1
|
Nguyen MH, Nguyen THT, Molenberghs G, Abrams S, Hens N, Faes C. The impact of national and international travel on spatio-temporal transmission of SARS-CoV-2 in Belgium in 2021. BMC Infect Dis 2023; 23:428. [PMID: 37355572 DOI: 10.1186/s12879-023-08368-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/02/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has rapidly spread over the world and caused tremendous impacts on global health. Understanding the mechanism responsible for the spread of this pathogen and the impact of specific factors, such as human mobility, will help authorities to tailor interventions for future SARS-CoV-2 waves or newly emerging airborne infections. In this study, we aim to analyze the spatio-temporal transmission of SARS-CoV-2 in Belgium at municipality level between January and December 2021 and explore the effect of different levels of human travel on disease incidence through the use of counterfactual scenarios. METHODS We applied the endemic-epidemic modelling framework, in which the disease incidence decomposes into endemic, autoregressive and neighbourhood components. The spatial dependencies among areas are adjusted based on actual connectivity through mobile network data. We also took into account other important factors such as international mobility, vaccination coverage, population size and the stringency of restriction measures. RESULTS The results demonstrate the aggravating effect of international travel on the incidence, and simulated counterfactual scenarios further stress the alleviating impact of a reduction in national and international travel on epidemic growth. It is also clear that local transmission contributed the most during 2021, and municipalities with a larger population tended to attract a higher number of cases from neighboring areas. CONCLUSIONS Although transmission between municipalities was observed, local transmission was dominant. We highlight the positive association between the mobility data and the infection spread over time. Our study provides insight to assist health authorities in decision-making, particularly when the disease is airborne and therefore likely influenced by human movement.
Collapse
Affiliation(s)
- Minh Hanh Nguyen
- Data Science Institute, I-BioStat, Hasselt University, BE-3500, Hasselt, Belgium.
| | | | - Geert Molenberghs
- Data Science Institute, I-BioStat, Hasselt University, BE-3500, Hasselt, Belgium
- I-BioStat, Katholieke Universiteit Leuven, BE-3000, Leuven, Belgium
| | - Steven Abrams
- Data Science Institute, I-BioStat, Hasselt University, BE-3500, Hasselt, Belgium
- Global Health Institute, University of Antwerp, BE-2000, Antwerpen, Belgium
| | - Niel Hens
- Data Science Institute, I-BioStat, Hasselt University, BE-3500, Hasselt, Belgium
- Global Health Institute, University of Antwerp, BE-2000, Antwerpen, Belgium
- Centre for Health Economic Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, BE-2000, Antwerpen, Belgium
| | - Christel Faes
- Data Science Institute, I-BioStat, Hasselt University, BE-3500, Hasselt, Belgium
- I-BioStat, Katholieke Universiteit Leuven, BE-3000, Leuven, Belgium
| |
Collapse
|
2
|
Cuypers L, Keyaerts E, Hong SL, Gorissen S, Menezes SM, Starick M, Van Elslande J, Weemaes M, Wawina-Bokalanga T, Marti-Carreras J, Vanmechelen B, Van Holm B, Bloemen M, Dogne JM, Dufrasne F, Durkin K, Ruelle J, De Mendonca R, Wollants E, Vermeersch P, Boulouffe C, Djiena A, Broucke C, Catry B, Lagrou K, Van Ranst M, Neyts J, Baele G, Maes P, André E, Dellicour S, Van Weyenbergh J. Immunovirological and environmental screening reveals actionable risk factors for fatal COVID-19 during post-vaccination nursing home outbreaks. NATURE AGING 2023; 3:722-733. [PMID: 37217661 PMCID: PMC10275758 DOI: 10.1038/s43587-023-00421-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) vaccination has resulted in excellent protection against fatal disease, including in older adults. However, risk factors for post-vaccination fatal COVID-19 are largely unknown. We comprehensively studied three large nursing home outbreaks (20-35% fatal cases among residents) by combining severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) aerosol monitoring, whole-genome phylogenetic analysis and immunovirological profiling of nasal mucosa by digital nCounter transcriptomics. Phylogenetic investigations indicated that each outbreak stemmed from a single introduction event, although with different variants (Delta, Gamma and Mu). SARS-CoV-2 was detected in aerosol samples up to 52 d after the initial infection. Combining demographic, immune and viral parameters, the best predictive models for mortality comprised IFNB1 or age, viral ORF7a and ACE2 receptor transcripts. Comparison with published pre-vaccine fatal COVID-19 transcriptomic and genomic signatures uncovered a unique IRF3 low/IRF7 high immune signature in post-vaccine fatal COVID-19 outbreaks. A multi-layered strategy, including environmental sampling, immunomonitoring and early antiviral therapy, should be considered to prevent post-vaccination COVID-19 mortality in nursing homes.
