1
|
Pacyga DC, Buckley JP, Martinez-Steele E, Bommarito PA, Ferguson KK, Stevens DR. Degree of food processing and serum poly- and perfluoroalkyl substance concentrations in the US National Health and Nutrition Examination Survey, 2003-2018. Int J Hyg Environ Health 2025; 266:114557. [PMID: 40068585 PMCID: PMC12018131 DOI: 10.1016/j.ijheh.2025.114557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Ultra-processed foods account for >50% of total energy consumed among U.S. individuals and may be a source of poly- and perfluoroalkyl substances (PFAS) exposure - chemicals linked with cancer/cardiometabolic disorders. OBJECTIVE To evaluate associations between degree of food processing and PFAS exposure. METHODS Serum concentrations of seven PFAS were analyzed in 11,530 individuals ≥12-years-old from the U.S. National Health and Nutrition Examination Survey (2003-2018). We averaged responses from two 24-h dietary recalls to calculate relative energy intakes of unprocessed/minimally processed foods, processed culinary ingredients, processed foods, and ultra-processed foods using the Nova food classification system. We estimated percent differences in concentrations (β; PFAS with ≥70% detection) or odds ratios of detection (OR; PFAS with <70% detection) using linear or logistic regression, respectively. We explored associations stratified by cycle, life stage, sex, body mass index, race/ethnicity, and poverty/income ratio. RESULTS Each 10% increase in ultra-processed food intake was associated with higher serum perfluorohexanesulfonic acid (PFHxS; β: 1.40; 95%CI: -0.12, 2.94), but lower perfluorodecanoic acid (PFDA; β: -4.41; 95%CI: -5.55, -3.26) and perfluoroundecanoic acid (PFUnDA; OR: 0.82; 95%CI: 0.79, 0.86) concentrations. Positive associations between ultra-processed foods and PFHxS were driven by adolescents and under-/normal weight individuals. Additionally, each 10% increase in unprocessed/minimally processed food intake was associated with lower perfluorooctanoic acid (PFOA; β: -1.10; 95%CI: -2.38, 0.20) and PFHxS (β: -1.50; 95%CI: -3.03, 0.06), but higher perfluorononanoic acid (PFNA; β: 1.71; 95%CI: 0.24, 3.21), PFDA (β: 5.33; 95%CI: 3.78, 6.90), and PFUnDA (OR: 1.22; 95%CI: 1.16, 1.27). Positive and negative associations of unprocessed/minimally processed foods and ultra-processed foods, respectively, with PFDA and PFUnDA were strongest in recent survey cycles, males, and non-Hispanic Asians. SIGNIFICANCE Unprocessed/minimally processed foods, more than ultra-processed, were associated with serum PFAS concentrations. Efforts should focus on eliminating PFAS from multiple parts of the food chain.
Collapse
Affiliation(s)
- Diana C Pacyga
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jessie P Buckley
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Euridice Martinez-Steele
- School of Public Health, Center for Epidemiological Studies in Health and Nutrition, University of São Paulo, São Paulo, Brazil
| | - Paige A Bommarito
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Danielle R Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| |
Collapse
|
2
|
Guo P, Warren JL, Deziel NC, Liew Z. Exposure range matters: considering nonlinear associations in the meta-analysis of environmental pollutant exposure using examples of per- and polyfluoroalkyl substances and birth outcomes. Am J Epidemiol 2025; 194:1043-1051. [PMID: 39227151 DOI: 10.1093/aje/kwae309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 06/04/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
Meta-analysis is a powerful analytic method for summarizing effect estimates across studies. However, conventional meta-analysis often assumes a linear exposure-outcome relationship and does not account for variability over the exposure ranges. In this work, we first used simulation techniques to illustrate that the linear-based meta-analytical approach may result in oversimplistic effect estimation based on 3 plausible nonlinear exposure-outcome curves (S-shape, inverted U-shape, and M-shape). We showed that subgroup meta-analysis that stratifies on exposure levels can investigate nonlinearity and identify the consistency of effect magnitudes in these simulated examples. Next, we examined the heterogeneity of effect estimates across exposure ranges in 2 published linear-based meta-analyses of prenatal exposure to per- and polyfluoroalkyl substances (PFAS) on changes in mean birth weight or risk of preterm birth. The reanalysis found some varying effect sizes and potential heterogeneity when restricting to different PFAS exposure ranges, but findings were sensitive to the cut-off choices used to rank the exposure levels. Finally, we discussed methodological challenges and recommendations for detecting and interpreting potential nonlinear associations in meta-analysis. Using meta-analysis without accounting for exposure range could contribute to literature inconsistency for exposure-induced health effects and impede evidence-based policymaking. Therefore, investigating result heterogeneity by exposure range is recommended. This article is part of a Special Collection on Environmental Epidemiology.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, United States
| | - Joshua L Warren
- Yale Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, United States
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, United States
- Yale Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, United States
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, United States
- Yale Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, United States
| |
Collapse
|
3
|
Rani BU, Vasantharekha R, Santosh W, Swarnalingam T, Barathi S. Endocrine-Disrupting Chemicals and the Effects of Distorted Epigenetics on Preeclampsia: A Systematic Review. Cells 2025; 14:493. [PMID: 40214447 PMCID: PMC11987890 DOI: 10.3390/cells14070493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/25/2025] [Accepted: 02/08/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Preeclampsia (PE) is a critical complication of pregnancy that affects 3% to 5% of all pregnancies and has been linked to aberrant placentation, causing severe maternal and fetal illness and death. OBJECTIVES This systematic review aims to elucidate the association of in-utero endocrine-disrupting chemical (EDC) exposure and microRNAs and their imprinted genes from prenatal and maternal circulation of PE patients. METHODS Databases such as PubMed, PubMed Central, ScienceDirect, the Comparative Toxicogenomics Database (CTD), ProQuest, EBSCOhost, and Google Scholar were utilized to search for articles that investigate the relationships between selected EDCs and epigenetic events such as DNA methylation and microRNAs that are associated with PE. RESULTS A total of 29 studies were included in the database search. Altered expression of microRNAs (miR-15a-5p, miR-142-3p, and miR-185) in the placenta of PE patients was positively associated with the urinary concentration of phthalates and phenols in the development of the disease in the first trimester. EDCs such as phenols, phthalates, perfluoroalkyl substances (PFOAs), polybrominated diphenyl ethers (PBDEs), and organochlorine phosphates (OCPs) have been reported to be associated with hypertensive disorders in pregnancy. miRNA-31, miRNA-144, miRNA-145, miRNA-210, placental specific clusters (C14MC, and C19MC) may be used as possible targets for PE because of their potential roles in the onset and progression of PE. CONCLUSIONS Prenatal EDC exposure, including exposure to BPA, showed association with signaling pathways including estrogen, sFlt-1/PlGF, ErbB, MAPK/ERK, and cholesterol mechanisms with placental hemodynamics. Even low EDC exposures leave altered epigenetic marks throughout gestation, which might cause PE complications.
Collapse
Affiliation(s)
- Balu Usha Rani
- Endocrine Disruption and Reproductive Toxicology Laboratory (EDART), Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India; (B.U.R.); (R.V.)
| | - Ramasamy Vasantharekha
- Endocrine Disruption and Reproductive Toxicology Laboratory (EDART), Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India; (B.U.R.); (R.V.)
| | - Winkins Santosh
- Toxicology Research on Endocrine Disruptors (TRENDS) Laboratory, PG & Research Department of Advanced Zoology and Biotechnology, Government Arts College, Nandanam, Chennai 600035, India;
| | - Thangavelu Swarnalingam
- Department of Critical Care Medicine, SRM Medical College Hospital & Research Centre, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| | - Seetharaman Barathi
- Endocrine Disruption and Reproductive Toxicology Laboratory (EDART), Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India; (B.U.R.); (R.V.)
| |
Collapse
|
4
|
Yang Y, Wang J, Tang S, Qiu J, Luo Y, Yang C, Lai X, Wang Q, Cao H. Per- and Polyfluoroalkyl Substances (PFAS) in Consumer Products: An Overview of the Occurrence, Migration, and Exposure Assessment. Molecules 2025; 30:994. [PMID: 40076219 PMCID: PMC11901761 DOI: 10.3390/molecules30050994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 03/14/2025] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been widely used in the production of consumer products globally due to the excellent water and oil resistance and anti-fouling properties. The multiple toxic effects of some PFASs also pose a threat to human health and ecosystem, and the frequent use of certain consumer products increased the risk of human exposure to PFASs. More data on the occurrence, concentration, and migration of PFASs in consumer products is urgently needed to address the possible risks posed by exposure to consumer products. This paper reviews the PFAS concentrations found, the migration characteristics known, and the exposure risks of PFASs arising from several types of consumer products over the last five years. The types of consumer products considered here include food contact materials, textiles, and disposable personal hygiene products. The influence of different factors on the migration process of PFASs from these products are summarized and discussed. Additionally, the main approaches and models of exposure assessment are evaluated and summarized. Current challenges and future research prospects in this field are discussed with a view to providing guidance for the future assessment and regulation of PFASs in consumer products.
