1
|
He Y, Liao K, Peng H, Zou X, Guo Z. Advances in MiRNAs Involved in Endometrial Carcinoma. Comb Chem High Throughput Screen 2025; 28:3-11. [PMID: 38504572 DOI: 10.2174/0113862073299444240308145725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024]
Abstract
Endometrial carcinoma (EC) is a common malignancy worldwide. Existing evidence has revealed that EC could be associated with abnormal gene expression. Meantime, evidence supports that miRNAs act as critical regulators in gene expression through the binding to the 3'- untranslated region (3'-UTR). Accordingly, this review concludes some recent studies focusing on miRNAs that influence EC, aiming at understanding the association between miRNAs and EC more clearly and providing a reference for further studies on miRNA-related drugs treating EC.
Collapse
Affiliation(s)
- Yan He
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ke Liao
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hua Peng
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Institute of Traffic Engineering, Hengyang, Hunan, 421019, China
| | - Xiangman Zou
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zifen Guo
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
2
|
Maharati A, Moghbeli M. Role of microRNA-505 during tumor progression and metastasis. Pathol Res Pract 2024; 258:155344. [PMID: 38744001 DOI: 10.1016/j.prp.2024.155344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Late diagnosis of cancer in advanced stages due to the lack of screening methods is considered as the main cause of poor prognosis and high mortality rate among these patients. Therefore, it is necessary to investigate the molecular tumor biology in order to introduce biomarkers that can be used in cancer screening programs and early diagnosis. MicroRNAs (miRNAs) have key roles in regulation of the cellular pathophysiological processes. Due to the high stability of miRNAs in body fluids, they are widely used as the non-invasive tumor markers. According to the numerous reports about miR-505 deregulation in a wide range of cancers, we investigated the role of miR-505 during tumor progression. It was shown that miR-505 mainly has the tumor suppressor functions through the regulation of signaling pathways, chromatin remodeling, and cellular metabolism. This review has an effective role in introducing miR-505 as a suitable marker for the early cancer diagnosis.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Bogaczyk A, Zawlik I, Zuzak T, Kluz M, Potocka N, Kluz T. The Role of miRNAs in the Development, Proliferation, and Progression of Endometrial Cancer. Int J Mol Sci 2023; 24:11489. [PMID: 37511248 PMCID: PMC10380838 DOI: 10.3390/ijms241411489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Endometrial cancer is one of the most common cancers in developing and developed countries. Although the detection of this cancer is high at the early stages, there is still a lack of markers to monitor the disease, its recurrence, and metastasis. MiRNAs are in charge of the post-transcriptional regulation of genes responsible for the most important biological processes, which is why they are increasingly used as biomarkers in many types of cancer. Many studies have demonstrated the influence of miRNAs on the processes related to carcinogenesis. The characteristics of miRNA expression profiles in endometrial cancer will allow their use as diagnostic and prognostic biomarkers. This paper focuses on the discussion of selected miRNAs based on the literature and their role in the development of endometrial cancer.
Collapse
Affiliation(s)
- Anna Bogaczyk
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, F.Szopena 2, 35-055 Rzeszow, Poland; (A.B.); (T.Z.); (T.K.)
| | - Izabela Zawlik
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Warzywna 1a, 35-959 Rzeszow, Poland;
- Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland
| | - Tomasz Zuzak
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, F.Szopena 2, 35-055 Rzeszow, Poland; (A.B.); (T.Z.); (T.K.)
| | - Marta Kluz
- Department of Pathology, Fryderyk Chopin University Hospital, F.Szopena 2, 35-055 Rzeszow, Poland;
| | - Natalia Potocka
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Warzywna 1a, 35-959 Rzeszow, Poland;
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, F.Szopena 2, 35-055 Rzeszow, Poland; (A.B.); (T.Z.); (T.K.)
- Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland
| |
Collapse
|
4
|
Oropeza-de Lara SA, Garza-Veloz I, Berthaud-González B, Martinez-Fierro ML. Circulating and Endometrial Tissue microRNA Markers Associated with Endometrial Cancer Diagnosis, Prognosis, and Response to Treatment. Cancers (Basel) 2023; 15:2686. [PMID: 37345024 DOI: 10.3390/cancers15102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
In developed countries, endometrial cancer (EC) is one of the most common neoplasms of the female reproductive system. MicroRNAs (miRs) are a class of single-stranded noncoding RNA molecules with lengths of 19-25 nucleotides that bind to target messenger RNA (mRNA) to regulate post-transcriptional gene expression. Although there is a large amount of research focused on identifying miRs with a diagnostic, prognostic, or response to treatment capacity in EC, these studies differ in terms of experimental methodology, types of samples used, selection criteria, and results obtained. Hence, there is a large amount of heterogeneous information that makes it difficult to identify potential miR biomarkers. We aimed to summarize the current knowledge on miRs that have been shown to be the most suitable potential markers for EC. We searched PubMed and Google Scholar without date restrictions or filters. We described 138 miRs with potential diagnostic, prognostic, or treatment response potential in EC. Seven diagnostic panels showed higher sensitivity and specificity for the diagnosis of EC than individual miRs. We further identified miRs up- or downregulated depending on the FIGO stage, precursor lesions, and staging after surgery, which provides insight into which miRs are expressed chronologically depending on the disease stage and/or that are modulated depending on the tumor grade based on histopathological evaluation.
Collapse
Affiliation(s)
- Sergio Antonio Oropeza-de Lara
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km 6, Ejido La Escondida, Zacatecas 98160, Mexico
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km 6, Ejido La Escondida, Zacatecas 98160, Mexico
| | - Bertha Berthaud-González
- Hospital General Zacatecas "Luz González Cosío", Servicios de Salud de Zacatecas, Zacatecas 98160, Mexico
| | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km 6, Ejido La Escondida, Zacatecas 98160, Mexico
| |
Collapse
|
5
|
Sarkar A, Paul A, Banerjee T, Maji A, Saha S, Bishayee A, Maity TK. Therapeutic advancements in targeting BCL-2 family proteins by epigenetic regulators, natural, and synthetic agents in cancer. Eur J Pharmacol 2023; 944:175588. [PMID: 36791843 DOI: 10.1016/j.ejphar.2023.175588] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Cancer is amongst the deadliest and most disruptive disorders, having a much higher death rate than other diseases worldwide. Human cancer rates continue to rise, thereby posing the most significant concerns for medical health professionals. In the last two decades, researchers have gone past several milestones in tackling cancer while gaining insight into the role of apoptosis in cancer or targeting various biomarker tools for prognosis and diagnosis. Apoptosis which is still a topic full of complexities, can be controlled considerably by B-cell lymphoma 2 (BCL-2) and its family members. Therefore, targeting proteins of this family to prevent tumorigenesis, is essential to focus on the pharmacological features of the anti-apoptotic and pro-apoptotic members, which will help to develop and manage this disorder. This review deals with the advancements of various epigenetic regulators to target BCL-2 family proteins, including the mechanism of several microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Similarly, a rise in natural and synthetic molecules' research over the last two decades has allowed us to acquire insights into understanding and managing the transcriptional alterations that have led to apoptosis and treating various neoplastic diseases. Furthermore, several inhibitors targeting anti-apoptotic proteins and inducers or activators targeting pro-apoptotic proteins in preclinical and clinical stages have been summarized. Overall, agonistic and antagonistic mechanisms of BCL-2 family proteins conciliated by epigenetic regulators, natural and synthetic agents have proven to be an excellent choice in developing cancer therapeutics.
