1
|
Zhao T, Hopke PK, Utell MJ, Croft DP, Thurston SW, Lin S, Ling FS, Chen Y, Yount CS, Rich DQ. A case-crossover study of ST-elevation myocardial infarction and organic carbon and source-specific PM 2.5 concentrations in Monroe County, New York. Front Public Health 2024; 12:1369698. [PMID: 39148650 PMCID: PMC11324441 DOI: 10.3389/fpubh.2024.1369698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Background Previous work reported increased rates of cardiovascular hospitalizations associated with increased source-specific PM2.5 concentrations in New York State, despite decreased PM2.5 concentrations. We also found increased rates of ST elevation myocardial infarction (STEMI) associated with short-term increases in concentrations of ultrafine particles and other traffic-related pollutants in the 2014-2016 period, but not during 2017-2019 in Rochester. Changes in PM2.5 composition and sources resulting from air quality policies (e.g., Tier 3 light-duty vehicles) may explain the differences. Thus, this study aimed to estimate whether rates of STEMI were associated with organic carbon and source-specific PM2.5 concentrations. Methods Using STEMI patients treated at the University of Rochester Medical Center, compositional and source-apportioned PM2.5 concentrations measured in Rochester, a time-stratified case-crossover design, and conditional logistic regression models, we estimated the rate of STEMI associated with increases in mean primary organic carbon (POC), secondary organic carbon (SOC), and source-specific PM2.5 concentrations on lag days 0, 0-3, and 0-6 during 2014-2019. Results The associations of an increased rate of STEMI with interquartile range (IQR) increases in spark-ignition emissions (GAS) and diesel (DIE) concentrations in the previous few days were not found from 2014 to 2019. However, IQR increases in GAS concentrations were associated with an increased rate of STEMI on the same day in the 2014-2016 period (Rate ratio [RR] = 1.69; 95% CI = 0.98, 2.94; 1.73 μg/m3). In addition, each IQR increase in mean SOC concentration in the previous 6 days was associated with an increased rate of STEMI, despite imprecision (RR = 1.14; 95% CI = 0.89, 1.45; 0.42 μg/m3). Conclusion Increased SOC concentrations may be associated with increased rates of STEMI, while there seems to be a declining trend in adverse effects of GAS on triggering of STEMI. These changes could be attributed to changes in PM2.5 composition and sources following the Tier 3 vehicle introduction.
Collapse
Affiliation(s)
- Tianming Zhao
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
- Center for Air and Aquatic Resources Engineering and Sciences, Clarkson University, Potsdam, NY, United States
| | - Mark J Utell
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Daniel P Croft
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Sally W Thurston
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, United States
| | - Shao Lin
- Department of Environmental Health, University at Albany School of Public Health, State University of New York, Rensselaer, NY, United States
| | - Frederick S Ling
- Division of Cardiology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Yunle Chen
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Catherine S Yount
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
2
|
Hopke PK, Chen Y, Chalupa DC, Rich DQ. Long term trends in source apportioned particle number concentrations in Rochester NY. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123708. [PMID: 38442826 DOI: 10.1016/j.envpol.2024.123708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/16/2024] [Accepted: 03/02/2024] [Indexed: 03/07/2024]
Abstract
During the past two decades, efforts have been made to further reduce particulate air pollution across New York State through various Federal and State policy implementations. Air quality has also been affected by economic drivers like the 2007-2009 recession and changing costs for different approaches to electricity generation. Prior work has focused on particulate matter with aerodynamic diameter ≤2.5 μm. However, there is also interest in the effects of ultrafine particles on health and the environment and analyses of changes in particle number concentrations (PNCs) are also of interest to assess the impacts of changing emissions. Particle number size distributions have been measured since 2005. Prior apportionments have been limited to seasonal analyses over a limited number of years because of software limitations. Thus, it has not been possible to perform trend analyses on the source-specific PNCs. Recent development have now permitted the analysis of larger data sets using Positive Matrix Factorization (PMF) including its diagnostics. Thus, this study separated and analyzed the hourly averaged size distributions from 2005 to 2019 into two data sets; October to March and April to September. Six factors were resolved for both data sets with sources identified as nucleation, traffic 1, traffic 2, fresh secondary inorganic aerosol (SIA), aged SIA, and O3-rich aerosol. The resulting source-specific PNCs were combined to provide continuous data sets and analyzed for trends. The trends were then examined with respect to the implementation of regulations and the timing of economic drivers. Nucleation was strongly reduced by the requirement of ultralow (<15 ppm) sulfur on-road diesel fuel in 2006. Secondary inorganic particles and O3-rich PNCs show strong summer peaks. Aged SIA was constant and then declined substantially in 2015 but rose in 2019. Traffic 1 and 2 have steadily declined bur rose in 2019.