Collapse
Affiliation(s)
- Yang Yang
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
- College of Environment & Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jin Wang
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
| | - Shali Tang
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
| | - Jia Qiu
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
| | - Yan Luo
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
| | - Chun Yang
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
| | - Xiaojing Lai
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
| | - Qian Wang
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
| | - Hui Cao
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
| |
Collapse
|
5
|
Balu UR, Vasantharekha R, Paromita C, Ali K, Mudgal G, Kesari KK, Seetharaman B. Linking EDC-laden food consumption and modern lifestyle habits with preeclampsia: A non-animal approach to identifying early diagnostic biomarkers through biochemical alterations. Food Chem Toxicol 2024; 194:115073. [PMID: 39461500 DOI: 10.1016/j.fct.2024.115073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Preeclampsia (PE), a pregnancy complication characterized by new-onset hypertension with or without proteinuria and/or end-organ damage, and it may be influenced by exposure to endocrine-disrupting chemicals present in processed foods and modern lifestyles. This study explores the potential link using a non-animal approach to identify early diagnostic biomarkers for preeclampsia. Seventy pregnant women aged 21-41 years participated, and completed questionnaires assessing socio-demographic factors, Suboptimal Health Status Questionnaire scores for fatigue, digestive, cardiovascular, immune, and mental health issues, and exposure to endocrine-disrupting chemicals from processed food consumption and daily product use. Peripheral blood samples were analyzed for hormone profiles, complete blood count, and liver function tests (LFT). Statistical analysis revealed that mothers above 27 years old, with a Body Mass Index exceeding 32.59 Kg/m2, and a Mean Arterial Pressure of 108.5 mmHg exhibited a potential obesogenic effect on preeclampsia development. Socio-demographic factors like, lower economic class, housewife status, primiparous pregnancy, non-graduate education, and rural residence were significantly associated with results. Analysis of biochemical parameters revealed that serum creatinine, blood urea, total protein, platelet count, blood urea nitrogen, bilirubin profile, LFT profile, and thyroid profile showed potential detrimental effects on kidney, liver, muscle, and thyroid function in preeclampsia patients. Notably, PC, serum urea, bilirubin, total protein, serum glutamic-oxaloacetic transaminase (SGOT), alkaline phosphatase (ALP), and thyroid stimulating hormone (TSH) levels were significantly associated with preeclampsia in individuals reporting higher exposure to endocrine disrupting chemicals (EDCs). Minor biochemical alterations were also observed with dairy product consumption. SHS-25 analysis indicated a significant increase in fatigue, and digestive, cardiovascular, immune, and mental health-related issues in patients. Probably, biochemical alterations due to EDC exposure from processed foods and modern lifestyle habits contribute to organ dysfunction in preeclampsia. Identifying these potential biomarkers may pave the way for the development of non-invasive, early diagnostic tools for improved preeclampsia management. This research emphasizes the importance of non-animal testing methods for assessing EDC-related health risks in pregnancy and contributes to the advancement of early PE diagnosis strategies.
Collapse
Affiliation(s)
- Usha Rani Balu
- Endocrine Disruption and Reproductive Toxicology Laboratory (EDART Lab), Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ramasamy Vasantharekha
- Endocrine Disruption and Reproductive Toxicology Laboratory (EDART Lab), Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Chakraborty Paromita
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainable Advocacy and Climate Change (REACH), SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Khalid Ali
- Department of Biochemistry, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Gaurav Mudgal
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India; Center for Waste Management and Renewable Energy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.
| | - Kavindra Kumar Kesari
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India; Department of Applied Physics, School of Science, Aalto University, Espoo, 02150, Finland.
| | - Barathi Seetharaman
- Endocrine Disruption and Reproductive Toxicology Laboratory (EDART Lab), Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
6
|
Begum S, Prince N, Mínguez-Alarcón L, Chen Y, Soeteman DI, Fangal V, Huang M, Wheelock C, Mendez K, Litonjua AA, Weiss ST, Lasky-Su J, Kelly RS. Pregnancy complications and birth outcomes following low-level exposure to per- and polyfluoroalkyl substances in the vitamin D antenatal asthma reduction trial. ENVIRONMENTAL SCIENCE. ADVANCES 2024; 3:1426-1437. [PMID: 39156222 PMCID: PMC11328948 DOI: 10.1039/d4va00001c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic, highly fluorinated aliphatic compounds, commonly utilised in a wide variety of consumer products with diverse applications. Since the genesis of these compounds, a growing body of evidence has demonstrated adverse health effects associated with PFAS exposure. In a racially diverse cohort of 459 pregnant mothers, demographically weighted towards minority representation (black 44.4%, white 38.4%, other 17.2%), across three major populous cities of the US, PFAS profiling was performed. Nine distinct PFAS species were quantified using mass spectrometry in plasma samples collected during the third trimester. Multivariable logistic and linear regression analyses were conducted to interrogate the associations of PFAS with gestational and birth outcomes: gestational diabetes, preeclampsia, gestational age at delivery, low birth weight, birth weight-, birth length- and head circumference-for-gestational-age. Detectable levels for eight out of nine profiled PFAS species were found in the plasma of pregnant mothers with a median range of 0.1-2.70 ng ml-1. Using a mixtures approach, we observe that increased quantile-based g-computation (Qg-comp) "total" PFAS levels were associated with increased newborn birth-weight-for-gestational-age (β 1.28; 95% CI 1.07-1.52; FDR p 0.006). In study centre-stratified analyses, we observed a similar trend in Boston pregnant mothers, with Qg-comp total PFAS associated with higher newborn birth-weight-for-gestational-age (β 1.39; 95% CI 1.01-1.92, FDR p 0.05). We additionally found elevated PFUA concentrations were associated with longer gestational terms in San Diego pregnant mothers (β 0.60; 95% CI 0.18-1.02, FDR p 0.05). In this multi-city study, we detected lower levels of PFAS than in many previous US environmental studies, concordant with current US trends indicating environmental PFAS levels are falling, and we note geographical variation in the associations between PFAS levels and birth outcomes.
Collapse
Affiliation(s)
- Sofina Begum
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School 181 Longwood Avenue Boston MA 02115 USA +1 (617) 525-0065
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London London UK
| | - Nicole Prince
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School 181 Longwood Avenue Boston MA 02115 USA +1 (617) 525-0065
| | - Lidia Mínguez-Alarcón
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School 181 Longwood Avenue Boston MA 02115 USA +1 (617) 525-0065
- Department of Environmental Health, Harvard T. H. Chan School of Public Health Boston MA USA
| | - Yulu Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School 181 Longwood Avenue Boston MA 02115 USA +1 (617) 525-0065
| | - Djøra I Soeteman
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School 181 Longwood Avenue Boston MA 02115 USA +1 (617) 525-0065
- Center for Health Decision Science, Harvard T. H. Chan School of Public Health Boston MA USA
| | - Vrushali Fangal
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School 181 Longwood Avenue Boston MA 02115 USA +1 (617) 525-0065
- Weill Institute for Cell and Molecular Biology, Cornell University Ithaca NY USA
| | - Mengna Huang
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School 181 Longwood Avenue Boston MA 02115 USA +1 (617) 525-0065
| | - Craig Wheelock
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry 2, Karolinska Institute Stockholm Sweden
| | - Kevin Mendez
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School 181 Longwood Avenue Boston MA 02115 USA +1 (617) 525-0065
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, University of Rochester Medical Center Rochester NY USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School 181 Longwood Avenue Boston MA 02115 USA +1 (617) 525-0065
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School 181 Longwood Avenue Boston MA 02115 USA +1 (617) 525-0065
| | - Rachel S Kelly
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School 181 Longwood Avenue Boston MA 02115 USA +1 (617) 525-0065
| |
Collapse
|
7
|
Tao L, Tang W, Xia Z, Wu B, Liu H, Fu J, Lu Q, Guo L, Gao C, Zhou Q, Fan Y, Xu DX, Huang Y. Machine learning predicts the serum PFOA and PFOS levels in pregnant women: Enhancement of fatty acid status on model performance. ENVIRONMENT INTERNATIONAL 2024; 190:108837. [PMID: 38909401 DOI: 10.1016/j.envint.2024.108837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Human exposure to per- and polyfluoroalkyl substances (PFASs) has received considerable attention, particularly in pregnant women because of their dramatic changes in physiological status and dietary patterns. Predicting internal PFAS exposure in pregnant women, based on external and relevant parameters, has not been investigated. Here, machine learning (ML) models were developed to predict the serum concentrations of PFOA and PFOS in a large population of 588 pregnant participants. Dietary exposure characteristics, demographic parameters, and in particular, serum fatty acid (FA) data were used for the model development. The fitting results showed that the inclusion of FAs as covariates significantly improved the performance of the ML models, with the random forest (RF) model having the best predictive performance for PFOA (R2 = 0.33, MAE = 1.51 ng/mL, and RMSE = 1.89 ng/mL) and PFOS (R2 = 0.12, MAE = 2.65 ng/mL, and RMSE = 3.37 ng/mL). The feature importance analysis revealed that serum FAs greatly affected PFOA concentration in the pregnant women, with saturated FAs being associated with decreased PFOA levels and unsaturated FAs with increased levels. Comparison with one-compartment pharmacokinetic model further demonstrated the advantage of the ML models in predicting PFAS exposure in pregnant women. Our models correlate for the first time blood chemical concentrations with human FA status using ML, introducing a novel perspective on predicting PFAS levels in pregnant women. This study provides valuable insights concerning internal exposure of PFASs generated from external exposure, and contributes to risk assessment and management in pregnant populations.