Collapse
Affiliation(s)
- Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Sanjukta Saha
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| |
Collapse
|
6
|
Abdelmaksoud NM, El-Mahdy HA, Ismail A, Elsakka EGE, El-Husseiny AA, Khidr EG, Ali EM, Rashed MH, El-Demerdash FES, Doghish AS. The role of miRNAs in the pathogenesis and therapeutic resistance of endometrial cancer: a spotlight on the convergence of signaling pathways. Pathol Res Pract 2023; 244:154411. [PMID: 36921547 DOI: 10.1016/j.prp.2023.154411] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
Endometrial cancer (EC) is the 2nd common cancer in females after breast cancer. Besides, it's the most common among gynecological cancers. Several epigenetic factors such as miRNAs have been reported to affect EC aspects including initiation, progression, angiogenesis, and resistance to therapy. miRNAs could regulate the expression of various genes involved in EC pathogenesis. This effect is attributed to miRNAs' effects in proliferation, apoptosis, cell cycle, angiogenesis, invasion, and metastasis. miRNAs also influence crucial EC-related mechanistic pathways such as JAK/STAT axis, EGFR, TGF-β signaling, and P53. Beside pathogenesis, miRNAs also have the potential to affect EC response to treatments including radio and chemotherapy. Thus, this review aims to illustrate the link between miRNAs and EC; focusing on the effects of miRNAs on EC signaling pathways.
Collapse
Affiliation(s)
- Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Esraa M Ali
- Biochemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Mohammed Helmy Rashed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Fatma El-Saeed El-Demerdash
- Department of Zoology and Entomology, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| |
Collapse
|
7
|
Gao Y, Wang Y, Xu L, Xie X, Zhu L, Wang F. CircRTN1 acts as a miR-431-5p sponge to promote thyroid cancer progression by upregulating TGFA. Hormones (Athens) 2022; 21:611-623. [PMID: 35804263 DOI: 10.1007/s42000-022-00378-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE This study aimed to explore the role and underlying mechanism of circular RNA (circRNA) reticulon 1 (circRTN1) in thyroid cancer (TC). METHODS The expression levels of circRTN1, microRNA-431-5p (miR-431-5p), and transforming growth factor-alpha (TGFA) mRNA were measured by quantitative real-time PCR (qRT-PCR). Cell proliferation was evaluated using colony formation and 5-ethynyl-2'-deoxyuridine (EdU) assays. Cell apoptosis was analyzed using flow cytometry. Cell migration and invasion were measured using the transwell assay. The protein levels of ki-67, Bax, matrix metalloproteinase 2 (MMP-2), and TGFA were detected using Western blot assay. The interaction between miR-431-5p and circRTN1 or TGFA was verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. The effect of circRTN1on TC in vivo was explored via xenograft tumor assay. RESULTS The expression of circRTN1 was increased in TC tissues and cells. Knockdown of circRTN1 suppressed TC cell proliferation, migration, and invasion, and increased cell apoptosis. MiR-431-5p was a target of circRTN1, and miR-431-5p downregulation reversed the role of circRTN1 knockdown in TC cells. TGFA was identified as a direct target of miR-431-5p, and miR-431-5p exerted the anti-tumor role in TC cells by downregulating TGFA. Moreover, circRTN1 sponged miR-431-5p to regulate TGFA expression. Furthermore, circRTN1 knockdown inhibited tumor growth in vivo. CONCLUSION CircRTN1 acted as a cancer-promoting circRNA in TC by regulating the miR-431-5p/TGFA axis, providing a potential therapeutic strategy for TC treatment.
Collapse
Affiliation(s)
- Yu Gao
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Hefei, 230022, Anhui, China
| | - Yichun Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Hefei, 230022, Anhui, China
| | - Lei Xu
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Hefei, 230022, Anhui, China
| | - Xiaoque Xie
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Hefei, 230022, Anhui, China
| | - Liyang Zhu
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Hefei, 230022, Anhui, China
| | - Fan Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
8
|
Pang H, Wang J, Wei Q, Liu J, Chu X, Yuan C, Yang B, Li M, Ma D, Tang Y, Wang C, Zhang J. miR-548ag functions as an oncogene by suppressing MOB1B in the development of obesity-related endometrial cancer. Cancer Sci 2022; 114:1507-1518. [PMID: 36445107 PMCID: PMC10067393 DOI: 10.1111/cas.15679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Obesity is a high-risk factor in the development of endometrial cancer (EC). Our previous study observed that miR-548ag was significantly overexpressed in the sera of obese individuals. Here, we report the function of miR-548ag and its mechanism in promoting the obesity-related progression of EC. The content of miR-548ag was increased in the serum of obese EC individuals. Bioinformatics analysis indicated that the survival rate of EC patients with a higher expression of miR-548ag was significantly reduced. The Mps One Binder Kinase Activator 1B (MOB1B, the core member of the Hippo signaling pathway) is a direct target gene of miR-548ag, which is inversely correlated with the expression of miR-548ag. The overexpression of miR-548ag enhances the proliferation, invasion, and migration, and inhibits apoptosis by downregulating the expression of MOB1B, leading to the deactivation of the Hippo pathway in EC cell lines and contributing to tumor progression in vivo. Our study has established that miR-548ag functions as an oncogene by suppressing MOB1B in the development of obesity-related EC.
Collapse
Affiliation(s)
- Huai Pang
- Medical College of Shihezi University, Shihezi, China
| | - Jingzhou Wang
- Medical College of Shihezi University, Shihezi, China
| | - Qianqian Wei
- Medical College of Shihezi University, Shihezi, China
| | - Jie Liu
- Medical College of Shihezi University, Shihezi, China
| | - Xiaolong Chu
- Medical College of Shihezi University, Shihezi, China
| | | | - Bingqi Yang
- Medical College of Shihezi University, Shihezi, China
| | - Menghuan Li
- Medical College of Shihezi University, Shihezi, China
| | - Dingling Ma
- Medical College of Shihezi University, Shihezi, China
| | - Yihan Tang
- Medical College of Shihezi University, Shihezi, China
| | - Cuizhe Wang
- Medical College of Shihezi University, Shihezi, China
| | - Jun Zhang
- Medical College of Shihezi University, Shihezi, China
| |
Collapse
|
9
|
Chen M, Shu G, Lv X, Xu X, Lu C, Qiao E, Fang S, Shen L, Zhang N, Wang J, Chen C, Song J, Liu Z, Du Y, Ji J. HIF-2α-targeted interventional chemoembolization multifunctional microspheres for effective elimination of hepatocellular carcinoma. Biomaterials 2022; 284:121512. [PMID: 35405577 DOI: 10.1016/j.biomaterials.2022.121512] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/06/2022] [Accepted: 04/01/2022] [Indexed: 01/22/2023]
Abstract
Transcatheter arterial chemoembolization (TACE) is widely used for the treatment of advanced hepatocellular carcinoma (HCC). However, the long-term hypoxic microenvironment caused by TACE seriously affects the therapeutic effect of TACE. HIF-2α plays a crucial role on the chronic hypoxia process, which might be an ideal target for TACE therapy. Herein, a multifunctional polyvinyl alcohol (PVA)/hyaluronic acid (HA)-based microsphere (PT/DOX-MS) co-loaded with doxorubicin (DOX) and PT-2385, an effective HIF-2α inhibitor, was developed for enhanced TACE treatment efficacy. In vitro and in vivo studies revealed that PT/DOX-MS had a superior ability to treat HCC by blocking the tumor cells in G2/M phase, prompting cell apoptosis, and inhibiting tumor angiogenesis. The antitumor mechanisms of PT/DOX-MS were possibly due to that the introduction of PT-2385 could effectively inhibit the expression level of HIF-2α in hypoxic HCC cells, thereby down-regulating the expression levels of Cyclin D1, VEGF and TGF-α. In addition, the combination of DOX and PT-2385 could jointly inhibit VEGF expression, which was another reason accounting for the combined anti-cancer effect of PT/DOX-MS. Overall, our study demonstrated that PT/DOX-MS is a promising embolic agent for enhanced HCC treatment via the combined effect of hypoxia microenvironment improvement, chemotherapy, and embolization.