Collapse
Affiliation(s)
- Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA; Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, 13699, USA.
| | - Yunle Chen
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - David C Chalupa
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| |
Collapse
|
3
|
Jin CD, Kim MH, Lee KM, Yun SC. Effect of Temperature Variation on the Incidence of Acute Myocardial Infarction. J Korean Med Sci 2024; 39:e101. [PMID: 38501185 PMCID: PMC10948260 DOI: 10.3346/jkms.2024.39.e101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/16/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Harsh temperature exposure has been associated with a high risk of cardiovascular events. We sought to investigate the influence of temperature change on long-term incidence of acute myocardial infarction (AMI) in Korean patients. METHODS From the National Health Insurance Service (NHIS) customized health information database (from 2005 to 2014), data from a total of 192,567 AMI patients was assessed according to the International Classification of Disease 10th edition code and matched with temperature reports obtained from the Korea Meteorological Administration database. We analyzed data for a 10-year period on a monthly and seasonal basis. RESULTS The incidence rate per 100,000 year of AMI exhibited a downward trend from 69.1 to 56.1 over the period 2005 to 2014 (P < 0.005), and the seasonal AMI incidence rate per 100,000 year was highest in spring (63.1), and winter (61.3) followed by autumn (59.5) and summer (57.1). On a monthly basis, the AMI incidence rate per 100,000 year was highest during March (64.4) and December (63.9). The highest incidence of AMI occurred during temperature differences of 8-10° in each season. Moreover, AMI incidence tended to increase as the mean temperature decreased (r = -0.233, P = 0.001), and when the mean daily temperature difference increased (r = 0.353, P < 0.001). CONCLUSION The AMI incidence rate per 100,000 year has a decreasing trend over the 10-year period, derived from the Korean NHIS database. Modest daily temperature differences (8-10°) and the spring season are related to higher AMI incidence, indicating that daily temperature variation is more important than the mean daily temperature.
Collapse
Affiliation(s)
- Cai De Jin
- Department of Cardiology, Dong-A University Hospital, Busan, Korea
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Moo Hyun Kim
- Department of Cardiology, Dong-A University Hospital, Busan, Korea.
| | - Kwang Min Lee
- Department of Cardiology, Dong-A University Hospital, Busan, Korea
| | - Sung-Cheol Yun
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Jiang Y, Chen R, Peng W, Luo Y, Chen X, Jiang Q, Han B, Su G, Duan Y, Huo J, Qu X, Fu Q, Kan H. Hourly Ultrafine Particle Exposure and Acute Myocardial Infarction Onset: An Individual-Level Case-Crossover Study in Shanghai, China, 2015-2020. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1701-1711. [PMID: 36668989 DOI: 10.1021/acs.est.2c06651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Associations between ultrafine particles (UFPs) and hourly onset of acute myocardial infarction (AMI) have rarely been investigated. We aimed to evaluate the impacts of UFPs on AMI onset and the lag patterns. A time-stratified case-crossover study was performed among 20,867 AMI patients from 46 hospitals in Shanghai, China, between January 2015 and December 2020. Hourly data of AMI onset and number concentrations of nanoparticles of multiple size ranges below 0.10 μm (0.01-0.10, UFP/PNC0.01-0.10; 0.01-0.03, PNC0.01-0.03; 0.03-0.05, PNC0.03-0.05; and 0.05-0.10 μm, PNC0.05-0.10) were collected. Conditional logistic regressions were applied. Transient exposures to these nanoparticles were significantly associated with AMI onset, with almost linear exposure-response curves. These associations occurred immediately after exposure, lasted for approximately 6 h, and attenuated to be null thereafter. Each interquartile range increase in concentrations of total UFPs, PNC0.01-0.03, PNC0.03-0.05, and PNC0.05-0.10 during the preceding 0-6 h was associated with increments of 3.29, 2.08, 2.47, and 2.93% in AMI onset risk, respectively. The associations were stronger during warm season and at high temperatures and were robust after adjusting for criteria air pollutants. Our findings provide novel evidence that hourly UFP exposure is associated with immediate increase in AMI onset risk.