Collapse
Affiliation(s)
- Lin Tao
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Weitian Tang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Zhicai Xia
- Xuancheng Center for Disease Control and Prevention, Xuancheng, China
| | - Bing Wu
- Xuancheng Center for Disease Control and Prevention, Xuancheng, China
| | - Heng Liu
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Juanjuan Fu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Qiufang Lu
- Xuancheng Center for Disease Control and Prevention, Xuancheng, China
| | - Liyan Guo
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Chang Gao
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Qiang Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yijun Fan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital, Anhui Medical University, Hefei, China; Clinical Research Center, Suzhou Hospital of Anhui Medical University, Anhui Medical University, Suzhou, China.
| |
Collapse
|
8
|
Li Y, Lv Y, Jiang Z, Ma C, Li R, Zhao M, Guo Y, Guo H, Zhang X, Li A, Liu Y. Association of co-exposure to organophosphate esters and per- and polyfluoroalkyl substances and mixture with cardiovascular-kidney-liver-metabolic biomarkers among Chinese adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116524. [PMID: 38838464 DOI: 10.1016/j.ecoenv.2024.116524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Organophosphate esters (OPEs) and Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants with common exposure sources, leading to their widespread presence in human body. However, evidence on co-exposure to OPEs and PFAS and its impact on cardiovascular-kidney-liver-metabolic biomarkers remains limited. METHODS In this cross-sectional study, 467 adults were enrolled from January to May 2022 during physical visits in Shijiazhuang, Hebei province. Eleven types of OPEs and twelves types of PFAS were detected, among which eight OPEs and six PFAS contaminants were detected in more than 60% of plasma samples. Seventeen biomarkers were assessed to comprehensively evaluate the cardiovascular-kidney-liver-metabolic function. Multiple linear regression, multipollutant models with sparse partial least squares, and Bayesian kernel machine regression (BKMR) models were applied to examine the associations of individual OPEs and PFAS and their mixtures with organ function and metabolism, respectively. RESULTS Of the over 400 exposure-outcome associations tested when modelling, we observed robust results across three models that perfluorohexanoic acid (PFHxS) was significantly positively associated with alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), and indirect bilirubin (IBIL). Perfluorononanoic acid was significantly associated with decreased AST/ALT and increased very-low-density lipoprotein cholesterol levels. Besides, perfluorodecanoic acid was correlated with increased high lipoprotein cholesterol and perfluoroundecanoic acid was consistently associated with lower glucose level. BKMR analysis showed that OPEs and PFAS mixtures were positively associated with IBIL and TBIL, among which PFHxS was the main toxic chemicals. CONCLUSIONS Our findings suggest that exposure to OPEs and PFAS, especially PFHxS and PFNA, may disrupt organ function and metabolism in the general population, providing insight into the potential pathophysiological mechanisms of OPEs and PFAS co-exposure and chronic diseases.
Collapse
Affiliation(s)
- Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, PR China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, PR China
| | - Yi Lv
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Zexuan Jiang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Chaoying Ma
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Ran Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Mengwei Zhao
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yi Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei Province 050017, PR China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, PR China
| | - Xiaoguang Zhang
- Core Facilities and Centers of Hebei Medical University, Shijiazhuang 050017, PR China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, PR China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei Province 050017, PR China.
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei Province 050017, PR China.
| |
Collapse
|
9
|
Wang Y, Gui J, Howe CG, Emond JA, Criswell RL, Gallagher LG, Huset CA, Peterson LA, Botelho JC, Calafat AM, Christensen B, Karagas MR, Romano ME. Association of diet with per- and polyfluoroalkyl substances in plasma and human milk in the New Hampshire Birth Cohort Study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173157. [PMID: 38740209 PMCID: PMC11247473 DOI: 10.1016/j.scitotenv.2024.173157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are related to various adverse health outcomes, and food is a common source of PFAS exposure. Dietary sources of PFAS have not been adequately explored among U.S. pregnant individuals. We examined associations of dietary factors during pregnancy with PFAS concentrations in maternal plasma and human milk in the New Hampshire Birth Cohort Study. PFAS concentrations, including perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), and perfluorodecanoate (PFDA), were measured in maternal plasma collected at ∼28 gestational weeks and human milk collected at ∼6 postpartum weeks. Sociodemographic, lifestyle and reproductive factors were collected from prenatal questionnaires and diet from food frequency questionnaires at ∼28 gestational weeks. We used adaptive elastic net (AENET) to identify important dietary variables for PFAS concentrations. We used multivariable linear regression to assess associations of dietary variables selected by AENET models with PFAS concentrations. Models were adjusted for sociodemographic, lifestyle, and reproductive factors, as well as gestational week of blood sample collection (plasma PFAS), postpartum week of milk sample collection (milk PFAS), and enrollment year. A higher intake of fish/seafood, eggs, coffee, or white rice during pregnancy was associated with higher plasma or milk PFAS concentrations. For example, every 1 standard deviation (SD) servings/day increase in egg intake during pregnancy was associated with 4.4 % (95 % CI: 0.6, 8.4), 3.3 % (0.1, 6.7), and 10.3 % (5.6, 15.2) higher plasma PFOS, PFOA, and PFDA concentrations respectively. Similarly, every 1 SD servings/day increase in white rice intake during pregnancy was associated with 7.5 % (95 % CI: -0.2, 15.8) and 12.4 % (4.8, 20.5) greater milk PFOS and PFOA concentrations, respectively. Our study suggests that certain dietary factors during pregnancy may contribute to higher PFAS concentrations in maternal plasma and human milk, which could inform interventions to reduce PFAS exposure for both birthing people and offspring.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA.
| | - Jiang Gui
- Department of Biomedical Data Science, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Caitlin G Howe
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Jennifer A Emond
- Department of Biomedical Data Science, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Rachel L Criswell
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA; Skowhegan Family Medicine, Redington-Fairview General Hospital, Skowhegan, ME 04976, USA
| | - Lisa G Gallagher
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Carin A Huset
- Minnesota Department of Health, St. Paul, MN 55101, USA
| | - Lisa A Peterson
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Julianne Cook Botelho
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Brock Christensen
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Margaret R Karagas
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Megan E Romano
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| |
Collapse
|
10
|
Wang L, Sun W, Ma X, Griffin N, Liu H. Perfluorooctanoic acid (PFOA) exposure induces renal filtration and reabsorption disorders via down-regulation of aquaporins. Toxicol Lett 2024; 392:22-35. [PMID: 38123106 DOI: 10.1016/j.toxlet.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/18/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Perfluorooctanoic acid (PFOA) exposure is associated with kidney dysfunction, however the exact mechanisms by which PFOA induces nephrotoxicity and the specific involvement of aquaporins (AQPs) in kidney tissue remains unclear. In this study, adult male Sprague-Dawley (SD) rats were exposed to PFOA by oral gavage for 28 days and compared with controls. Body weight, water intake and urine volume were recorded daily. At the end of the experiment, blood and kidney samples were collected, and serum urea, creatine and uric acid levels were assessed. The renal expression levels of water channel proteins AQP1, AQP3, AQP2 and p-AQP2 (Ser256) were observed by immunohistochemical staining, and the corresponding transcription levels were detected by Western blot and qRT-PCR. The results showed that PFOA exposure inhibited weight gain and increased water intake, urine volume, kidney weight and renal visceral index. PASM staining and transmission electron microscopy revealed pathological thickening of the glomerular capsule and basement membrane. Serum urea levels were increased, while serum creatine levels were decreased compared to controls. Additionally, the expression levels of AQP1, AQP3, AQP2 and p-AQP2 in kidney tissues were decreased, and the phosphorylation of AQP2 at Ser256 was inhibited. In conclusion, we demonstrate that PFOA exposure can damage the renal filtration barrier and reduce the expression level of AQPs in renal tissues, leading to renal filtration and reabsorption disorders.