Collapse
Affiliation(s)
- Minjiang Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Gaofeng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Xiuling Lv
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Xiaoling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chenying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Enqi Qiao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Lin Shen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Nannan Zhang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Jun Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chunmiao Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Jingjing Song
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Key Lab Carbon Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
| |
Collapse
|
10
|
Sykaras AG, Christofidis K, Politi E, Theocharis S. Exosomes on Endometrial Cancer: A Biomarkers Treasure Trove? Cancers (Basel) 2022; 14:cancers14071733. [PMID: 35406505 PMCID: PMC8996953 DOI: 10.3390/cancers14071733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 11/16/2022] Open
Abstract
Endometrial cancer (EC) is one of the main causes of cancer-related death among women. In the last decade, the incidence of EC is on the rise, and the relative 5-year survival remains unchanged. This creates a dire need for new diagnostic and therapeutic approaches that can only result from a deeper understanding of the pathogenesis of the disease. In this direction, exosomes are under heavy research, with two main aims: to identify the potential diagnostic and prognostic markers and to develop technologies based on their use as therapeutic vectors targeting EC cells. Exosomes are widely available in all bodily fluids and are sources of ideal biomarkers for liquid biopsies. They are extracellular vesicles containing DNA, RNA, lipids, and proteins, which they transfer between cells, serving multiple functions and being implicated in both the physiological processes and the pathogenesis of diseases. Of all the biomolecules contained in exosomes, microRNAs (miRNAs) seem to have the most clinical utility in the diagnosis and treatment of EC. Exosomal miRNAs mediate the communication between EC cells, cancer-associated fibroblasts (CAFs), and tumor-associated macrophages (TAMs) and have a pivotal role in the tumor cells' proliferation, epithelial to mesenchymal transition (EMT), and the formation of a tumor microenvironment. They participate in many processes that are tied to carcinogenesis and cancer progression, and they are therefore considered as attractive therapeutic targets. Here, we review the functions of exosomes in EC, focusing on potential biomarkers of diagnostic and prognostic significance or potential therapeutic use.
Collapse
Affiliation(s)
- Alexandros G. Sykaras
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.G.S.); (K.C.)
- Department of Cytopathology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Konstantinos Christofidis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.G.S.); (K.C.)
| | - Ekaterini Politi
- Department of Cytopathology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.G.S.); (K.C.)
- Correspondence:
| |
Collapse
|
11
|
Hsa-miR-181a-5p, hsa-miR-182-5p, and hsa-miR-26a-5p as potential biomarkers for BCR-ABL1 among adult chronic myeloid leukemia treated with tyrosine kinase inhibitors at the molecular response. BMC Cancer 2022; 22:332. [PMID: 35346116 PMCID: PMC8962036 DOI: 10.1186/s12885-022-09396-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tyrosine kinase inhibitors (TKIs) as first-line therapy for Chronic Myeloid Leukemia (CML) show a high success rate. However, a low number of patients with long-term treatment-free remission (TFR) were observed. Molecular relapse after imatinib discontinuation occurred at 50% at 24 months, with 80% occurrence within the first 6 months. One of the reasons for relapse is untimely TKIs discontinuation caused by large errors from estimates at very low-level or undetectable disease, thus warranting new biomarkers for CML. METHODS Next Generation Sequencing (NGS) was used to identify microRNAs (miRNAs) at the molecular response in CML adult patients receiving TKIs treatment. A total of 86 samples were collected, 30 from CML patients responsive and 28 from non-responsive to imatinib therapy, and 28 from blood donors. NGS was conducted whereby 18 miRNAs were selected and validated by real-time RT-qPCR in triplicate. RESULTS Hsa-miR-181a-5p was expressed significantly (p-value< 0.05) with 2.14 and 2.33-fold down-regulation in both patient groups, respectively meanwhile hsa-miR-182-5p and hsa-miR-26a-5p were significant only in the non-responsive group with 2.08 and 2.39 fold up-regulation. The down-regulation was consistent with decreased amounts of BCR-ABL1 in patients taking TKIs regardless of molecular responses. The up-regulation was consistent with the substantial presence of BCR-ABL1 in CML patients treated with TKIs at the molecular response. CONCLUSIONS Therefore, these miRNAs have potential as new therapeutic biomarkers for BCR-ABL1 status in adult CML patients treated with TKIs at molecular responses. These could improve current approaches and require further analysis to look for targets of these miRNAs in CML.
Collapse
|
12
|
Song H, Sun H, Pang X, Qian S, Zhang X, Huang Y, Liu X. [WITHDRAWN] miR-144-3p Functions as a Tumor Suppressor in Endometrial Cancer by Targeting PRR11. Am J Med Sci 2022:S0002-9629(22)00106-9. [PMID: 35276076 DOI: 10.1016/j.amjms.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Huihui Song
- Department of Obstetrics, Weifang People's Hospital, Kuiwen District, Weifang 261041, China
| | - Hong Sun
- Department of Obstetrics II, Weifang People's Hospital, Weifang 261041, China
| | - Xuecheng Pang
- Second Department of Gynecology, Cangzhou Central Hospital, Cangzhou 061000, China
| | - Sumin Qian
- Second Department of Gynecology, Cangzhou Central Hospital, Cangzhou 061000, China
| | - Xiang Zhang
- Second Department of Gynecology, Cangzhou Central Hospital, Cangzhou 061000, China
| | - Yue Huang
- Second Department of Gynecology, Cangzhou Central Hospital, Cangzhou 061000, China
| | - Xueliang Liu
- Department of Obstetrics, Weifang People's Hospital, Kuiwen District, Weifang 261041, China.
| |
Collapse
|
13
|
Fathinavid A, Ghobadi MZ, Najafi A, Masoudi-Nejad A. Identification of common microRNA between COPD and non-small cell lung cancer through pathway enrichment analysis. BMC Genom Data 2021; 22:41. [PMID: 34635059 PMCID: PMC8507163 DOI: 10.1186/s12863-021-00986-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Different factors have been introduced which influence the pathogenesis of chronic obstructive pulmonary disease (COPD) and non-small cell lung cancer (NSCLC). COPD as an independent factor is involved in the development of lung cancer. Moreover, there are certain resemblances between NSCLC and COPD, such as growth factors, activation of intracellular pathways, as well as epigenetic factors. One of the best approaches to understand the possible shared pathogenesis routes between COPD and NSCLC is to study the biological pathways that are activated. MicroRNAs (miRNAs) are critical biomolecules that implicate the regulation of several biological and cellular processes. As such, the main goal of this study was to use a systems biology approach to discover common dysregulated miRNAs between COPD and NSCLC, one that targets most genes within common enriched pathways. RESULTS To reconstruct the miRNA-pathways for each disease, we used the microarray miRNA expression data. Then, we employed "miRNA set enrichment analysis" (MiRSEA) to identify the most significant joint miRNAs between COPD and NSCLC based on the enrichment scores. Overall, our study revealed the involvement of the targets of miRNAs (such as has-miR-15b, hsa-miR-106a, has-miR-17, has-miR-103, and has-miR-107) in the most important common biological pathways. CONCLUSIONS According to the promising results of the pathway analysis, the identified miRNAs can be utilized as the new potential signatures for therapy through understanding the molecular mechanisms of both diseases.
