1
|
Ramírez-Salinas G, Shoshani L, Rosas-Trigueros JL, Huerta CS, Martínez-Archundia M. In silico studies provide new structural insights into trans-dimerization of β1 and β2 subunits of the Na+, K+-ATPase. PLoS One 2025; 20:e0321064. [PMID: 40299990 PMCID: PMC12040271 DOI: 10.1371/journal.pone.0321064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/02/2025] [Indexed: 05/01/2025] Open
Abstract
The Na+, K+-ATPase is an electrogenic transmembrane pump located in the plasma membrane of all animal cells. It is a dimeric protein composed of α and β subunits and has a third regulatory subunit (γ) belonging to the FXYD family. This pump plays a key role in maintaining low concentration of sodium and high concentration of potassium intracellularly. The α subunit is the catalytic one while the β subunit is important for the occlusion of the K+ ions and plays an essential role in trafficking of the functional αβ complex of Na+, K+-ATPase to the plasma membrane. Interestingly, the β1 and β2 (AMOG) isoforms of the β subunit, function as cell adhesion molecules in epithelial cells and astrocytes, respectively. Early experiments suggested a heterotypic adhesion for the β2. Recently, we reported a homotypic trans-interaction between β2-subunits expressed in CHO cells. In this work we use In Silico methods to analyze the physicochemical properties of the putative homophilic trans-dimer of β2 subunits and provide insights about the trans-dimerization interface stability. Our structural analysis predicts a molecular recognition mechanism of a trans-dimeric β2 - β2 subunit and permits designing experiments that will shed light upon possible homophilic interactions of β2 subunits in the nervous system.
Collapse
Affiliation(s)
- Gema Ramírez-Salinas
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Liora Shoshani
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Jorge L. Rosas-Trigueros
- Laboratorio Transdisciplinario de Investigación enSistemas Evolutivos, ESCOM, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Christian Sosa Huerta
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Marlet Martínez-Archundia
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
2
|
Antitumor Activity and Mechanism of Action of the Antimicrobial Peptide AMP-17 on Human Leukemia K562 Cells. Molecules 2022; 27:molecules27228109. [PMID: 36432210 PMCID: PMC9697079 DOI: 10.3390/molecules27228109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Cancer is one of the most common malignant diseases in the world. Hence, there is an urgent need to search for novel drugs with antitumor activity against cancer cells. AMP-17, a natural antimicrobial peptide derived from Musca domestica, has antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria, and fungi. However, its antitumor activity and potential mechanism of action in cancer cells remain unclear. In this study, we focused on evaluating the in vitro antitumor activity and mechanism of AMP-17 on leukemic K562 cells. The results showed that AMP-17 exhibited anti-proliferative activity on K562 cells with an IC50 value of 58.91 ± 3.57 μg/mL. The membrane integrity of K562 was disrupted and membrane permeability was increased after AMP-17 action. Further observation using SEM and TEM images showed that the cell structure of AMP-17-treated cells was disrupted, with depressions and pore-like breaks on the cell surface, and vacuolated vesicles in the cytoplasm. Furthermore, further mechanistic studies indicated that AMP-17 induced excessive production of reactive oxygen species and calcium ions release in K562 cells, which led to disturbance of mitochondrial membrane potential and blocked ATP synthesis, followed by activation of Caspase-3 to induce apoptosis. In conclusion, these results suggest that the antitumor activity of AMP-17 may be achieved by disrupting cell structure and inducing apoptosis. Therefore, AMP-17 is expected to be a novel potential agent candidate for leukemia treatment.