Collapse
Affiliation(s)
- Li Wang
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China
| | - Weiqiang Sun
- Bengbu Medical College, Bengbu 233030, PR China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu 233030, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu 233030, PR China; Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu 233030, PR China
| | - Xinzhuang Ma
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China
| | - Nathan Griffin
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Hui Liu
- Bengbu Medical College, Bengbu 233030, PR China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu 233030, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu 233030, PR China; Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu 233030, PR China.
| |
Collapse
|
11
|
Vinnars MT, Bixo M, Damdimopoulou P. Pregnancy-related maternal physiological adaptations and fetal chemical exposure. Mol Cell Endocrinol 2023; 578:112064. [PMID: 37683908 DOI: 10.1016/j.mce.2023.112064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/15/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Prenatal life represents a susceptible window of development during which chemical exposures can permanently alter fetal development, leading to an increased likelihood of disease later in life. Therefore, it is essential to assess exposure in the fetus. However, direct assessment in human fetuses is challenging, so most research measures maternal exposure. Pregnancy induces a range of significant physiological changes in women that may affect chemical metabolism and responses. Moreover, placental function, fetal sex, and pregnancy complications may further modify these exposures. The purpose of this narrative review is to give an overview of major pregnancy-related physiological changes, including placental function and impacts of pregnancy complications, to summarize existing studies assessing chemical exposure in human fetal organs, and to discuss possible interactions between physiological changes and exposures. Our review reveals major knowledge gaps in factors affecting fetal chemical exposure, highlighting the need to develop more sophisticated tools for chemical health risk assessment in fetuses.
Collapse
Affiliation(s)
- Marie-Therese Vinnars
- Department of Clinical Sciences, Division of Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| | - Marie Bixo
- Department of Clinical Sciences, Division of Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| |
Collapse
|
12
|
Ashley-Martin J, Fisher M, Belanger P, Cirtiu CM, Arbuckle TE. Biomonitoring of inorganic arsenic species in pregnancy. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:921-932. [PMID: 35948664 PMCID: PMC10733137 DOI: 10.1038/s41370-022-00457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Exposure assessment of inorganic arsenic is challenging due to the existence of multiple species, complexity of arsenic metabolism, and variety of exposure sources. Exposure assessment of arsenic during pregnancy is further complicated by the physiological changes that occur to support fetal growth. Given the well-established toxicity of inorganic arsenic at high concentrations, continued research into the potential health effects of low-level exposure on maternal and fetal health is necessary. Our objectives were to review the value of and challenges inherent in measuring inorganic arsenic species in pregnancy and highlight related research priorities. We discussed how the physiological changes of pregnancy influence arsenic metabolism and necessitate the need for pregnancy-specific data. We reviewed the biomonitoring challenges according to common and novel biological matrices and discussed how each matrix differs according to half-life, bioavailability, availability of laboratory methods, and interpretation within pregnancy. Exposure assessment in both established and novel matrices that accounts for the physiological changes of pregnancy and complexity of speciation is a research priority. Standardization of laboratory method for novel matrices will help address these data gaps. Research is particularly lacking in contemporary populations of pregnant women without naturally elevated arsenic drinking water concentrations (i.e. <10 µg/l).
Collapse
Affiliation(s)
- Jillian Ashley-Martin
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - Mandy Fisher
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Patrick Belanger
- INSPQ, Centre de toxicologie du Québec, Direction de la santé environnementale, au travail et de la toxicology, Quebec, QC, Canada
| | - Ciprian Mihai Cirtiu
- INSPQ, Centre de toxicologie du Québec, Direction de la santé environnementale, au travail et de la toxicology, Quebec, QC, Canada
| | - Tye E Arbuckle
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
13
|
Peterson AK, Zhu Y, Fuller S, Feng J, Alexeeff S, Mitro SD, Kannan K, Robinson M, Padula A, Ferrara A. PFAS concentrations in early and mid-pregnancy and risk of gestational diabetes mellitus in a nested case-control study within the ethnically and racially diverse PETALS cohort. BMC Pregnancy Childbirth 2023; 23:657. [PMID: 37704943 PMCID: PMC10500777 DOI: 10.1186/s12884-023-05953-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are persistent synthetic chemicals and are commonly found in everyday items. PFAS have been linked to disrupting glucose homeostasis, however, whether they are associated with gestational diabetes mellitus (GDM) risk remains inconclusive. We examined prospective associations of PFAS concentrations measured twice in pregnancy with GDM risk. METHODS In the PETALS pregnancy cohort, a nested case-control study which included 41 GDM cases and 87 controls was conducted. PFAS analytes were measured in blood serum collected in both early and mid-pregnancy (mean [SD]: 13.9 [2.2] and 20.2 [2.2] gestational weeks, respectively), with cumulative exposure calculated by the area-under-the-curve (AUC) to integrate both the PFAS concentration and the timing of the exposure. Individual adjusted weighted unconditional logistic regression models examined seven PFAS in association with GDM risk. P-values were corrected using the false-discovery-rate (FDR). Mixture models were analyzed with Bayesian kernel machine regression (BKMR). RESULTS PFDA, PFNA and PFOA were individually associated with higher GDM risk per interquartile range (IQR) in early pregnancy (OR [95% CI]: 1.23 [1.09, 1.38]), 1.40 [1.24, 1.58]), and 1.15 [1.04, 1.27], respectively), mid-pregnancy (1.28 [1.15, 1.43], 1.16 [1.05, 1.28], and 1.20 [1.09, 1.33], respectively), and with cumulative exposure (1.23 [1.09, 1.38], 1.21 [1.07, 1.37], and 1.19 [1.09, 1.31], respectively). PFOS in mid-pregnancy and with cumulative exposure was associated with increased GDM risk (1.41 [1.17, 1.71] and 1.33 [1.06, 1.58], respectively). PFUnDA in early pregnancy was associated with lower GDM risk (0.79 [0.64, 0.98]), whereas mid-pregnancy levels were associated with higher risk (1.49 [1.18, 1.89]). PFHxS was associated with decreased GDM risk in early and mid-pregnancy (0.48 [0.38, 0.60] and 0.48 [0.37, 0.63], respectively) and with cumulative exposure (0.49 [0.38,0.63]). PFPeA was not associated with GDM. Similar conclusions were observed in BKMR models; however, overall associations in these models were not statistically significant. CONCLUSIONS Higher risk of GDM was consistently observed in association with PFDA, PFNA, and PFOA exposure in both early and mid-pregnancy. Results should be corroborated in larger population-based cohorts and individuals of reproductive age should potentially avoid known sources of PFAS.
Collapse
Affiliation(s)
- Alicia K Peterson
- Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA, 94612, USA.
- Center for Upstream Prevention of Adiposity and Diabetes Mellitus (UPSTREAM), Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA, 94612, USA.