Collapse
Affiliation(s)
- Amirhossein Fathinavid
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Mohadeseh Zarei Ghobadi
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Najafi
- Molecular Biology Research Center, System Biology and Poisoning Institute, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
14
|
Zhang X, Li X, Fu X, Yu M, Qin G, Chen G, Huang C. Circular RNA TAF4B Promotes Bladder Cancer Progression by Sponging miR-1298-5p and Regulating TGFA Expression. Front Oncol 2021; 11:643362. [PMID: 34322376 PMCID: PMC8312550 DOI: 10.3389/fonc.2021.643362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/10/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Bladder cancer (Bca) is the most common malignant tumor of the urinary system. Circular RNAs (circRNAs) have been recognized as key regulators in tumorigenesis. However, the molecular mechanisms underlying circRNAs involved in the progression of BCa remain largely unknown. METHODS We detected the expression level of circular RNA TAF4B (circTAF4B) by qRT-PCR assay. Cell proliferation was evaluated by CCK-8 and colony formation assays. Wound healing and Transwell assays were performed to measure cell migration and invasion capability. Moreover, we performed qRT-PCR and western blotting assays to determine the expression levels of epithelial-mesenchymal transition (EMT) markers. A nuclear/cytoplasmic fractionation assay was used to measure the subcellular location of circTAF4B. RNA pull-down and dual-luciferase reporter assays were used to detect the target microRNA of circTAF4B. A mouse xenograft model was produced to analyze the effect of circTAF4B on the tumorigenesis of BCa. RESULTS In this study, we identified a novel circular RNA, circTAF4B, that is significantly upregulated in BCa and correlated with poor prognosis. Downregulated circTAF4B abolished the growth, metastasis and EMT process in BCa cells. Mechanistically, we found that circTAF4B facilitated the expression of transforming growth factor A (TGFA) by sponging miR-1298-5p. Finally, circTAF4B enhanced the proliferation and EMT process of BCa cells in vivo. CONCLUSION In summary, our study demonstrated that circTAF4B played a carcinogenic role in the growth, metastasis, and EMT process of BCa by regulating the miR-1298-5p/TGFA axis. Thus, circTAF4B may become a diagnostic and therapeutic target for BCa.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Shenzhen Bao’an District Songgang People’s Hospital, Shenzhen, China
| | - Xiaofeng Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xian Fu
- Shenzhen Bao’an District Songgang People’s Hospital, Shenzhen, China
| | - Mengli Yu
- Shenzhen Bao’an District Songgang People’s Hospital, Shenzhen, China
| | - Guicheng Qin
- Shenzhen Bao’an District Songgang People’s Hospital, Shenzhen, China
| | - Guihong Chen
- Shenzhen Bao’an District Songgang People’s Hospital, Shenzhen, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chenchen Huang
- Department of Urology, Peking University First Hospital, Beijing, China
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
15
|
Klicka K, Grzywa TM, Klinke A, Mielniczuk A, Włodarski PK. The Role of miRNAs in the Regulation of Endometrial Cancer Invasiveness and Metastasis-A Systematic Review. Cancers (Basel) 2021; 13:3393. [PMID: 34298609 PMCID: PMC8304659 DOI: 10.3390/cancers13143393] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022] Open
Abstract
Endometrial cancer (EC) is the most common genital cancer in women with increasing death rates. MiRNAs are short non-coding RNAs that regulate gene expression on the post-transcriptional levels. Multiple studies demonstrated a fundamental role of miRNAs in the regulation of carcinogenesis. This systematic review is a comprehensive overview of the role of miRNAs in the regulation of cancer cell invasiveness and metastasis in EC. The literature was searched for studies investigating the role of miRNAs in the regulation of invasiveness and metastasis in EC. We explored PubMed, Embase, and Scopus using the following keywords: miRNA, metastasis, invasiveness, endometrial cancer. Data were collected from 163 articles that described the expression and role of 106 miRNAs in the regulation of EC invasiveness and metastasis out of which 63 were tumor suppressor miRNAs, and 38 were oncomiRNAs. Five miRNAs had a discordant role in different studies. Moreover, we identified 66 miRNAs whose expression in tumor tissue or concentration in serum correlated with at least one clinical parameter. These findings suggest a crucial role of miRNAs in the regulation of EC invasiveness and metastasis and present them as potential prognostic factors for patients with EC.
Collapse
Affiliation(s)
- Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (T.M.G.); (A.K.); (A.M.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (T.M.G.); (A.K.); (A.M.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Alicja Klinke
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (T.M.G.); (A.K.); (A.M.)
| | - Aleksandra Mielniczuk
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (T.M.G.); (A.K.); (A.M.)
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (T.M.G.); (A.K.); (A.M.)
| |
Collapse
|
16
|
Piergentili R, Zaami S, Cavaliere AF, Signore F, Scambia G, Mattei A, Marinelli E, Gulia C, Perelli F. Non-Coding RNAs as Prognostic Markers for Endometrial Cancer. Int J Mol Sci 2021; 22:3151. [PMID: 33808791 PMCID: PMC8003471 DOI: 10.3390/ijms22063151] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Endometrial cancer (EC) has been classified over the years, for prognostic and therapeutic purposes. In recent years, classification systems have been emerging not only based on EC clinical and pathological characteristics but also on its genetic and epigenetic features. Noncoding RNAs (ncRNAs) are emerging as promising markers in several cancer types, including EC, for which their prognostic value is currently under investigation and will likely integrate the present prognostic tools based on protein coding genes. This review aims to underline the importance of the genetic and epigenetic events in the EC tumorigenesis, by expounding upon the prognostic role of ncRNAs.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy;
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, “Sapienza” University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
| | - Anna Franca Cavaliere
- Gynecology and Obstetric Department, Azienda USL Toscana Centro, Santo Stefano Hospital, 59100 Prato, Italy;
| | - Fabrizio Signore
- Obstetrics and Gynecology Department, USL Roma2, Sant’Eugenio Hospital, 00144 Rome, Italy;
| | - Giovanni Scambia
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Gynecologic Oncology Unit, 00168 Rome, Italy;
- Universita’ Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Alberto Mattei
- Gynecology and Obstetric Department, Azienda USL Toscana Centro, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (A.M.); (F.P.)
| | - Enrico Marinelli
- Unit of Forensic Toxicology (UoFT), Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University, 00161 Rome, Italy;
| | - Caterina Gulia
- Department of Urology, Misericordia Hospital, 58100 Grosseto, Italy;
| | - Federica Perelli
- Gynecology and Obstetric Department, Azienda USL Toscana Centro, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (A.M.); (F.P.)
| |
Collapse
|
17
|
Dwivedi SKD, Rao G, Dey A, Mukherjee P, Wren JD, Bhattacharya R. Small Non-Coding-RNA in Gynecological Malignancies. Cancers (Basel) 2021; 13:1085. [PMID: 33802524 PMCID: PMC7961667 DOI: 10.3390/cancers13051085] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Gynecologic malignancies, which include cancers of the cervix, ovary, uterus, vulva, vagina, and fallopian tube, are among the leading causes of female mortality worldwide, with the most prevalent being endometrial, ovarian, and cervical cancer. Gynecologic malignancies are complex, heterogeneous diseases, and despite extensive research efforts, the molecular mechanisms underlying their development and pathology remain largely unclear. Currently, mechanistic and therapeutic research in cancer is largely focused on protein targets that are encoded by about 1% of the human genome. Our current understanding of 99% of the genome, which includes noncoding RNA, is limited. The discovery of tens of thousands of noncoding RNAs (ncRNAs), possessing either structural or regulatory functions, has fundamentally altered our understanding of genetics, physiology, pathophysiology, and disease treatment as they relate to gynecologic malignancies. In recent years, it has become clear that ncRNAs are relatively stable, and can serve as biomarkers for cancer diagnosis and prognosis, as well as guide therapy choices. Here we discuss the role of small non-coding RNAs, i.e., microRNAs (miRs), P-Element induced wimpy testis interacting (PIWI) RNAs (piRNAs), and tRNA-derived small RNAs in gynecological malignancies, specifically focusing on ovarian, endometrial, and cervical cancer.
Collapse
Affiliation(s)
- Shailendra Kumar Dhar Dwivedi
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.K.D.D.); (A.D.)
| | - Geeta Rao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.R.); (P.M.)
| | - Anindya Dey
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.K.D.D.); (A.D.)
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.R.); (P.M.)
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jonathan D. Wren
- Biochemistry and Molecular Biology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.K.D.D.); (A.D.)