Collapse
Affiliation(s)
- Lize Cuypers
- Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, KU Leuven, Leuven, Belgium
| | - Els Keyaerts
- Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, KU Leuven, Leuven, Belgium
| | - Samuel Leandro Hong
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sarah Gorissen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, KU Leuven, Leuven, Belgium
| | - Soraya Maria Menezes
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Marick Starick
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Jan Van Elslande
- Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
| | - Matthias Weemaes
- Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
| | - Tony Wawina-Bokalanga
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Joan Marti-Carreras
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Bert Vanmechelen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Bram Van Holm
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Mandy Bloemen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Jean-Michel Dogne
- Department of Pharmacy, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| | - François Dufrasne
- Laboratory of Proteomics and Microbiology, University of Mons, Mons, Belgium
- Department of Infectious Diseases, Laboratory of Viral Diseases, National Institute for Public Health (Sciensano), Brussels, Belgium
| | - Keith Durkin
- Laboratory of Human Genetics, GIGA Research Institute, Liège, Belgium
| | - Jean Ruelle
- Medical Microbiology Unit (MBLG), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| | | | - Elke Wollants
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Pieter Vermeersch
- Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
| | - Caroline Boulouffe
- Infectious Disease Surveillance Unit, Agence pour une vie de qualité (AVIQ), Wallonia, Belgium
| | - Achille Djiena
- Infectious Disease Surveillance Unit, Agence pour une vie de qualité (AVIQ), Wallonia, Belgium
| | - Caroline Broucke
- Outbreak Investigation Team, Agentschap zorg en gezondheid, Flanders, Belgium
| | - Boudewijn Catry
- Unit Healthcare-Associated Infections and Antimicrobial Resistance, Sciensano, Brussels, Belgium
| | - Katrien Lagrou
- Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, KU Leuven, Leuven, Belgium
| | - Marc Van Ranst
- Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, Laboratory Virology and Chemotherapy, Rega Institute, KU Leuven, Leuven, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Piet Maes
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Emmanuel André
- Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, KU Leuven, Leuven, Belgium
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Bruxelles, Belgium
| | - Johan Van Weyenbergh
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Dancer SJ, Cormack K, Loh M, Coulombe C, Thomas L, Pravinkumar SJ, Kasengele K, King MF, Keaney J. Healthcare-acquired clusters of COVID-19 across multiple wards in a Scottish health board. J Hosp Infect 2021; 120:23-30. [PMID: 34863874 PMCID: PMC8634690 DOI: 10.1016/j.jhin.2021.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022]
Abstract
Background Healthcare-acquired COVID-19 has been an additional burden on hospitals managing increasing numbers of patients with SARS-CoV-2. One acute hospital (W) among three in a Scottish healthboard experienced an unexpected surge of COVID-19 clusters. Aim To investigate possible causes of COVID-19 clusters at Hospital W. Methods Daily surveillance provided total numbers of patients and staff involved in clusters in three acute hospitals (H, M and W) and care homes across the healthboard. All clusters were investigated and documented, along with patient boarding, community infection rates and outdoor temperatures from October 2020 to March 2021. Selected SARS-CoV-2 strains were genotyped. Findings There were 19 COVID-19 clusters on 14 wards at Hospital W during the six-month study period, lasting from two to 42 days (average, five days; median, 14 days) and involving an average of nine patients (range 1–24) and seven staff (range 0–17). COVID-19 clusters in Hospitals H and M reflected community infection rates. An outbreak management team implemented a control package including daily surveillance; ward closures; universal masking; screening; restricting staff and patient movement; enhanced cleaning; and improved ventilation. Forty clusters occurred across all three hospitals before a January window-opening policy, after which there were three during the remainder of the study. Conclusion The winter surge of COVID-19 clusters was multi-factorial, but clearly exacerbated by moving trauma patients around the hospital. An extended infection prevention and control package including enhanced natural ventilation helped reduce COVID-19 clusters in acute hospitals.
Collapse
Affiliation(s)
- S J Dancer
- Department of Microbiology, NHS Lanarkshire & Edinburgh Napier University, UK.
| | - K Cormack
- Quality Directorate, NHS Lanarkshire, UK
| | - M Loh
- Institute of Occupational Medicine, Edinburgh, UK
| | - C Coulombe
- Infection Prevention & Control, NHS Lanarkshire, UK
| | - L Thomas
- Infection Prevention & Control, NHS Lanarkshire, UK
| | | | - K Kasengele
- Department of Public Health, NHS Lanarkshire, UK
| | - M-F King
- School of Civil Engineering, University of Leeds, Leeds, UK
| | | |
Collapse
|