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA, 94612, USA
- Center for Upstream Prevention of Adiposity and Diabetes Mellitus (UPSTREAM), Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA, 94612, USA
| | - Sophia Fuller
- Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA, 94612, USA
| | - Juanran Feng
- Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA, 94612, USA
| | - Stacey Alexeeff
- Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA, 94612, USA
| | - Susanna D Mitro
- Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA, 94612, USA
- Center for Upstream Prevention of Adiposity and Diabetes Mellitus (UPSTREAM), Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA, 94612, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, 145 East 32 Street, New York, NY, 10016, USA
| | - Morgan Robinson
- Department of Pediatrics, New York University School of Medicine, 145 East 32 Street, New York, NY, 10016, USA
| | - Amy Padula
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, 490 Illinois Street, San Francisco, 94143 CA, USA
| | - Assiamira Ferrara
- Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA, 94612, USA
- Center for Upstream Prevention of Adiposity and Diabetes Mellitus (UPSTREAM), Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA, 94612, USA
| |
Collapse
|
14
|
Tewfik EL, Noisel N, Verner MA. Biomonitoring equivalents for perfluorooctanoic acid (PFOA) for the interpretation of biomonitoring data. ENVIRONMENT INTERNATIONAL 2023; 179:108170. [PMID: 37657409 DOI: 10.1016/j.envint.2023.108170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Perfluorooctanoic acid (PFOA) is detected in the blood of virtually all biomonitoring study participants. Assessing health risks associated with blood PFOA levels is challenging because exposure guidance values (EGVs) are typically expressed in terms of external dose. Biomonitoring equivalents (BEs) consistent with EGVs could facilitate health-based interpretations. OBJECTIVE To i) derive BEs for serum/plasma PFOA corresponding to non-cancer EGVs of the U.S. Environmental Protection Agency (U.S. EPA), the Agency for Toxic Substances and Disease Registry (ATSDR) and Health Canada, and ii) compare with PFOA concentrations from national biomonitoring surveys. METHODS Starting from EGV points of departure, we employed pharmacokinetic data/models and uncertainty factors. Points of departure in pregnant rodents (U.S. EPA 2016, ATSDR) were converted into fetus and pup serum concentrations using an animal gestation/lactation pharmacokinetic model, and equivalent human fetus and child concentrations were converted into BEs in maternal serum using a human gestation/lactation model. The point of departure in adult rodents (Health Canada) was converted into a BE using experimental data. For epidemiology-based EGVs (U.S. EPA 2023, draft), BEs were directly based on epidemiological data or derived using a human gestation/lactation pharmacokinetic model. BEs were compared with Canadian/U.S. biomonitoring data. RESULTS Non-cancer BEs (ng/mL) were 684 (Health Canada, 2018) or ranged from 15 to 29 (U.S. EPA, 2016), 6-10 (ATSDR, 2021) and 0.2-0.8 (U.S. EPA, 2023, draft). Ninety-fifth percentiles of serum levels from the 2018-2019 Canadian Health Measures Survey (CHMS) and the 2017-2018 National Health and Nutrition Examination Survey (NHANES) were slightly below the BE for ATSDR, and geometric means were above the non-cancer BEs for the U.S. EPA (2023, draft). CONCLUSION Non-cancer BEs spanned three orders of magnitude. The lowest BEs were for EGVs based on developmental endpoints in epidemiological studies. Concentrations in Canadian/U.S. national surveys were higher than or close to BEs for the most recent non-cancer EGVs.
Collapse
Affiliation(s)
- Ernest-Louli Tewfik
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Canada; Centre de Recherche en Santé Publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Canada
| | - Nolwenn Noisel
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Canada; Centre de Recherche en Santé Publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Canada
| | - Marc-André Verner
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Canada; Centre de Recherche en Santé Publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Canada.
| |
Collapse
|
15
|
Friedman C, Dabelea D, Keil AP, Adgate JL, Glueck DH, Calafat AM, Starling AP. Maternal serum per- and polyfluoroalkyl substances during pregnancy and breastfeeding duration. Environ Epidemiol 2023; 7:e260. [PMID: 37545807 PMCID: PMC10402953 DOI: 10.1097/ee9.0000000000000260] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/01/2023] [Indexed: 08/08/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are endocrine-disrupting chemicals that may affect breastfeeding duration. We examined associations between maternal PFAS concentrations during pregnancy and breastfeeding cessation. We investigated potential effect modification by parity status. Methods Among 555 women enrolled in the Healthy Start study (2009-2014), we quantified maternal serum concentrations of 5 PFAS during mid- to late-pregnancy (mean 27 weeks of gestation). Participants self-reported their breastfeeding practices through 18-24 months postnatally. Among all participants and stratified by parity, we estimated associations between maternal PFAS concentrations and breastfeeding discontinuation by 3 and 6 months, using Poisson regression, and breastfeeding duration, using Cox regression. Results Median PFAS concentrations were similar to those in the general US population. Associations between PFAS and breastfeeding duration differed by parity status. After adjusting for covariates, among primiparous women, associations between PFAS and breastfeeding cessation by 3 and 6 months were generally null, with some inverse associations. Among multiparous women, there were positive associations between perfluorohexane sulfonate, perfluorooctane sulfonate, perfluorooctanoate (PFOA), and perfluorononanoate and breastfeeding cessation by 3 and 6 months. For example, per ln-ng/mL increase in PFOA, the risk ratio for breastfeeding discontinuation by 6 months was 1.45 (95% confidence interval, 1.18, 1.78). Hazard ratios reflected similar patterns between PFAS and breastfeeding duration. Conclusions Among primiparous women, we did not find evidence for associations between PFAS concentrations and breastfeeding duration. In contrast, among multiparous women, PFAS serum concentrations were generally inversely associated with breastfeeding duration, though estimates may be biased due to confounding by unmeasured previous breastfeeding.
Collapse
Affiliation(s)
- Chloe Friedman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Alexander P. Keil
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John L. Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Deborah H. Glueck
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Antonia M. Calafat
- Centers for Disease Control and Prevention, National Center for Environmental Health, Atlanta, Georgia
| | - Anne P. Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
16
|
Liu Y, Wosu AC, Fleisch AF, Dunlop AL, Starling AP, Ferrara A, Dabelea D, Oken E, Buckley JP, Chatzi L, Karagas MR, Romano ME, Schantz S, O’Connor TG, Woodruff TJ, Zhu Y, Hamra GB, Braun JM. Associations of Gestational Perfluoroalkyl Substances Exposure with Early Childhood BMI z-Scores and Risk of Overweight/Obesity: Results from the ECHO Cohorts. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:67001. [PMID: 37283528 PMCID: PMC10246497 DOI: 10.1289/ehp11545] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Gestational per- and polyfluoroalkyl substances (PFAS) exposure may be associated with adiposity and increased risk of obesity among children and adolescents. However, results from epidemiological studies evaluating these associations are inconsistent. OBJECTIVES We estimated the associations of pregnancy PFAS concentrations with child body mass index (BMI) z -scores and risk of overweight/obesity in eight U.S. cohorts. METHODS We used data from 1,391 mother-child pairs who enrolled in eight Environmental influences on Child Health Outcomes (ECHO) cohorts (enrolled: 1999-2019). We quantified concentrations of seven PFAS in maternal plasma or serum in pregnancy. We measured child weight and height between the ages of 2 and 5 y and calculated age- and sex-specific BMI z -scores; 19.6% children had more than one BMI measurement. We estimated covariate-adjusted associations of individual PFAS and their mixture with child BMI z -scores and risk of overweight/obesity using linear mixed models, modified Poisson regression models, and Bayesian approaches for mixtures. We explored whether child sex modified these associations. RESULTS We observed a pattern of subtle positive associations of PFAS concentrations in pregnancy with BMI z -scores and risk of overweight/obesity. For instance, each doubling in perfluorohexane sulfonic acid concentrations was associated with higher BMI z -scores (β = 0.07 ; 95% CI: 0.01, 0.12). Each doubling in perfluroundecanoic acid [relative risk ( RR ) = 1.10 ; 95% CI: 1.04, 1.16] and N -methyl perfluorooctane sulfonamido acetic acid (RR = 1.06 ; 95% CI: 1.00, 1.12) was associated with increased risk of overweight/obesity, with some evidence of a monotonic dose-response relation. We observed weaker and more imprecise associations of the PFAS mixture with BMI or risk of overweight/obesity. Associations did not differ by child sex. DISCUSSION In eight U.S.-based prospective cohorts, gestational exposure to higher levels of PFAS were associated with slightly higher childhood BMI z -score and risk of overweight or obesity. Future studies should examine associations of gestational exposure to PFAS with adiposity and related cardiometabolic consequences in older children. https://doi.org/10.1289/EHP11545.