Collapse
|
3
|
Núñez-Carpintero I, Petrizzelli M, Zinovyev A, Cirillo D, Valencia A. The multilayer community structure of medulloblastoma. iScience 2021; 24:102365. [PMID: 33889829 PMCID: PMC8050854 DOI: 10.1016/j.isci.2021.102365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 01/20/2023] Open
Abstract
Multilayer networks allow interpreting the molecular basis of diseases, which is particularly challenging in rare diseases where the number of cases is small compared with the size of the associated multi-omics datasets. In this work, we develop a dimensionality reduction methodology to identify the minimal set of genes that characterize disease subgroups based on their persistent association in multilayer network communities. We use this approach to the study of medulloblastoma, a childhood brain tumor, using proteogenomic data. Our approach is able to recapitulate known medulloblastoma subgroups (accuracy >94%) and provide a clear characterization of gene associations, with the downstream implications for diagnosis and therapeutic interventions. We verified the general applicability of our method on an independent medulloblastoma dataset (accuracy >98%). This approach opens the door to a new generation of multilayer network-based methods able to overcome the specific dimensionality limitations of rare disease datasets. The molecular interpretation of rare diseases is a challenging task Multilayer networks allow patient stratification and explainability We identify subgroup-specific genes and multilayer associations in medulloblastoma Multilayer community analysis enables the molecular interpretation of rare diseases
Collapse
Affiliation(s)
| | - Marianyela Petrizzelli
- Institut Curie, PSL Research University, 75005 Paris, France
- INSERM, U900, 75005 Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, 75006 Paris, France
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, 75005 Paris, France
- INSERM, U900, 75005 Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, 75006 Paris, France
- Lobachevsky University, 603000 Nizhny Novgorod, Russia
| | - Davide Cirillo
- Barcelona Supercomputing Center (BSC), C/ Jordi Girona 29, 08034, Barcelona, Spain
- Corresponding author
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC), C/ Jordi Girona 29, 08034, Barcelona, Spain
- ICREA - Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
4
|
Lu S, Cai S, Peng X, Cheng R, Zhang Y. Integrative Transcriptomic, Proteomic and Functional Analysis Reveals ATP1B3 as a Diagnostic and Potential Therapeutic Target in Hepatocellular Carcinoma. Front Immunol 2021; 12:636614. [PMID: 33868261 PMCID: PMC8050352 DOI: 10.3389/fimmu.2021.636614] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
The Na+/K+-ATPase (NKA), has been proposed as a signal transducer involving various pathobiological processes, including tumorigenesis. However, the clinical relevance of NKA in hepatocellular carcinoma (HCC) has not been well studied. This study revealed the upregulation of mRNA of ATP1A1, ATP1B1, and ATP1B3 in HCC using TCGA, ICGC, and GEO database. Subsequently, ATP1B3 was demonstrated as an independent prognostic factor of overall survival (OS) of HCC. To investigate the potential mechanisms of ATP1B3 in HCC, we analyzed the co-expression network using LinkedOmics and found that ATP1B3 co-expressed genes were associated with immune-related biological processes. Furthermore, we found that ATP1B3 was correlated immune cell infiltration and immune-related cytokines expression in HCC. The protein level of ATP1B3 was also validated as a prognostic significance and was correlated with immune infiltration in HCC using two proteomics datasets. Finally, functional analysis revealed that ATP1B3 was increased in HCC cells and tissues, silenced ATP1B3 repressed HCC cell proliferation, migration, and promoted HCC cell apoptosis and epithelial to mesenchymal transition (EMT). In conclusion, these findings proved that ATP1B3 could be an oncogene and it was demonstrated as an independent prognostic factor and correlated with immune infiltration in HCC, revealing new insights into the prognostic role and potential immune regulation of ATP1B3 in HCC progression and provide a novel possible therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Shanshan Lu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China.,The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Shenglan Cai
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaozhen Peng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Huaihua Key Laboratory of Research and Application of Novel Molecular Diagnostic Techniques, School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua, China.,Department of Hunan key laboratary of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Ruochan Cheng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Yiya Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China.,Department of Hunan key laboratary of aging biology, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Cheon Y, Yoo A, Seo H, Yun SY, Lee H, Lim H, Kim Y, Che L, Lee S. Na/K-ATPase beta1-subunit associates with neuronal growth regulator 1 (NEGR1) to participate in intercellular interactions. BMB Rep 2021. [PMID: 32958118 PMCID: PMC8016658 DOI: 10.5483/bmbrep.2021.54.3.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Neuronal growth regulator 1 (NEGR1) is a GPI-anchored membrane protein that is involved in neural cell adhesion and communication. Multiple genome wide association studies have found that NEGR1 is a generic risk factor for multiple human diseases, including obesity, autism, and depression. Recently, we reported that Negr1−/− mice showed a highly increased fat mass and affective behavior. In the present study, we identified Na/K-ATPase, beta1-subunit (ATP1B1) as an NEGR1 binding partner by yeast two-hybrid screening. NEGR1 and ATP1B1 were found to form a relatively stable complex in cells, at least partially co-localizing in membrane lipid rafts. We found that NEGR1 binds with ATP1B1 at its C-terminus, away from the binding site for the alpha subunit, and may contribute to intercellular interactions. Collectively, we report ATP1B1 as a novel NEGR1-interacting protein, which may help deciphering molecular networks underlying NEGR1-associated human diseases.