Collapse
Affiliation(s)
- Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, China
| | - Yun Luo
- Department of Cardiology, Jiujiang No. 1 People's Hospital, Jiujiang 332000, China
| | - Xiaomin Chen
- Department of Cardiology, Ningbo First Hospital, Ningbo 315010, China
| | - Qianfeng Jiang
- Department of Cardiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi 563000, China
| | - Bingjiang Han
- Department of Cardiology, The Second Hospital of Jiaxing (The Second Affiliated Hospital of Jiaxing University), Jiaxing 314000, China
| | - Guohai Su
- Jinan Central Hospital, Jinan 250013, China
| | - Yusen Duan
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Juntao Huo
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Xinkai Qu
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
- Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China
| |
Collapse
|
5
|
Yount CS, Utell MJ, Hopke PK, Thurston SW, Lin S, Ling FS, Chen Y, Chalupa D, Deng X, Rich DQ. Triggering of ST-elevation myocardial infarction by ultrafine particles in New York: Changes following Tier 3 vehicle introduction. ENVIRONMENTAL RESEARCH 2023; 216:114445. [PMID: 36181892 DOI: 10.1016/j.envres.2022.114445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/07/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Previously, we found increased rates of ST-elevation myocardial infarction (STEMI) associated with increased ultrafine particle (UFP; <100 nm) concentrations in the previous few hours in Rochester, New York. Relative rates were higher after air quality policies and a recession reduced pollutant concentrations (2014-2016 versus 2005-2013), suggesting PM composition had changed and the same PM mass concentration had become more toxic. Tier 3 light duty vehicles, which should produce less primary organic aerosols and oxidizable gaseous compounds, likely making PM less toxic, were introduced in 2017. Thus, we hypothesized we would observe a lower relative STEMI rate in 2017-2019 than 2014-2016. METHODS Using STEMI events treated at the University of Rochester Medical Center (2014-2019), UFP and other pollutants measured in Rochester, a case-crossover design, and conditional logistic regression models, we estimated the rate of STEMI associated with increased UFP and other pollutants in the previous hours and days in the 2014-2016 and 2017-2019 periods. RESULTS An increased rate of STEMI was associated with each 3111 particles/cm3 increase in UFP concentration in the previous hour in 2014-2016 (lag hour 0: OR = 1.22; 95% CI = 1.06, 1.39), but not in 2017-2019 (OR = 0.94; 95% CI = 0.80, 1.10). There were similar patterns for black carbon, UFP11-50nm, and UFP51-100nm. In contrast, increased rates of STEMI were associated with each 0.6 ppb increase in SO2 concentration in the previous 120 h in both periods (2014-2016: OR = 1.26, 95% CI = 1.03, 1.55; 2017-2019: OR = 1.21, 95% CI = 0.87, 1.68). CONCLUSIONS Greater rates of STEMI were associated with short term increases in concentrations of UFP and other motor vehicle related pollutants before Tier 3 introduction (2014-2016), but not afterwards (2017-2019). This change may be due to changes in PM composition after Tier 3 introduction, as well as to increased exposure misclassification and greater underestimation of effects from 2017 to 2019.