Collapse
Affiliation(s)
- Yun Liu
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Adaeze C. Wosu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Abby F. Fleisch
- Pediatric Endocrinology and Diabetes, Maine Medical Center and Maine Medical Center Research Institute, Portland, Maine, USA
- Center for Outcomes Research and Evaluation, Maine Medical Center and Maine Medical Center Research Institute, Portland, Maine, USA
| | - Anne L. Dunlop
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anne P. Starling
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Assiamira Ferrara
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Jessie P. Buckley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Megan E. Romano
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Susan Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Thomas G. O’Connor
- Department of Psychiatry, University of Rochester, Rochester, New York, USA
| | - Tracey J. Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Yeyi Zhu
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ghassan B. Hamra
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
| | - and the program collaborators for Environmental influences on Child Health Outcomes
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Pediatric Endocrinology and Diabetes, Maine Medical Center and Maine Medical Center Research Institute, Portland, Maine, USA
- Center for Outcomes Research and Evaluation, Maine Medical Center and Maine Medical Center Research Institute, Portland, Maine, USA
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Psychiatry, University of Rochester, Rochester, New York, USA
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
17
|
Wang Y, Howe C, Gallagher LG, Botelho JC, Calafat AM, Karagas MR, Romano ME. Per- and Polyfluoroalkyl Substances (PFAS) Mixture during Pregnancy and Postpartum Weight Retention in the New Hampshire Birth Cohort Study (NHBCS). TOXICS 2023; 11:450. [PMID: 37235264 PMCID: PMC10223499 DOI: 10.3390/toxics11050450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), widely used in industrial and consumer products, are suspected metabolic disruptors. We examined the association between a PFAS mixture during pregnancy and postpartum weight retention in 482 participants from the New Hampshire Birth Cohort Study. PFAS concentrations, including perfluorohexane sulfonate, perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), and perfluorodecanoate, were quantified in maternal plasma collected at ~28 gestational weeks. Postpartum weight change was calculated as the difference between self-reported weight from a postpartum survey administered in 2020 and pre-pregnancy weight abstracted from medical records. Associations between PFAS and postpartum weight change were examined using Bayesian kernel machine regression and multivariable linear regression, adjusting for demographic, reproductive, dietary, and physical activity factors; gestational week of blood sample collection; and enrollment year. PFOS, PFOA, and PFNA were positively associated with postpartum weight retention, and associations were stronger among participants with a higher pre-pregnancy body mass index. A doubling of PFOS, PFOA, and PFNA concentrations was associated with a 1.76 kg (95%CI: 0.31, 3.22), 1.39 kg (-0.27, 3.04), and 1.04 kg (-0.19, 2.28) greater postpartum weight retention, respectively, among participants who had obesity/overweight prior to pregnancy. Prenatal PFAS exposure may be associated with increased postpartum weight retention.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Caitlin Howe
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Lisa G. Gallagher
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Julianne Cook Botelho
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Antonia M. Calafat
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Margaret R. Karagas
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Megan E. Romano
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| |
Collapse
|
18
|
Taibl KR, Liang D, Dunlop AL, Barr DB, Smith MR, Steenland K, Tan Y, Ryan PB, Panuwet P, Everson T, Marsit CJ, Kannan K, Jones DP, Eick SM. Pregnancy-related hemodynamic biomarkers in relation to trimester-specific maternal per - and polyfluoroalkyl substances exposures and adverse birth outcomes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121331. [PMID: 36813097 PMCID: PMC10023492 DOI: 10.1016/j.envpol.2023.121331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The fate of environmental chemicals in maternal and fetal tissues might be affected by pregnancy-related hemodynamic changes that occur across gestation. Specifically, hemodilution and renal function are hypothesized to confound associations between per- and polyfluoroalkyl substances (PFAS) exposure measures in late pregnancy with gestational length and fetal growth. We sought to analyze two pregnancy-related hemodynamic biomarkers, creatinine and estimated glomerular filtration rate (eGFR), as confounders of the trimester-specific relationships between maternal serum PFAS concentrations and adverse birth outcomes. Participants were enrolled in the Atlanta African American Maternal-Child Cohort between 2014 and 2020. Biospecimens were collected at up to two timepoints, which were categorized into the 1st trimester (N = 278; 11 mean weeks gestation), 2nd trimester (N = 162; 24 mean weeks gestation), and 3rd trimester (N = 110; 29 mean weeks gestation). We quantified six PFAS in serum, creatinine in serum and urine, and eGFR using the Cockroft-Gault equation. Multivariable regression models estimated the associations between single PFAS and their sum with gestational age at delivery (weeks), preterm birth (PTB, <37 gestational weeks), birthweight z-scores, and small for gestational age (SGA). Primary models were adjusted for sociodemographics. We additionally adjusted for serum creatinine, urinary creatinine, or eGFR in the confounding assessments. An interquartile range increase in perfluorooctanoic acid (PFOA) produced a non-significant reduction in birthweight z-score during the 1st and 2nd trimesters (β = -0.01 g [95% CI = -0.14, 0.12] and β = -0.07 g [95% CI = -0.19, 0.06], respectively) whereas the relationship was significant and positive during the 3rd trimester (β = 0.15 g; 95% CI = 0.01, 0.29). Trimester-specific effects were similar for the other PFAS and adverse birth outcomes, which persisted after adjusting for creatinine or eGFR. The relationships between prenatal PFAS exposure and adverse birth outcomes were not strongly confounded by renal function or hemodilution. However, 3rd trimester samples consistently exhibited different effects than those collected during the 1st and 2nd trimesters.
Collapse
Affiliation(s)
- Kaitlin R Taibl
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - M Ryan Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Kyle Steenland
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Youran Tan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - P Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Todd Everson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
19
|
Uhl M, Schoeters G, Govarts E, Bil W, Fletcher T, Haug LS, Hoogenboom R, Gundacker C, Trier X, Fernandez MF, Calvo AC, López ME, Coertjens D, Santonen T, Murínová ĽP, Richterová D, Brouwere KD, Hauzenberger I, Kolossa-Gehring M, Halldórsson ÞI. PFASs: What can we learn from the European Human Biomonitoring Initiative HBM4EU. Int J Hyg Environ Health 2023; 250:114168. [PMID: 37068413 DOI: 10.1016/j.ijheh.2023.114168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) were one of the priority substance groups selected which have been investigated under the ambitious European Joint programme HBM4EU (2017-2022). In order to answer policy relevant questions concerning exposure and health effects of PFASs in Europe several activities were developed under HBM4EU namely i) synthesis of HBM data generated in Europe prior to HBM4EU by developing new platforms, ii) development of a Quality Assurance/Quality Control Program covering 12 biomarkers of PFASs, iii) aligned and harmonized human biomonitoring studies of PFASs. In addition, some cohort studies (on mother-child exposure, occupational exposure to hexavalent chromium) were initiated, and literature researches on risk assessment of mixtures of PFAS, health effects and effect biomarkers were performed. The HBM4EU Aligned Studies have generated internal exposure reference levels for 12 PFASs in 1957 European teenagers aged 12-18 years. The results showed that serum levels of 14.3% of the teenagers exceeded 6.9 μg/L PFASs, which corresponds to the EFSA guideline value for a tolerable weekly intake (TWI) of 4.4 ng/kg for some of the investigated PFASs (PFOA, PFOS, PFNA and PFHxS). In Northern and Western Europe, 24% of teenagers exceeded this level. The most relevant sources of exposure identified were drinking water and some foods (fish, eggs, offal and locally produced foods). HBM4EU occupational studies also revealed very high levels of PFASs exposure in workers (P95: 192 μg/L in chrome plating facilities), highlighting the importance of monitoring PFASs exposure in specific workplaces. In addition, environmental contaminated hotspots causing high exposure to the population were identified. In conclusion, the frequent and high PFASs exposure evidenced by HBM4EU strongly suggests the need to take all possible measures to prevent further contamination of the European population, in addition to adopting remediation measures in hotspot areas, to protect human health and the environment. HBM4EU findings also support the restriction of the whole group of PFASs. Further, research and definition for additional toxicological dose-effect relationship values for more PFASs compounds is needed.
Collapse
Affiliation(s)
- Maria Uhl
- Environment Agency Austria, Vienna, Austria.