Collapse
Affiliation(s)
- Yeongmi Cheon
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61186, Korea
| | - Ara Yoo
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Hyunseok Seo
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Seo-Young Yun
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Hyeonhee Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Heeji Lim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Youngho Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Lihua Che
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Soojin Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
6
|
Fujii T, Phutthatiraphap S, Shimizu T, Takeshima H, Sakai H. Non-morphogenic effect of Sonic Hedgehog on gastric H+,K+-ATPase activity. Biochem Biophys Res Commun 2019; 518:605-609. [DOI: 10.1016/j.bbrc.2019.08.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/17/2019] [Indexed: 12/23/2022]
|
7
|
Litan A, Li Z, Tokhtaeva E, Kelly P, Vagin O, Langhans SA. A Functional Interaction Between Na,K-ATPase β 2-Subunit/AMOG and NF2/Merlin Regulates Growth Factor Signaling in Cerebellar Granule Cells. Mol Neurobiol 2019; 56:7557-7571. [PMID: 31062247 DOI: 10.1007/s12035-019-1592-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/02/2019] [Indexed: 10/26/2022]
Abstract
The Na,K-ATPase, consisting of a catalytic α-subunit and a regulatory β-subunit, is a ubiquitously expressed ion pump that carries out the transport of Na+ and K+ across the plasma membranes of most animal cells. In addition to its pump function, Na,K-ATPase serves as a signaling scaffold and a cell adhesion molecule. Of the three β-subunit isoforms, β1 is found in almost all tissues, while β2 expression is mostly restricted to brain and muscle. In cerebellar granule cells, the β2-subunit, also known as adhesion molecule on glia (AMOG), has been linked to neuron-astrocyte adhesion and granule cell migration, suggesting its role in cerebellar development. Nevertheless, little is known about molecular pathways that link the β2-subunit to its cellular functions. Using cerebellar granule precursor cells, we found that the β2-subunit, but not the β1-subunit, negatively regulates the expression of a key activator of the Hippo/YAP signaling pathway, Merlin/neurofibromin-2 (NF2). The knockdown of the β2-subunit resulted in increased Merlin/NF2 expression and affected downstream targets of Hippo signaling, i.e., increased YAP phosphorylation and decreased expression of N-Ras. Further, the β2-subunit knockdown altered the kinetics of epidermal growth factor receptor (EGFR) signaling in a Merlin-dependent mode and impaired EGF-induced reorganization of the actin cytoskeleton. Therefore, our studies for the first time provide a functional link between the Na,K-ATPase β2-subunit and Merlin/NF2 and suggest a role for the β2-subunit in regulating cytoskeletal dynamics and Hippo/YAP signaling during neuronal differentiation.
Collapse
Affiliation(s)
- Alisa Litan
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, DuPont Experimental Station, Bldg 400, #4414, 200 Powder Mill Road, Wilmington, DE, 19803, USA.,Biological Sciences Graduate Program, University of Delaware, Newark, DE, 19716, USA
| | - Zhiqin Li
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, DuPont Experimental Station, Bldg 400, #4414, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Elmira Tokhtaeva
- David Geffen School of Medicine, University of California, Los Angeles, and VA Greater Los Angeles Health Care System, Los Angeles, CA, 90073, USA
| | - Patience Kelly
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, DuPont Experimental Station, Bldg 400, #4414, 200 Powder Mill Road, Wilmington, DE, 19803, USA.,Biological Sciences Graduate Program, University of Delaware, Newark, DE, 19716, USA
| | - Olga Vagin
- David Geffen School of Medicine, University of California, Los Angeles, and VA Greater Los Angeles Health Care System, Los Angeles, CA, 90073, USA
| | - Sigrid A Langhans
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, DuPont Experimental Station, Bldg 400, #4414, 200 Powder Mill Road, Wilmington, DE, 19803, USA.