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
18
|
Liu Z, Pan L, Yan X, Duan X. The long noncoding RNA DLGAP1-AS2 facilitates cholangiocarcinoma progression via miR-505 and GALNT10. FEBS Open Bio 2021; 11:413-422. [PMID: 33301605 PMCID: PMC7876506 DOI: 10.1002/2211-5463.13061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a highly invasive malignant tumor with high mortality. Most cases of CCA are already advanced when they are detected, resulting in poor prognosis. As such, there is an ongoing need for the identification of effective biomarkers for CCA. The long noncoding RNA DLGAP1-AS2 has been reported to have prognostic value in glioma and Wilms' tumor. Here, we investigated the function of DLGAP1-AS2 in CCA. The differential expression of DLGAP1-AS2 in CCA tissues and normal tissues was first examined using data from the The Cancer Genome Atlas database and then in CCA cell lines by quantitative RT-PCR (qRT-PCR). The target gene was predicted by bioinformatics analysis, and the binding sites were confirmed using luciferase assay. DLGAP1-AS2 is up-regulated in CCA, and high DLGAP1-AS2 expression promotes cell viability and is associated with poor prognosis. Notably, DLGAP1-AS2 acts as a sponge to suppress miR-505 expression, and miR-505 reduces the expression of N-acetylgalactosaminyltransferase 10 (GALNT10) in CCA cells. Biofunctional experiments revealed that a miR-505 inhibitor almost completely removed the inhibitory effect of si-DLGAP1-AS2 on CCA cell malignant progression, whereas the malignant phenotype of cells cotransfected with si-DLGAP1-AS2 and si-GALNT10 was significantly reduced as compared with the control. In summary, the DLGAP1-AS2/miR-505/GALNT10 axis may contribute to regulating the malignant progression of CCA and may have potential as a novel target for CCA therapy.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Hepatobiliary and Pancreatic SurgeryJinan Central HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Lili Pan
- Department of Hepatobiliary and Pancreatic SurgeryJinan Central HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Xiaofang Yan
- Department of Nuclear MedicineCentral Hospital of Shan CountyHezeChina
| | - Xiuna Duan
- Department of Nuclear MedicineCentral Hospital of Shan CountyHezeChina
| |
Collapse
|
19
|
Zhang S, Wang M, Li Q, Zhu P. MiR-101 reduces cell proliferation and invasion and enhances apoptosis in endometrial cancer via regulating PI3K/Akt/mTOR. Cancer Biomark 2021; 21:179-186. [DOI: 10.3233/cbm-170620] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This article has been retracted, and the online PDF replaced with this retraction notice.
Collapse
|
20
|
Xu Z, Zhang D, Zhang Z, Luo W, Shi R, Yao J, Li D, Wang L, Liao B. MicroRNA-505, Suppressed by Oncogenic Long Non-coding RNA LINC01448, Acts as a Novel Suppressor of Glycolysis and Tumor Progression Through Inhibiting HK2 Expression in Pancreatic Cancer. Front Cell Dev Biol 2021; 8:625056. [PMID: 33520999 PMCID: PMC7843961 DOI: 10.3389/fcell.2020.625056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/21/2020] [Indexed: 01/10/2023] Open
Abstract
Background: MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) play vital regulatory roles in pancreatic cancer (PC) initiation and progression. We aimed to explore the biological functions and underlying mechanisms of miR-505-3p (miR-505) in PC. Methods: We first screened miRNA expression profiles using microarray in PC tissues and normal tissues, and then studied the function and underlying mechanism of miR-505. Moreover, we evaluated the regulatory effect of lncRNA LINC01448 on miR-505. Results: We demonstrated miR-505 that was significantly downregulated in PC tissues. We further revealed that miR-505 significantly inhibited cell proliferation, invasion, sphere formation, glucose consumption, and lactate production by targeting HK2. In addition, overexpression of miR-505 led to tumor growth inhibition in vivo, demonstrating that it acts as a tumor suppressor in PC. LINC01448 was identified as an oncogenic lncRNA that could reduce miR-505 expression. Subsequent studies confirmed that LINC01448 enhanced cell proliferation, invasion, sphere formation, glucose consumption, and lactate production by regulating the miR-505/HK2 pathway. Conclusions: These findings demonstrated that miR-505, suppressed by LINC01448, could function as a key tumor suppressor by targeting HK2 in PC, elucidating an important role of the LINC01448/miR-505/HK2 pathway in regulating PC glycolysis and progression.
Collapse
Affiliation(s)
- Zhenglei Xu
- The Second Clinical Medical College, Jinan University, Department of Gastroenterology, Shenzhen People's Hospital, Shenzhen, China
| | - Dingguo Zhang
- The Second Clinical Medical College, Jinan University, Department of Gastroenterology, Shenzhen People's Hospital, Shenzhen, China
| | - Zhuliang Zhang
- The Second Clinical Medical College, Jinan University, Department of Gastroenterology, Shenzhen People's Hospital, Shenzhen, China
| | - Weixiang Luo
- Nursing Department, Shenzhen People's Hospital, The Second Affiliated Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Ruiyue Shi
- The Second Clinical Medical College, Jinan University, Department of Gastroenterology, Shenzhen People's Hospital, Shenzhen, China
| | - Jun Yao
- The Second Clinical Medical College, Jinan University, Department of Gastroenterology, Shenzhen People's Hospital, Shenzhen, China
| | - Defeng Li
- The Second Clinical Medical College, Jinan University, Department of Gastroenterology, Shenzhen People's Hospital, Shenzhen, China
| | - Lisheng Wang
- The Second Clinical Medical College, Jinan University, Department of Gastroenterology, Shenzhen People's Hospital, Shenzhen, China
| | - Bihong Liao
- Department of Cardiology, Shenzhen People's Hospital, The Second Affiliated Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
21
|
Ni J, Tian W, Liang S, Wang H, Ren Y. Promoter Methylation-mediated Silencing of the MiR-192-5p Promotes Endometrial Cancer Progression by Targeting ALX1. Int J Med Sci 2021; 18:2510-2520. [PMID: 34104082 PMCID: PMC8176185 DOI: 10.7150/ijms.58954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Epigenetic regulation by promoter methylation-mediated silencing of cancer-related microRNAs plays vital roles in tumorigenesis. MiR-192-5p promotes tumor progression in various human cancers with conflicting biological effects. However, its expression levels and biological functions in endometrial carcinoma (EC) have not been reported. Methods: The methylation status of miR-192-5p in tissue samples and cell lines, was examined using bisulfite sequencing PCR. miR-192-5p expression was also measured. EC cell lines transfected with specifically designed vectors overexpressing miR-192-5p, its target gene ALX1 or both, were constructed. Tumorigenicity of these cell lines were examined by in vitro and in vivo experiments. Dual-luciferase reporter assay were employed to verify the target of miR-192-5p. Results: The promoter region of miR-192-5p gene was highly methylated and its expression significantly repressed in EC samples. Moreover, a higher level of promoter methylation as well as a lower expression of miR-192-5p, was significantly associated with advanced Federation of Gynecology and Obstetrics stage and shorter disease-free survival in patients with curatively resected EC. Functional studies demonstrated that miR-192-5p overexpression inhibited in vitro tumor progression, in vivo tumorigenicity and the expression of several oncoproteins that was highly related to epithelial-to-mesenchymal transition. ALX1 was verified as a direct target of miR-192-5p and demonstrated to mediate the tumor-suppressive function of miR-192-5p. Conclusion: miR-192-5p is a tumor suppressor miRNA that is epigenetically silenced by promoter methylation and may serve as a potential prognostic biomarker in EC.
Collapse
Affiliation(s)
- Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjuan Tian
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shanhui Liang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huaying Wang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yulan Ren
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Wang Y, Yin L. LINC00461 Promoted Endometrial Carcinoma Growth and Migration by Targeting MicroRNA-219-5p/Cyclooxygenase-2 Signaling Axis. Cell Transplant 2021; 30:963689721989616. [PMID: 33573388 PMCID: PMC7885031 DOI: 10.1177/0963689721989616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/10/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Endometrial carcinoma (EC) ranks as the most common female genital cancer in developed countries. Lately, more and more long noncoding RNAs (lncRNAs) have been identified as vital regulators in numerous physiological and pathological processes, including EC. However, the expression pattern and precise functions of different lncRNAs in EC remain unclear. In this study, we reported LINC00461 was upregulated in EC patient tissues and cell lines. In addition, LINC00461 knockdown could remarkably suppress cell proliferation, cell cycle progression, cell migration, and promote cell apoptosis in EC cells. We discovered LINC00461 could sponge microRNA-219-5p (miR-219-5p) and suppress its expression, thereby upregulating expression level of miR-219-5p's target, cyclooxygenase-2 (COX-2). In vivo animal models, LINC00461 knockdown inhibited tumor growth by increasing miR-219-5p level and reducing COX-2 expression, thus confirming LINC00461 functions as an oncogene in EC. In this study, a novel regulatory role of LINC00461/miR-219-5p/COX-2 axis was systematically investigated in context of EC, with the aim to provide promising intervention targets for EC therapy from bench to clinic. [Formula: see text].