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; University of Antwerp, Antwerp, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Wieneke Bil
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Tony Fletcher
- UK Health Security Agency, Chilton, Didcot, Oxfordshire, England, UK
| | | | - Ron Hoogenboom
- Wageningen Food Safety Research, Wageningen, the Netherlands
| | | | - Xenia Trier
- European Environment Agency, Copenhagen, Denmark
| | | | | | | | | | - Tiina Santonen
- Finnish Institute of Occupational Health, Helsinki, Uusimaa, Finland
| | | | | | - Katleen De Brouwere
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | | | | |
Collapse
|
20
|
Zhang X, Flaws JA, Spinella MJ, Irudayaraj J. The Relationship between Typical Environmental Endocrine Disruptors and Kidney Disease. TOXICS 2022; 11:32. [PMID: 36668758 PMCID: PMC9863798 DOI: 10.3390/toxics11010032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 05/12/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances that alter the endocrine function of an organism, to result in adverse effects on growth and development, metabolism, and reproductive function. The kidney is one of the most important organs in the urinary system and an accumulation point. Studies have shown that EDCs can cause proteinuria, affect glomeruli and renal tubules, and even lead to diabetes and renal fibrosis in animal and human studies. In this review, we discuss renal accumulation of select EDCs such as dioxins, per- and polyfluoroalkyl substances (PFAS), bisphenol A (BPA), and phthalates, and delineate how exposures to such EDCs cause renal lesions and diseases, including cancer. The regulation of typical EDCs with specific target genes and the activation of related pathways are summarized.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jodi A. Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael J. Spinella
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
21
|
Shen C, Ding J, Xu C, Zhang L, Liu S, Tian Y. Perfluoroalkyl Mixture Exposure in Relation to Fetal Growth: Potential Roles of Maternal Characteristics and Associations with Birth Outcomes. TOXICS 2022; 10:650. [PMID: 36355941 PMCID: PMC9695392 DOI: 10.3390/toxics10110650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Perfluoroalkyl substances (PFASs) exposure is suggested to interfere with fetal growth. However, limited investigations considered the roles of parity and delivery on PFASs distributions and the joint effects of PFASs mixture on birth outcomes. In this study, 506 birth cohorts were investigated in Hangzhou, China with 14 PFASs measured in maternal serum. Mothers with higher maternal ages who underwent cesarean section were associated with elevated PFASs burden, while parity showed a significant but diverse influence. A logarithmic unit increment in perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorononane sulfonate (PFNS) was significantly associated with a reduced birth weight of 0.153 kg (95% confidence interval (CI): -0.274, -0.031, p = 0.014), 0.217 kg (95% CI: -0.385, -0.049, p = 0.012), and 0.137 kg (95% CI: -0.270, -0.003, p = 0.044), respectively. Higher perfluoroheptanoic acid (PFHpA) and perfluoroheptane sulphonate (PFHpS) were associated with increased Apgar-1 scores. PFOA (Odds ratio (OR): 2.17, 95% CI: 1.27, 3.71, p = 0.004) and PFNS (OR:1.59, 95% CI: 1.01, 2.50, p = 0.043) were also risk factors to preterm birth. In addition, the quantile-based g-computation showed that PFASs mixture exposure was significantly associated with Apgar-1 (OR: 0.324, 95%CI: 0.068, 0.579, p = 0.013) and preterm birth (OR: 0.356, 95% CI: 0.149, 0.845, p = 0.019). In conclusion, PFASs were widely distributed in the maternal serum, which was influenced by maternal characteristics and significantly associated with several birth outcomes. Further investigation should focus on the placenta transfer and toxicities of PFASs.
Collapse
Affiliation(s)
- Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiaxin Ding
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chenye Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Long Zhang
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Shuren Liu
- Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yonghong Tian
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
22
|
Hærvig KK, Petersen KU, Hougaard KS, Lindh C, Ramlau-Hansen CH, Toft G, Giwercman A, Høyer BB, Flachs EM, Bonde JP, Tøttenborg SS. Maternal Exposure to Per- and Polyfluoroalkyl Substances (PFAS) and Male Reproductive Function in Young Adulthood: Combined Exposure to Seven PFAS. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:107001. [PMID: 36197086 PMCID: PMC9533763 DOI: 10.1289/ehp10285] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Concerns remain about the human reproductive toxicity of the widespread per- and polyfluoroalkyl substances (PFAS) during early stages of development. OBJECTIVES We examined associations between maternal plasma PFAS levels during early pregnancy and male offspring reproductive function in adulthood. METHODS The study included 864 young men (age range:18.9-21.2 y) from the Fetal Programming of Semen Quality (FEPOS) cohort established between 2017 and 2019. Plasma samples from their mothers, primarily from the first trimester, were retrieved from the Danish National Biobank and levels of 15 PFAS were measured. Seven PFAS had detectable levels above the limit of detection in >80% of the samples and were included in analyses. Semen quality, testicular volume, and levels of reproductive hormones and PFAS were assessed in the young men. We used weighted quantile sum (WQS) regression to estimate the associations between combined exposure to maternal PFAS and reproductive function, and negative binomial regression to estimate the associations of single substances, while adjusting for a range of a priori-defined fetal and postnatal risk factors. RESULTS By a 1-unit increase in the WQS index, combined maternal PFAS exposure was associated with lower sperm concentration (-8%; 95% CI: -16%, -1%), total sperm count (-10%; 95% CI: -17%, -2%), and a higher proportion of nonprogressive and immotile sperm (5%; 95% CI: 1%, 8%) in the young men. Different PFAS contributed to the associations with varying strengths; however, perfluoroheptanoic acid was identified as the main contributor in the analyses of all three outcomes despite the low concentration. We saw no clear association between exposure to maternal PFAS and testicular volume or reproductive hormones. DISCUSSION In a sample of young men from the general Danish population, we observed consistent inverse associations between exposure to maternal PFAS and semen quality. The study needs to be replicated in other populations, taking combined exposure, as well as emerging short-chain PFAS, into consideration. https://doi.org/10.1289/EHP10285.
Collapse
Affiliation(s)
- Katia Keglberg Hærvig
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Kajsa Ugelvig Petersen
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Karin Sørig Hougaard
- Department of Public Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Gunnar Toft
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Aleksander Giwercman
- Molecular Reproductive Medicine, Department of Translational Medicine, Lund University, Malmo, Sweden
| | - Birgit Bjerre Høyer
- Department of Regional Development, Region of Southern Denmark, Vejle, Denmark
| | - Esben Meulengracht Flachs
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Jens Peter Bonde
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Public Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sandra Søgaard Tøttenborg
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Public Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Ou Y, Zeng X, Lin S, Bloom MS, Han F, Xiao X, Wang H, Matala R, Li X, Qu Y, Nie Z, Dong G, Liu X. Gestational exposure to perfluoroalkyl substances and congenital heart defects: A nested case-control pilot study. ENVIRONMENT INTERNATIONAL 2021; 154:106567. [PMID: 33882431 DOI: 10.1016/j.envint.2021.106567] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Accumulating evidence suggests that environmental pollutants may contribute to the occurrence of congenital heart defects (CHDs). However, no previous studies have evaluated the impact of perfluoroalkyl substances (PFAS), persistent environmental pollutants, on CHDs. This exploratory study aimed to generate testable hypotheses of the association between gestational PFAS and the risk of CHDs. METHODS A nested case-control study was conducted in a cohort of 11,578 newborns. Exposure odds ratios were compared between 158 CHD cases and 158 non-malformed controls delivered at the same hospital, individually matched by maternal age (±5 years) and parity. Concentrations of 27 PFAS, including linear and branched isomers, were determined in maternal peripheral blood and cord blood plasma collected before and during delivery using a ultra-performance liquid chromatography coupled to mass spectrometry. Conditional logistic regression was utilized to evaluate associations between individual PFAS and the risk of CHDs, adjusted for confounding variables. RESULTS Maternal gestational exposure to the highly branched perfluorooctanesulfonate (PFOS) isomer potassium 6-trifluoromethyperfluoroheptanesulfonate [6 m-PFOS, adjusted odds ratio (aOR) (95% CI) = 2.47(1.05,5.83)] and perfluorodecanoic acid [PFDA, aOR (95% CI) = 2.33(1.00,5.45)] were associated with increased odds of septal defects with statistical significance, while linear PFOS [aOR (95% CI) = 3.65(1.09,12.16)] and perfluoro-n-dodecanoic acid [PFDoA, aOR (95% CI) = 6.82(1.75, 26.61)] were associated with conotruncal defects. Effect estimates also suggested associations for higher maternal 6 m-PFOS and PFDA concentrations with ventricular septal defect. However, we did not observe these associations in cord blood. CONCLUSION These exploratory findings suggested that gestational exposure to most PFAS, especially linear PFOS, 6 m-PFOS, PFDA, and PFDoA, was associated with greater risks for septal and conotruncal defects. However, a larger, adequately powered study is needed to confirm our findings, and to more comprehensively investigate the potential teratogenic effects of other more recently introduced PFAS, and on associations with individual CHD subtypes.