| |
Collapse
|
8
|
Jian W, Bai Y, Li X, Kang J, Lei Y, Xue Y. Phosphatidylethanolamine‐binding protein 4 promotes the epithelial‐to‐mesenchymal transition in non–small cell lung cancer cells by activating the sonic hedgehog signaling pathway. J Cell Biochem 2018; 120:5386-5395. [PMID: 30367510 DOI: 10.1002/jcb.27817] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 09/12/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Wen Jian
- Department of Respiratory Medicine The First Affiliated Hospital of the Fourth Military Medical University Xi'an China
| | - Yinlan Bai
- Department of Basic Microbiology The Fourth Military Medical University Xi'an China
| | - Xin Li
- Department of Oncology Dongguan Kanghua Hospital Dongguan China
| | - Jian Kang
- Department of Basic Microbiology The Fourth Military Medical University Xi'an China
| | - Yingfeng Lei
- Department of Basic Microbiology The Fourth Military Medical University Xi'an China
| | - Ying Xue
- Department of Oncology Dongguan Kanghua Hospital Dongguan China
- Department of Radiation Oncology The First Affiliated Hospital of the Fourth Military Medical University Xi'an China
| |
Collapse
|
9
|
Yang B, Miao S, Li Y. SCUBE2 inhibits the proliferation, migration and invasion of human non-small cell lung cancer cells through regulation of the sonic hedgehog signaling pathway. Gene 2018; 672:143-149. [DOI: 10.1016/j.gene.2018.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/13/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022]
|
10
|
Wang SH, Wang KL, Yang WK, Lee TH, Lo WY, Lee JD. Expression and potential roles of sodium-potassium ATPase and E-cadherin in human gastric adenocarcinoma. PLoS One 2017; 12:e0183692. [PMID: 28832634 PMCID: PMC5568324 DOI: 10.1371/journal.pone.0183692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023] Open
Abstract
Background Gastric adenocarcinoma originates from an abnormal epithelium. The aim of this study was to investigate the expression of sodium-potassium ATPase (NKA), a transmembrane protein located in the epithelium for Na+ and K+ transportation, and E-cadherin, which are both crucial for the epithelium and adherens junction, as potential gastric cancer biomarkers. Methods 45 patients diagnosed with gastric adenocarcinoma were recruited. Immunohistochemistry and immunofluorescence were conducted to for localization of NKA α1-, β1-isoform, and E-cadherin. NKA enzyme activity was determined by NADH-linked methods and immunoblotting of NKA α1-, β1-isoform, and E-cadherin were performed to evaluate protein expression. Results Immunostaining revealed that NKA was co-localized with E-cadherin in the glands of the gastric epithelium. Both NKA activity and α1-isoform protein expression were reduced in the study group (P < 0.05), indicating impaired NKA functions. In the adherens junctions, the NKA β1-isoform and E-cadherin were significantly reduced in the study groups (P < 0.05), indicating the adhesion force between cells may have been weakened. Conclusions A significant decrease in NKA function (protein and activity) and E-cadherin in tumor lesions appear promising biomarker for gastric adenocarcinoma. Therefore, developing screening methods for detecting NKA function may be beneficial for the early diagnosis of gastric cancer. In our knowledge, this study was the first to investigate the NKA and E-cadherin expression in the relation of gastric adenocarcinoma in human patients.
Collapse
Affiliation(s)
- Shih-Ho Wang
- Division of General Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan, R.O.C
- Center for General Education, Cheng Shiu University, Kaohsiung, Taiwan, R.O.C
| | - Kuan-Lin Wang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Wen-Kai Yang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, Taichung, Taiwan, R.O.C
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Wan-Yu Lo
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, Taichung, Taiwan, R.O.C
- Department of Biotechnology, Hungkuang University, Taichung, Taiwan, R.O.C
| | - Jane-Dar Lee
- Department of Urology, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, Taiwan, R.O.C
- Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
- Department of Surgery, Taichung Armed Forces General Hospital, Taichung, Taiwan, R.O.C
- * E-mail:
| |
Collapse
|
11
|
Li Z, Langhans SA. Transcriptional regulators of Na,K-ATPase subunits. Front Cell Dev Biol 2015; 3:66. [PMID: 26579519 PMCID: PMC4620432 DOI: 10.3389/fcell.2015.00066] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022] Open
Abstract
The Na,K-ATPase classically serves as an ion pump creating an electrochemical gradient across the plasma membrane that is essential for transepithelial transport, nutrient uptake and membrane potential. In addition, Na,K-ATPase also functions as a receptor, a signal transducer and a cell adhesion molecule. With such diverse roles, it is understandable that the Na,K-ATPase subunits, the catalytic α-subunit, the β-subunit and the FXYD proteins, are controlled extensively during development and to accommodate physiological needs. The spatial and temporal expression of Na,K-ATPase is partially regulated at the transcriptional level. Numerous transcription factors, hormones, growth factors, lipids, and extracellular stimuli modulate the transcription of the Na,K-ATPase subunits. Moreover, epigenetic mechanisms also contribute to the regulation of Na,K-ATPase expression. With the ever growing knowledge about diseases associated with the malfunction of Na,K-ATPase, this review aims at summarizing the best-characterized transcription regulators that modulate Na,K-ATPase subunit levels. As abnormal expression of Na,K-ATPase subunits has been observed in many carcinoma, we will also discuss transcription factors that are associated with epithelial-mesenchymal transition, a crucial step in the progression of many tumors to malignant disease.
Collapse
Affiliation(s)
- Zhiqin Li
- Nemours Center for Childhood Cancer Research, Nemours/Alfred I. duPont Hospital for Children Wilmington, DE, USA
| | - Sigrid A Langhans
- Nemours Center for Childhood Cancer Research, Nemours/Alfred I. duPont Hospital for Children Wilmington, DE, USA
| |
Collapse
|