Collapse
Affiliation(s)
- Yu Wang
- Department of Obstetrics & Gynecology, Shengjing Hospital of China Medical University, Liaoning Province, PR China
| | - Lili Yin
- Department of Obstetrics & Gynecology, Shengjing Hospital of China Medical University, Liaoning Province, PR China
| |
Collapse
|
23
|
Jing L, Hua X, Yuanna D, Rukun Z, Junjun M. Exosomal miR-499a-5p Inhibits Endometrial Cancer Growth and Metastasis via Targeting VAV3. Cancer Manag Res 2020; 12:13541-13552. [PMID: 33408524 PMCID: PMC7781017 DOI: 10.2147/cmar.s283747] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/28/2020] [Indexed: 12/31/2022] Open
Abstract
Background/Aim The current therapeutic strategies for endometrial cancer are limited and unsatisfactory. Accumulating evidence suggest that microRNAs (miRNAs) participate in tumor growth and metastasis. Mesenchymal stem cells (MSCs) derived exosomes (Exos) are considered as better miRNA delivery vehicles. Here, we investigated the therapeutic effect of exosomal miR-499a-5p (miR-499) in human endometrial cancer metastasis. Methods Microarray analysis and RT-PCR were performed to detect the relative expression of miR-499 in endometrial cancer tissues and cell lines. MSC-derived Exos were characterized by transmission electron microscope (TEM), Western blot (WB), and nanoparticle tracking analysis (NTA). miR-499 was loading into Exos using electroporation. Cell proliferation and angiogenesis capacity were tested by 5-ethynyl-29-deoxyuridine (EdU) assay and tube formation assay, respectively. Dual-luciferase reporter assay (DLR) was used to confirm the connection of miR-499 and VAV3. Results We found that the expression of miR-499 was significantly downregulated in cancer tissues compared with adjacent tissues in endometrial cancer patients. Moreover, exosomal miR-499 not only dramatically suppressed endometrial cancer cells proliferation, endothelial cells tube formation in vitro, but also inhibited tumor growth and angiogenesis in vivo. In addition, we confirmed that miR-499 directly targets the 3'UTR sequence of VAV3. Conclusion The novel identified exosomal miR-499 functions as a tumor suppressor in endometrial cancer though regulating VAV3, and these findings could be a valid molecular target for endometrial cancer therapy.
Collapse
Affiliation(s)
- Liang Jing
- Department of Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China
| | - Xu Hua
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China
| | - Du Yuanna
- Department of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China
| | - Zang Rukun
- Department of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China
| | - Mou Junjun
- Department of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China
| |
Collapse
|
24
|
Cai L, Chen J, Deng F, Wang L, Chen Y. MiR‐326 regulates the proliferation and apoptosis of endometrial cancer by targeting Bcl‐2. J Obstet Gynaecol Res 2020; 47:621-630. [PMID: 33210403 DOI: 10.1111/jog.14572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/09/2020] [Accepted: 11/02/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Lily Cai
- Department of Clinical Laboratory The Second Affiliated Hospital of Nanchang University, Jiangxi Provincial Key Laboratory of Laboratory Medicine Nanchang China
| | - Juan‐Juan Chen
- Department of Clinical Laboratory The Second Affiliated Hospital of Nanchang University, Jiangxi Provincial Key Laboratory of Laboratory Medicine Nanchang China
| | - Fu‐Mou Deng
- Department of Anesthesiology The Second Affiliated Hospital of Nanchang University Nanchang China
| | - Lei Wang
- Further Education Department Jiangxi Health Vocational College Nanchang China
| | - Yu Chen
- Department of Clinical Laboratory The Second Affiliated Hospital of Nanchang University, Jiangxi Provincial Key Laboratory of Laboratory Medicine Nanchang China
| |
Collapse
|
25
|
Vorinostat and fenretinide synergize in preclinical models of T-cell lymphoid malignancies. Anticancer Drugs 2020; 32:34-43. [PMID: 33079733 DOI: 10.1097/cad.0000000000001008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
T-cell lymphoid malignancies (TCLMs) are in need of novel and more effective therapies. The histone deacetylase (HDAC) inhibitors and the synthetic cytotoxic retinoid fenretinide have achieved durable clinical responses in T-cell lymphomas as single agents, and patients who failed prior HDAC inhibitor treatment have responded to fenretinide. We have previously shown fenretinide synergized with the class I HDAC inhibitor romidepsin in preclinical models of TCLMs. There exist some key differences between HDAC inhibitors. Therefore, we determined if the pan-HDAC inhibitor vorinostat synergizes with fenretinide. We demonstrated cytotoxic synergy between vorinostat and fenretinide in nine TCLM cell lines at clinically achievable concentrations that lacked cytotoxicity for non-malignant cells (fibroblasts and blood mononuclear cells). In vivo, vorinostat + fenretinide + ketoconazole (enhances fenretinide exposures by inhibiting fenretinide metabolism) showed greater activity in subcutaneous TCLM xenograft models than other groups. Fenretinide + vorinostat increased reactive oxygen species (ROS, measured by 2',7'-dichlorodihydrofluorescein diacetate dye), resulting in increased apoptosis (via transferase dUTP nick end labeling assay) and histone acetylation (by immunoblotting). The synergistic cytotoxicity, apoptosis, and histone acetylation of fenretinide + vorinostat was abrogated by the antioxidant vitamin C. Like romidepsin, vorinostat combined with fenretinide achieved synergistic cytotoxic activity and increased histone acetylation in preclinical models of TCLMs, but not in non-malignant cells. As vorinostat is an oral agent and not a P-glycoprotein substrate it may have advantages in such combination therapy. These data support conducting a clinical trial of vorinostat combined with fenretinide in relapsed and refractory TCLMs.
Collapse
|
26
|
Ultrasound Microbubble-Mediated microRNA-505 Regulates Cervical Cancer Cell Growth via AKT2. ACTA ACUST UNITED AC 2020; 2020:3731953. [PMID: 33123457 PMCID: PMC7584975 DOI: 10.1155/2020/3731953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/25/2020] [Indexed: 02/08/2023]
Abstract
The application of ultrasound and microbubbles (USMB-) mediated microRNA (miR) is a promising approach of gene delivery for cancer treatment. We aimed to discuss the effects of USMB-miR-505 on cervical cancer (CC) development. miR-505 mediated by USMB was prepared. The effect of miR-505 on its transfection efficiency and the effect of miR-505 on HeLa cell proliferation, cell cycle, apoptosis, migration, and invasion were studied. The target gene of miR-505 was predicted, and its expression in CC was detected. The effect of the target gene on HeLa cells was further verified. USMB-miR-505 showed a higher transfection efficiency than miR-505 alone. The inhibitory effect of miR-505 mediated by USMB on HeLa cells was better than miR-505. miR-505 targeted AKT2, which was upregulated in CC. Overexpression of AKT2 reversed the inhibitory effect of USMB-miR-505 on HeLa cell malignant behaviors. Overall, we highlighted that USMB-miR-505 inhibited HeLa cell malignant behaviors by targeting AKT2.