Collapse
Affiliation(s)
- Catherine S Yount
- Department of Public Health Sciences, University of Rochester Medical Center, 265 Crittenden Boulevard CU420644, Rochester, NY, 14642, USA
| | - Mark J Utell
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, 601 Elmwood Avenue Box 692, Rochester, NY, 14642, USA; Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue Box EHSC, Rochester, NY, 14642, USA
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, 265 Crittenden Boulevard CU420644, Rochester, NY, 14642, USA; Center for Air and Aquatic Resources Engineering and Sciences, Clarkson University, 8 Clarkson Avenue Box 5708, Potsdam, NY, 13699, USA
| | - Sally W Thurston
- Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue Box EHSC, Rochester, NY, 14642, USA; Department of Biostatistics and Computational Biology, 265 Crittenden Boulevard CU420630, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Shao Lin
- Department of Environmental Health, University at Albany School of Public Health, State University of New York, 1 University Place, Rensselaer, NY, 12144, USA
| | - Frederick S Ling
- Division of Cardiology, Department of Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Yunle Chen
- Department of Public Health Sciences, University of Rochester Medical Center, 265 Crittenden Boulevard CU420644, Rochester, NY, 14642, USA
| | - David Chalupa
- Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue Box EHSC, Rochester, NY, 14642, USA
| | - Xinlei Deng
- Department of Environmental Health, University at Albany School of Public Health, State University of New York, 1 University Place, Rensselaer, NY, 12144, USA
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, 265 Crittenden Boulevard CU420644, Rochester, NY, 14642, USA; Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, 601 Elmwood Avenue Box 692, Rochester, NY, 14642, USA; Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue Box EHSC, Rochester, NY, 14642, USA.
| |
Collapse
|
6
|
Song X, Hu Y, Ma Y, Jiang L, Wang X, Shi A, Zhao J, Liu Y, Liu Y, Tang J, Li X, Zhang X, Guo Y, Wang S. Is short-term and long-term exposure to black carbon associated with cardiovascular and respiratory diseases? A systematic review and meta-analysis based on evidence reliability. BMJ Open 2022; 12:e049516. [PMID: 35504636 PMCID: PMC9066484 DOI: 10.1136/bmjopen-2021-049516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Adverse health effects of fine particles (particulate matter2.5) have been well documented by a series of studies. However, evidences on the impacts of black carbon (BC) or elemental carbon (EC) on health are limited. The objectives were (1) to explored the effects of BC and EC on cardiovascular and respiratory morbidity and mortality, and (2) to verified the reliability of the meta-analysis by drawing p value plots. DESIGN The systematic review and meta-analysis using adapted Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach and p value plots approach. DATA SOURCES PubMed, Embase and Web of Science were searched from inception to 19 July 2021. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Time series, case cross-over and cohort studies that evaluated the associations between BC/EC on cardiovascular or respiratory morbidity or mortality were included. DATA EXTRACTION AND SYNTHESIS Two reviewers independently selected studies, extracted data and assessed risk of bias. Outcomes were analysed via a random effects model and reported as relative risk (RR) with 95% CI. The certainty of evidences was assessed by adapted GRADE. The reliabilities of meta-analyses were analysed by p value plots. RESULTS Seventy studies met our inclusion criteria. (1) Short-term exposure to BC/EC was associated with 1.6% (95% CI 0.4% to 2.8%) increase in cardiovascular diseases per 1 µg/m3 in the elderly; (2) Long-term exposure to BC/EC was associated with 6.8% (95% CI 0.4% to 13.5%) increase in cardiovascular diseases and (3) The p value plot indicated that the association between BC/EC and respiratory diseases was consistent with randomness. CONCLUSIONS Both short-term and long-term exposures to BC/EC were related with cardiovascular diseases. However, the impact of BC/EC on respiratory diseases did not present consistent evidence and further investigations are required. PROSPERO REGISTRATION NUMBER CRD42020186244.