Collapse
Affiliation(s)
- Yanqiu Ou
- Department of Epidemiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, #96 Dongchuan Road, Guangzhou 510080, China
| | - Xiaowen Zeng
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Road, Yuexiu District, Guangzhou 510080, China
| | - Shao Lin
- Departments of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany, State University of New York, One University Place, Rensselaer, Albany, NY 12144, USA.
| | - Michael S Bloom
- Department of Global and Community Health, George Mason University, Fairfax, VA, 22030 USA
| | - Fengzhen Han
- Department of Obstetrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Xiaohua Xiao
- Boai Hospital of Zhongshan, 6 Chenggui Road, East District, Zhongshan 528403, Guangdong, China
| | - Hui Wang
- Department of Obstetrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Rosemary Matala
- Departments of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany, State University of New York, One University Place, Rensselaer, Albany, NY 12144, USA
| | - Xiaohong Li
- Research Department of Medical Science, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Yanji Qu
- Department of Epidemiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, #96 Dongchuan Road, Guangzhou 510080, China
| | - Zhiqiang Nie
- Department of Epidemiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, #96 Dongchuan Road, Guangzhou 510080, China
| | - Guanghui Dong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Road, Yuexiu District, Guangzhou 510080, China.
| | - Xiaoqing Liu
- Department of Epidemiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, #96 Dongchuan Road, Guangzhou 510080, China.
| |
Collapse
|
24
|
Kaiser AM, Forsthuber M, Aro R, Kärrman A, Gundacker C, Zeisler H, Foessleitner P, Salzer H, Hartmann C, Uhl M, Yeung LWY. Extractable Organofluorine Analysis in Pooled Human Serum and Placental Tissue Samples from an Austrian Subpopulation-A Mass Balance Analysis Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9033-9042. [PMID: 34133125 PMCID: PMC8277134 DOI: 10.1021/acs.est.1c00883] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Embryos and fetuses are of major concern due to their high vulnerability. Previous studies demonstrated that human exposure to per- and polyfluoroalkyl substances (PFAS) may be underestimated because only a limited number of known PFAS can be measured. This investigation studied the total PFAS exposure by measuring the extractable organofluorine (EOF) in pooled maternal serum, placental tissue, and cord serum samples (total number of pooled samples: n = 45). The EOF was analyzed using combustion ion chromatography, and the concentrations of known PFAS were determined using ultraperformance liquid chromatography coupled with a tandem mass spectrometer. Using a mass balance analysis approach, the amount of unknown PFAS was estimated between the levels of known PFAS and EOF. The EOF levels ranged from 2.85 to 7.17 ng F/mL (21 PFAS were quantified) in the maternal serum, from 1.02 to 1.85 ng F/g (23 PFAS were quantified) in the placental tissue, and from 1.2 to 2.10 ng F/mL (18 PFAS were quantified) in the cord serum. An average of 24, 51, and 9% of EOF is unidentified in the maternal serum, placental tissue, and cord serum, respectively. The results show that the levels of unidentified EOF are higher in the placental tissue, suggesting accumulation or potential transformation of precursors in the placenta.
Collapse
Affiliation(s)
- Andreas-Marius Kaiser
- Environment
Agency Austria, Spittelauer
Lände 5, A-1090 Vienna, Austria
- Institute
of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria
| | - Martin Forsthuber
- Institute
of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria
- Department
of Environmental Health, Center for Public Health, Medical University of Vienna, A-1090 Vienna, Austria
| | - Rudolf Aro
- Man-Technology-Environment
Research Centre (MTM), Örebro University, 701 82 Örebro, Sweden
| | - Anna Kärrman
- Man-Technology-Environment
Research Centre (MTM), Örebro University, 701 82 Örebro, Sweden
| | - Claudia Gundacker
- Institute
of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria
| | - Harald Zeisler
- Department
of Obstetrics and Gynecology, Medical University
Vienna, A-1090 Vienna, Austria
| | - Philipp Foessleitner
- Department
of Gynecology and Obstetrics, University
Hospital St. Poelten, A-3100 St. Poelten, Austria
| | - Hans Salzer
- Clinic
for Pediatrics and Adolescent Medicine, University Hospital Tulln, A-3430 Tulln, Austria
| | | | - Maria Uhl
- Environment
Agency Austria, Spittelauer
Lände 5, A-1090 Vienna, Austria
| | - Leo W. Y. Yeung
- Man-Technology-Environment
Research Centre (MTM), Örebro University, 701 82 Örebro, Sweden
| |
Collapse
|
25
|
Chou WC, Lin Z. Development of a Gestational and Lactational Physiologically Based Pharmacokinetic (PBPK) Model for Perfluorooctane Sulfonate (PFOS) in Rats and Humans and Its Implications in the Derivation of Health-Based Toxicity Values. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:37004. [PMID: 33730865 PMCID: PMC7969127 DOI: 10.1289/ehp7671] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND There is a great concern on potential adverse effects of exposure to perfluorooctane sulfonate (PFOS) in sensitive subpopulations, such as pregnant women, fetuses, and neonates, due to its reported transplacental and lactational transfer and reproductive and developmental toxicities in animals and humans. OBJECTIVES This study aimed to develop a gestational and lactational physiologically based pharmacokinetic (PBPK) model in rats and humans for PFOS to aid risk assessment in sensitive human subpopulations. METHODS Based upon existing PBPK models for PFOS, the present model addressed a data gap of including a physiologically based description of basolateral and apical membrane transporter-mediated renal reabsorption and excretion in kidneys during gestation and lactation. The model was calibrated with published rat toxicokinetic and human biomonitoring data and was independently evaluated with separate data. Monte Carlo simulation was used to address the interindividual variability. RESULTS Model simulations were generally within 2-fold of observed PFOS concentrations in maternal/fetal/neonatal plasma and liver in rats and humans. Estimated fifth percentile human equivalent doses (HEDs) based on selected critical toxicity studies in rats following U.S. Environmental Protection Agency (EPA) guidelines ranged from 0.08 to 0.91 μ g / kg per day . These values are lower than the HEDs estimated in U.S. EPA guidance (0.51 - 1.6 μ g / kg per day ) using an empirical toxicokinetic model in adults. CONCLUSIONS The results support the importance of renal reabsorption/excretion during pregnancy and lactation in PFOS dosimetry and suggest that the derivation of health-based toxicity values based on developmental toxicity studies should consider gestational/lactational dosimetry estimated from a life stage-appropriate PBPK model. This study provides a quantitative tool to aid risk reevaluation of PFOS, especially in sensitive human subpopulations, and it provides a basis for extrapolating to other per- and polyfluoroalkyl substances (PFAS). All model codes and detailed tutorials are provided in the Supplemental Materials to allow readers to reproduce our results and to use this model. https://doi.org/10.1289/EHP7671.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
26
|
Starling AP, Liu C, Shen G, Yang IV, Kechris K, Borengasser SJ, Boyle KE, Zhang W, Smith HA, Calafat AM, Hamman RF, Adgate JL, Dabelea D. Prenatal Exposure to Per- and Polyfluoroalkyl Substances, Umbilical Cord Blood DNA Methylation, and Cardio-Metabolic Indicators in Newborns: The Healthy Start Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:127014. [PMID: 33356526 PMCID: PMC7759236 DOI: 10.1289/ehp6888] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are environmentally persistent chemicals widely detected in women of reproductive age. Prenatal PFAS exposure is associated with adverse health outcomes in children. We hypothesized that DNA methylation changes may result from prenatal PFAS exposure and may be linked to offspring cardio-metabolic phenotype. OBJECTIVES We estimated associations of prenatal PFAS with DNA methylation in umbilical cord blood. We evaluated associations of methylation at selected sites with neonatal cardio-metabolic indicators. METHODS Among 583 mother-infant pairs in a prospective cohort, five PFAS were quantified in maternal serum (median 27 wk of gestation). Umbilical cord blood DNA methylation was evaluated using the Illumina HumanMethylation450 array. Differentially methylated positions (DMPs) were evaluated at a false discovery rate ( FDR ) < 0.05 and differentially methylated regions (DMRs) were identified using comb-p (Šidák-adjusted p < 0.05 ). We estimated associations between methylation at candidate DMPs and DMR sites and the following outcomes: newborn weight, adiposity, and cord blood glucose, insulin, lipids, and leptin. RESULTS Maternal serum PFAS concentrations were below the median for females in the U.S. general population. Moderate to high pairwise correlations were observed between PFAS concentrations (ρ = 0.28 - 0.76 ). Methylation at one DMP (cg18587484), annotated to the gene TJAP1, was associated with perfluorooctanoate (PFOA) at FDR < 0.05 . Comb-p detected between 4 and 15 DMRs for each PFAS. Associated genes, some common across multiple PFAS, were implicated in growth (RPTOR), lipid homeostasis (PON1, PON3, CIDEB, NR1H2), inflammation and immune activity (RASL11B, RNF39), among other functions. There was suggestive evidence that two PFAS-associated loci (cg09093485, cg09637273) were associated with cord blood triglycerides and birth weight, respectively (FDR < 0.1 ). DISCUSSION DNA methylation in umbilical cord blood was associated with maternal serum PFAS concentrations during pregnancy, suggesting potential associations with offspring growth, metabolism, and immune function. Future research should explore whether DNA methylation changes mediate associations between prenatal PFAS exposures and child health outcomes. https://doi.org/10.1289/EHP6888.
Collapse
Affiliation(s)
- Anne P. Starling
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cuining Liu
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Guannan Shen
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Ivana V. Yang
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sarah J. Borengasser
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kristen E. Boyle
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Weiming Zhang
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Harry A. Smith
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Antonia M. Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Richard F. Hamman
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - John L. Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, Aurora, Colorado, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|