Collapse
|
27
|
Peng W, Dong N, Wu S, Gui D, Ye Z, Wu H, Zhong X. miR-4500 suppresses cell proliferation and migration in bladder cancer via inhibition of STAT3/CCR7 pathway. J Cell Biochem 2020; 121:3913-3922. [PMID: 31788846 DOI: 10.1002/jcb.29558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/10/2019] [Indexed: 01/24/2023]
Abstract
Bladder cancer (BC) is a prevalent type of cancer that occurs in human urinary system threatening the human health. microRNA-4500 (miRNA-4500) is a novel miRNA that serves as a potential biomarker in several types of cancers. However, the in-depth molecular mechanism of miR-4500 in BC has not yet been fully elucidated. Quantitative real-time polymerase chain reactionq and Western blot analysis were applied to analyze the expressions of miR-4500, STAT3, and C-C chemokine receptor 7 (CCR7). Gain-of-function assays involving Cell Counting Kit-8, 5'-ethynyl-2'-deoxyuridine incorporation assay, and Transwell were employed to evaluate miR-4500 function in cell proliferation and migration. Moreover, chromatin immunoprecipitation, RNA immunoprecipitation, and luciferase reporter assay were performed to explore the molecular mechanism underlying function of miR-4500. We found the downregulation of miR-4500 in BC cells, and ectopic expression of miR-4500 hampered cell proliferation, migration, and epithelial-to-mesenchymal transition. Importantly, miR-4500 directly targeted STAT3 3'-untranslated region, leading to repression on STAT3 expression. Intriguingly, STAT3 transcriptionally regulated CCR7. Rescue experiments validated the presence of miR-4500/STAT3/CCR7 axis in control of BC growth and progression. Our data highlighted miR-4500 as a potent cancericidal gene in BC, and might provide a theoretical grounding for development of target-oriented therapies of patients afflicted with BC.
Collapse
Affiliation(s)
- Wei Peng
- Departmet of Urology Surgery, Huangshi Central Hospital, EDONG Healthcare, Huangshi, Hubei, China
| | - Na Dong
- Department of Orthopedics, Spine Trauma, Yidu Central Hospital, Weifang, China
| | - Shihao Wu
- Department of Urology, Shunde Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Dingwen Gui
- Departmet of Urology Surgery, Huangshi Central Hospital, EDONG Healthcare, Huangshi, Hubei, China
| | - Zhihua Ye
- Departmet of Urology Surgery, Huangshi Central Hospital, EDONG Healthcare, Huangshi, Hubei, China
| | - Haixia Wu
- Departmet of Urology Surgery, Huangshi Central Hospital, EDONG Healthcare, Huangshi, Hubei, China
| | - Xintai Zhong
- Department of Urology, Shunde Hospital, Southern Medical University, Foshan, Guangdong, China
| |
Collapse
|
28
|
Chi X, Jiang Y, Chen Y, Lv L, Chen J, Yang F, Zhang X, Pan F, Cai Q. microR-505/heterogeneous nuclear ribonucleoprotein M inhibits hepatocellular carcinoma cell proliferation and induces cell apoptosis through the Wnt/β-catenin signaling pathway. Biomark Med 2020; 14:981-996. [PMID: 32940078 DOI: 10.2217/bmm-2019-0511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Aim: This study aimed to investigate the expression of microRNA-505 (miR-505) and explore its clinical significance, biological function and mechanisms in hepatocellular carcinoma (HCC). Methods: Expression of miR-505 was measured in 128 paired HCC tissues and five cell lines by quantitative real-time polymerase chain reaction (qRT-PCR). MTT assay, Transwell migration, invasion assays and apoptosis assay were performed to explore the functional role of miR-505. The target gene of miR-505 was assessed using the bioinformatics assay and the related signaling pathway was confirmed using western blot. Results: Expression of miR-505 in HCC serum and tissues were downregulated. The overexpression of miR-505 in HCC cells inhibited cell proliferation and metastasis, as well as enhanced cell apoptosis by directly downregulating heterogeneous nuclear ribonucleoprotein M (HNRNPM). The activity of the Wnt/β-catenin signaling pathway was suppressed by the overexpression of miR-505 but was promoted by the upregulation of HNRNPM. Conclusion: The results suggest that the regulation of miR-505/HNRNPM may be a novel strategy to improve the targeted therapy of HCC.
Collapse
Affiliation(s)
- Xiaobin Chi
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou 350025, China
| | - Yi Jiang
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou 350025, China
| | - Yongbiao Chen
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou 350025, China
| | - Lizhi Lv
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou 350025, China
| | - Jianwei Chen
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou 350025, China
| | - Fang Yang
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou 350025, China
| | - Xiaojin Zhang
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou 350025, China
| | - Fan Pan
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou 350025, China
| | - Qiucheng Cai
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou 350025, China
| |
Collapse
|
29
|
Li G, Liu F, Miao J, Hu Y. miR-505 inhibits proliferation of osteosarcoma via HMGB1. FEBS Open Bio 2020; 10:1251-1260. [PMID: 32348630 PMCID: PMC7327918 DOI: 10.1002/2211-5463.12868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is a malignant bone tumor, and clinically detectable metastases can be detected in ~ 15–20% of patients when they seek medical advice; patients with metastatic disease have extremely poor prognosis. Here, we examined the involvement of the microRNA miR‐505 in osteosarcoma. Eighty‐four patients seeking treatment for osteosarcoma were included in the study group (SG), and 63 healthy subjects were allocated to the control group (CG). Normal human bone cells MG‐63 and U20S cells were transfected with miR‐505 mimics, miR‐NC, HMGB1 RNA for targeted inhibition (si‐HMGB1), and si‐NC to examine the effects on HMGB1 expression. Cell proliferation, invasion, and apoptosis were measured using CCK‐8, scratch assays, and flow cytometry (FCM), respectively, and the relationship between miR‐505 and HMGB1 was determined using the dual‐luciferase reporter assay. In patient tissues and serum, miR‐505 was expressed at a low level, and HMGB1 was expressed at a high level, with an area under curve of > 0.9. Furthermore, the expression of miR‐505 and HMGB1 in tissues had a positive association with that in the serum, whereas the expression of miR‐505 had a negative association with that of HMGB1 in tissues only. Overexpression of miR‐505 and silencing of HMGB1 suppressed the proliferation, migration, and invasion of osteosarcoma cells and increased the rate of apoptosis, whereas the co‐transfected miR‐505 mimics + si‐HMGB1 demonstrated a more significant inhibitory effect on the proliferation and invasion of osteosarcoma cells and a higher apoptosis rate. miR‐505 may inhibit the proliferation and invasion and promote apoptosis of osteosarcoma cells by targeting and suppressing HMGB1.
Collapse
Affiliation(s)
- Guangzhang Li
- The Graduate School, Tianjin Medical University, China
| | - Fajing Liu
- Department of Spine Surgery, Tianjin Hospital, China
| | - Jun Miao
- Department of Spine Surgery, Tianjin Hospital, China
| | - Yongcheng Hu
- Department of Orthopedic Oncology, Tianjin Hospital, China
| |
Collapse
|
30
|
Li Y, Cheng T, Wan C, Cang Y. circRNA_0084043 contributes to the progression of diabetic retinopathy via sponging miR-140-3p and inducing TGFA gene expression in retinal pigment epithelial cells. Gene 2020; 747:144653. [PMID: 32259630 DOI: 10.1016/j.gene.2020.144653] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/20/2020] [Accepted: 04/03/2020] [Indexed: 01/22/2023]
Abstract
Diabetic retinopathy (DR) is a frequent complication of diabetes and it can lead to visual impairment and blindness. However, the mechanism of their regulation remains little known. circRNAs can function as crucial competing endogenous RNA, which can sponge corresponding miRNAs and affect mRNA expression in various diseases, including DR. In our current research, we observed that circRNA_0084043 was elevated in high glucose (HG)-incubated ARPE-19 cells. Then, we focused on whether and how circRNA_0084043 participated in retinal vascular dysfunction under conditions diabetes. Apoptosis, inflammation and oxidative stress are hallmark of DR progression. This work was aimed to investigate the signaling mechanisms of circRNA_0084043 in these pathogenesis of DR. We discovered loss of circRNA_0084043 significantly increased cell survival and repressed HG-triggered apoptosis. In addition, knockdown of circRNA_0084043 remarkably reduced oxidative stress as evidenced by the down-regulated malondialdehyde (MDA) content, enhanced activities of Super Oxide Dismutase (SOD) and Glutathione peroxidase (GSH-PX). Addition, silence of circRNA_0084043 effectively restrained HG-stimulated inflammation as proved by repressing inflammatory cytokines Tumor Necrosis Factor α (TNF-α), Interleukin 6 (IL-6) and Cox-2 in ARPE-19 cells. Subsequently, we successfully predicted that miR-140-3p was a downstream target of circRNA_0084043, which could be negatively regulated by circRNA_0084043. Mechanistically, loss of miR-140-3p abrogated the beneficial effects of circRNA_0084043 siRNA on ARPE-19 cells. Transforming Growth Factor alpha (TGFA) can exhibit a role in multiple diseases. Taken these together, these data demonstrated that loss of circRNA_0084043 depressed HG-induced damage via sponging miR-140-3p and regulating TGFA.