Collapse
Affiliation(s)
- Xuping Song
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yue Hu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yan Ma
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Liangzhen Jiang
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xinyi Wang
- Second Clinical College, Lanzhou University, Lanzhou, Gansu, China
| | - Anchen Shi
- Department of General Surgery, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Junxian Zhao
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yunxu Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yafei Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jing Tang
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xiayang Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoling Zhang
- College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, Sichuan, China
| | - Yong Guo
- Department of Civil Affairs in Guizhou Province, Guizhou Province People's Government, Guiyang, Guizhou, China
| | - Shigong Wang
- College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Hopke PK, Feng Y, Dai Q. Source apportionment of particle number concentrations: A global review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153104. [PMID: 35038523 DOI: 10.1016/j.scitotenv.2022.153104] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
There are strong indications that exposure to ultrafine particles (UFP) (mobility diameters ≤100 nm) can induce adverse health effects. UFP can be present in the atmosphere through direct emissions such as from motor vehicles or through new particle formation events. To be able to develop control strategies or to provide source specific exposure metrics, it is possible to perform source apportionments using particle number size distributions. Thus, this study has searched the literature for all papers reporting source apportionments based on particle size distributions and compiled them into a database of all published studies. Typically reported sources include nucleation, several traffic sources, space heating, secondary inorganic aerosol, and particles associated with oxidants as represented by ozone. Nucleation and traffic typically dominated the particle number concentrations.
Collapse
Affiliation(s)
- Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Institute for a Sustainable Environment, Clarkson University, Potsdam, NY 13699, USA.
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qili Dai
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
8
|
Kuźma Ł, Pogorzelski S, Struniawski K, Bachórzewska-Gajewska H, Dobrzycki S. Exposure to air pollution-a trigger for myocardial infarction? A nine-year study in Bialystok-the capital of the Green Lungs of Poland (BIA-ACS registry). Int J Hyg Environ Health 2020; 229:113578. [PMID: 32758862 DOI: 10.1016/j.ijheh.2020.113578] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/24/2020] [Accepted: 06/04/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVES This study aimed to assess the effect of air pollution and weather conditions on the frequency of hospital admissions due to acute coronary syndrome (ACS) in the population of Bialystok, known as the capital of the Green Lungs of Poland. MATERIALS AND METHODS The study analyzed the medical records of 2,645 patients living within the borders of Bialystok who were treated for ACS between 2009 and 2017 and the data on air pollutants-nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter with a diameter of 2.5 μm or less (PM2.5) and 10 μm or less (PM10)-and the basic meteorological factors (temperature, humidity, and atmospheric pressure). A time-stratified case-crossover study design was applied to assess the effects of particulate matter, the concentration of gases, and weather conditions on ACS. RESULTS The number of patients admitted for ST-segment elevation myocardial infarction, non-ST-segment elevation myocardial infarction (NSTEMI), and unstable angina (UA) was 791, 999, and 855, respectively. The daily concentration norm for PM2.5 recommended by the World Health Organization (WHO) was exceeded in 692 days (i.e., 24.58% of the observation period). The significant increase in the number of ACS hospitalizations was associated with an interquartile-range increase in NO2 concentration, with an odds ratio of 1.08 (95% confidence interval (CI): 1.02-1.15, P = 0.01), 1.09 (95% CI: 1.01-1.18, P = 0.03), and 1.11 (95% CI: 1.00-1.22, P = 0.048) for patients with ACS, NSTEMI, and UA, respectively. CONCLUSION The study showed that the effects of air pollution and weather conditions on the number of ACS hospitalizations are also observed in cities with moderately polluted or good air quality. NO2 was identified as the main air pollutant affecting the incidence of ACS.
