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Michael Baumgartner
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Heidelberg, Germany
| | - Matthias Eisenmann
- German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Medical Systems, Heidelberg, Germany
| | - Doreen Heckmann-Nötzel
- German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Medical Systems, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Medical Center Heidelberg, Heidelberg, Germany
| | - Tim Rädsch
- German Cancer Research Center (DKFZ) Heidelberg, Division of Intelligent Medical Systems, Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, HI Helmholtz Imaging, Heidelberg, Germany
| | - Laura Acion
- Instituto de Cálculo, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Michela Antonelli
- School of Biomedical Engineering and Imaging Science, King's College London, London, UK
- Centre for Medical Image Computing, University College London, London, UK
| | - Tal Arbel
- Centre for Intelligent Machines and MILA (Québec Artificial Intelligence Institute), McGill University, Montréal, Quebec, Canada
| | - Spyridon Bakas
- Division of Computational Pathology, Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, IU Health Information and Translational Sciences Building, Indianapolis, IN, USA
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
| | - Arriel Benis
- Department of Digital Medical Technologies, Holon Institute of Technology, Holon, Israel
- European Federation for Medical Informatics, Le Mont-sur-Lausanne, Switzerland
| | - Matthew B Blaschko
- Center for Processing Speech and Images, Department of Electrical Engineering, KU Leuven, Leuven, Belgium
| | - M Jorge Cardoso
- School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Veronika Cheplygina
- Department of Computer Science, IT University of Copenhagen, Copenhagen, Denmark
| | - Beth A Cimini
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gary S Collins
- Centre for Statistics in Medicine, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK
| | - Keyvan Farahani
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, USA
| | - Luciana Ferrer
- Instituto de Investigación en Ciencias de la Computación (ICC), CONICET-UBA, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Adrian Galdran
- BCN Medtech, Universitat Pompeu Fabra, Barcelona, Spain
- Australian Institute for Machine Learning AIML, University of Adelaide, Adelaide, South Australia, Australia
| | - Bram van Ginneken
- Fraunhofer MEVIS, Bremen, Germany
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Robert Haase
- Technische Universität (TU) Dresden, DFG Cluster of Excellence 'Physics of Life', Dresden, Germany
- Center for Systems Biology, Dresden, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Leipzig University, Leipzig, Germany
| | - Daniel A Hashimoto
- Department of Surgery, Perelman School of Medicine, Philadelphia, PA, USA
- General Robotics Automation Sensing and Perception Laboratory, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael M Hoffman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Merel Huisman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Pierre Jannin
- Laboratoire Traitement du Signal et de l'Image - UMR_S 1099, Université de Rennes 1, Rennes, France
- INSERM, Paris, France
| | - Charles E Kahn
- Department of Radiology and Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Dagmar Kainmueller
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Biomedical Image Analysis and HI Helmholtz Imaging, Berlin, Germany
- Digital Engineering Faculty, University of Potsdam, Potsdam, Germany
| | - Bernhard Kainz
- Department of Computing, Faculty of Engineering, Imperial College London, London, UK
- Department AIBE, Friedrich-Alexander-Universität (FAU), Erlangen-Nürnberg, Germany
| | | | | | | | - Annette Kopp-Schneider
- German Cancer Research Center (DKFZ) Heidelberg, Division of Biostatistics, Heidelberg, Germany
| | - Anna Kreshuk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Tahsin Kurc
- Department of Biomedical Informatics, Stony Brook University, Health Science Center, Stony Brook, NY, USA
| | | | - Geert Litjens
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Amin Madani
- Department of Surgery, University Health Network, Philadelphia, PA, USA
| | - Klaus Maier-Hein
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Heidelberg, Germany
- Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anne L Martel
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Peter Mattson
- Google, 1600 Amphitheatre Pkwy, Mountain View, CA, USA
| | - Erik Meijering
- School of Computer Science and Engineering, University of New South Wales, UNSW Sydney, Kensington, New South Wales, Australia
| | - Bjoern Menze
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Karel G M Moons
- Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Henning Müller
- Information Systems Institute, University of Applied Sciences Western Switzerland (HES-SO), Sierre, Switzerland
- Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Brennan Nichyporuk
- MILA (Québec Artificial Intelligence Institute), Montréal, Quebec, Canada
| | - Felix Nickel
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Petersen
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Heidelberg, Germany
| | - Nasir Rajpoot
- Tissue Image Analytics Laboratory, Department of Computer Science, University of Warwick, Coventry, UK
| | | | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Clara I Sánchez
- Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Maarten van Smeden
- Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ronald M Summers
- National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Abdel A Taha
- Institute of Information Systems Engineering, TU Wien, Vienna, Austria
| | - Aleksei Tiulpin
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Neurocenter Oulu, Oulu University Hospital, Oulu, Finland
| | | | - Ben Van Calster
- Department of Development and Regeneration and EPI-centre, KU Leuven, Leuven, Belgium
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Gaël Varoquaux
- Parietal project team, INRIA Saclay-Île de France, Palaiseau, France
| | - Paul F Jäger
- German Cancer Research Center (DKFZ) Heidelberg, HI Helmholtz Imaging, Heidelberg, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, Interactive Machine Learning Group, Heidelberg, Germany.
| |
Collapse
|