Collapse
Affiliation(s)
- Łukasz Kuźma
- Department of Invasive Cardiology, Medical University of Bialystok, The Medical University of Bialystok Clinical Hospital, ul. M. Skłodowskiej-Curie 24 A, 15-276, Bialystok, Poland.
| | - Szymon Pogorzelski
- Department of Invasive Cardiology, Medical University of Bialystok, The Medical University of Bialystok Clinical Hospital, ul. M. Skłodowskiej-Curie 24 A, 15-276, Bialystok, Poland
| | - Krzysztof Struniawski
- Department of Invasive Cardiology, Medical University of Bialystok, The Medical University of Bialystok Clinical Hospital, ul. M. Skłodowskiej-Curie 24 A, 15-276, Bialystok, Poland
| | - Hanna Bachórzewska-Gajewska
- Department of Invasive Cardiology, Medical University of Bialystok, The Medical University of Bialystok Clinical Hospital, ul. M. Skłodowskiej-Curie 24 A, 15-276, Bialystok, Poland; Department of Clinical Medicine, Medical University of Bialystok, ul. Szpitalna 37, 15-254, Bialystok, Poland.
| | - Sławomir Dobrzycki
- Department of Invasive Cardiology, Medical University of Bialystok, The Medical University of Bialystok Clinical Hospital, ul. M. Skłodowskiej-Curie 24 A, 15-276, Bialystok, Poland
| |
Collapse
|
9
|
Januszek R, Staszczak B, Siudak Z, Bartuś J, Plens K, Bartuś S, Dudek D. The relationship between increased air pollution expressed as PM 10 concentration and the frequency of percutaneous coronary interventions in patients with acute coronary syndromes-a seasonal differences. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21320-21330. [PMID: 32266627 PMCID: PMC7245590 DOI: 10.1007/s11356-020-08339-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 03/05/2020] [Indexed: 05/30/2023]
Abstract
The aim of the presented study was to assess the relationship between air pollution expressed as particulate air matters less than 10 μm (PM10) and acute coronary syndromes (ACSs). In this observational study, we selected regions with low pollution according to PM10 (non-polluted) and with the highest pollution (polluted). The occurrence of percutaneous coronary interventions (PCIs) in patients with ACSs was matched according to the location. The current study included 7678 patients in polluted areas and 4327 patients from non-polluted regions. Analysing the period from January to December 2017, the number of patients undergoing angioplasty in monitored catheterization laboratories and the mean daily concentration of PM10 in all selected cities were calculated for each day. The annual average concentration of PM10 amounts to 50.95 μg/m3 in polluted and 26.62 μg/m3 in non-polluted cities (P < 0.01). The rise in PM10 pollution levels was related with the increased frequency of PCIs in patients with ACSs in polluted (P < 0.01) and non-polluted (P < 0.01) areas. In the non-polluted regions, the increase in PM10 concentration by every 1 μg/m3 causes 0.22 additional ACS angioplasties per week. In polluted regions, the same increase in PM10 concentration causes 0.18 additional ACS angioplasties per week. In non-winter weeks, the mean number of ACS PCIs expressed in promiles was lower than in winter weeks in polluted (P = 0.03) and non-polluted cities (P = 0.02). The study shows that the increase in air pollution expressed as PM10 concentration and winter time influences the frequency of ACS-related PCIs.
Collapse
Affiliation(s)
- Rafał Januszek
- Department of Clinical Rehabilitation, University of Physical Education, Krakow, Poland.
- 2nd Department of Cardiology and Cardiovascular Interventions, University Hospital, ul. Kopernika 17, 31-501, Krakow, Poland.
| | | | - Zbigniew Siudak
- Faculty of Medicine and Health Sciences, Jan Kochanowski University, Kielce, Poland
| | - Jerzy Bartuś
- Jagiellonian University Medical College, Krakow, Poland
| | | | - Stanisław Bartuś
- 2nd Department of Cardiology and Cardiovascular Interventions, University Hospital, ul. Kopernika 17, 31-501, Krakow, Poland
- 2nd Department of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Dariusz Dudek
- 2nd Department of Cardiology and Cardiovascular Interventions, University Hospital, ul. Kopernika 17, 31-501, Krakow, Poland
- Department of Interventional Cardiology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|