Collapse
Affiliation(s)
- Ying Li
- Physical Examination Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ting Cheng
- General Department of Houhu, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Chengliang Wan
- Department of General Surgery, Kunming Children's Hospital, Kunming, China
| | - Yanhong Cang
- Nursing Department, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, 62 Huaihai Road (S.), Huai'an 223002, China.
| |
Collapse
|
31
|
Li L, Cheng GH, Chen C, Ma DM, Deng XC. Actin‑like protein 8 executes a promoting function in the malignant progression of endometrial cancer: identification of a promising biomarker. Biosci Biotechnol Biochem 2020; 84:1160-1167. [PMID: 32125225 DOI: 10.1080/09168451.2020.1736508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Endometrial cancer (EC) is generally considered as a disease that affects older women. We attempt to explore the role of actin‑like protein 8 (ACTL8) in EC and how it achieves its function. Based on the data from The Cancer Genome Atlas (TCGA), we found that ACTL8 expression was up-regulated in EC tissues and correlated with shorter overall survival of EC patients. ACTL8 expression was significantly associated with age, clinical-stage, or grade. Cox proportional hazards model analysis revealed that ACTL8 expression, grade, and clinical-stage were promising independent prognostic factors of EC. Knockdown of ACTL8 repressed the proliferative, migrating and invading capabilities of human EC cell lines KLE and Ishikawa. Silencing ACTL8 up-regulated the negative cell cycle regulator p21 and epithelial marker E-cadherin, and down-regulated the positive cell cycle regulator Cyclin A, mesenchymal markers MMP-9 and N-cadherin in KLE cells. Collectively, these outcomes illustrated that ACTL8 might act as a tumor facilitator during EC progression.
Collapse
Affiliation(s)
- Li Li
- Department of Obstetrics and Gynecology, The Second Hospital of Shandong University, Shandong, P.R. China
| | - Guang-Hui Cheng
- Department of Central Laboratory, The Second Hospital of Shandong University, Shandong, P.R. China
| | - Chen Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Shandong University, Shandong, P.R. China
| | - De-Mei Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Shandong University, Shandong, P.R. China
| | - Xin-Chao Deng
- Department of Obstetrics and Gynecology, The Second Hospital of Shandong University, Shandong, P.R. China
| |
Collapse
|
32
|
Dong Z, Liu Y, Wang Q, Wang H, Ji J, Huang T, Khanal A, Niu H, Cao Y. The circular RNA-NRIP1 plays oncogenic roles by targeting microRNA-505 in the renal carcinoma cell lines. J Cell Biochem 2019; 121:2236-2246. [PMID: 31692056 DOI: 10.1002/jcb.29446] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
We explored the roles and regulatory mechanisms of the circular RNA (circRNA) nuclear receptor-interacting protein 1 (NRIP1; circNRIP1) in ACHN and CAKI-1 cells. ACHN and CAKI-1 cells were transfected with small-interfering-circNRIP1 (si-circNRIP1) and microRNA-505 (miR-505) inhibitor or the corresponding controls. Cell viability was detected with the Cell Counting Kit-8. The protein expression levels of Bcl-2, Bax, cleaved-caspase-3, matrix metalloproteinase (MMP)-2, MMP-9, adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), protein kinase B (AKT), phosphatidylinositol 3-kinase (PI3K), and mammalian target of rapamycin (mTOR) were individually determined via Western blot. Quantitative reverse transcription polymerase chain reaction was used to examine the expressions of circNRIP1 and miR-505 both in tumor cells and tissues. The apoptotic rate, the colony numbers, and the migration rate were separately determined by the Annexin V-fluorescein isothiocyanate/propidium iodide and flow cytometer, colony formation assay, and migration assay. We found that circNRIP1 was overexpressed in tumor tissue but miR-505 was overproduced. Silencing circZNF292 induced inhibition of cell viability, colony formation, and migration, as well as the activity of AMPK and PI3K/AKT/mTOR cascades but enhancement of apoptosis. si-circNRIP1 stimulated the upregulation of miR-505, whose silence abolished the effects of si-circNRIP1 on these elements mentioned above. In conclusion, the circNRIP1 played oncogenic roles in the ACHN and the CAKI-1 cell lines by targeting miR-505 via stimulating AMPK and PI3K/AKT/mTOR cascades.
Collapse
Affiliation(s)
- Zhen Dong
- Department of Urology and Renal Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yidong Liu
- Department of Urology, Taian City Central Hospital, Taian, Shandong, China
| | - Qinghai Wang
- Department of Urology and Renal Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hongyang Wang
- Department of Urology and Renal Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jianlei Ji
- Department of Urology and Renal Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tao Huang
- Department of Urology and Renal Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Aashish Khanal
- Department of Urology and Renal Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Haitao Niu
- Department of Urology and Renal Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yanwei Cao
- Department of Urology and Renal Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
33
|
Zhao S, Lu L, Liu Q, Chen J, Yuan Q, Qiu S, Wang X. MiR-505 promotes M2 polarization in choroidal neovascularization model mice by targeting transmembrane protein 229B. Scand J Immunol 2019; 90:e12832. [PMID: 31544253 DOI: 10.1111/sji.12832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/31/2019] [Accepted: 09/17/2019] [Indexed: 01/07/2023]
Abstract
We aimed to analyse the relative abundance of miR-505 in age-related macular degeneration (AMD) and elucidate its underlying mechanisms. Relative expression of miR-505 was analysed by real-time polymerase chain reaction (PCR). Macrophage polarization was characterized by measurement of molecular markers including Ym-1, Arg-1, TNF-α and iNOS via both real-time PCR and Western blot. Vascular endothelial growth factor (VEGF) content was determined by enzyme-linked immunosorbent assay. Choroidal neovascularization (CNV) formation was evaluated by choroidal flat mount technique. The regulatory action of miR-505-5p on 3'UTR of Transmembrane Protein 229B (TMEM229B) was interrogated by luciferase reporter assay. miR-505 was aberrantly upregulated in both AMD and laser-induced choroidal neovascularization mouse model. Administration with miR-505 specific inhibitor suppressed M2 polarization in CNV mice as indicated by decreasing both Ym-1 and Arg-1. Meanwhile, VEGF expression and CNV formation were greatly suppressed by miR-505 inhibition as well. The similar phenotype was consolidated in Prostaglandin E2 (PGE2)-stimulated bone marrow-derived macrophages. At the molecular level, miR-505-5p directly targeted and negatively regulated TMEM229B expression, while forced ectopic expression of TMEM229B significantly rescued miR-505-imposed M2 polarization. Our data have uncovered the critical contribution of miR-505 in AMD, which is predominantly mediated by downregulation of TMEM229B.
Collapse
Affiliation(s)
- Su Zhao
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lu Lu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Shenzhen, China
| | - Qing Liu
- Department of Ophthalmology, Tongren People's Hospital, Tongren, China
| | - Jun Chen
- Department of Ophthalmology, People's Hospital of Suiyang County, Suiyang, China
| | - Qi Yuan
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shunmei Qiu
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xian Wang
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
34
|
Tokuhara CK, Santesso MR, Oliveira GSND, Ventura TMDS, Doyama JT, Zambuzzi WF, Oliveira RCD. Updating the role of matrix metalloproteinases in mineralized tissue and related diseases. J Appl Oral Sci 2019; 27:e20180596. [PMID: 31508793 DOI: 10.1590/1678-7757-2018-0596] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/30/2019] [Indexed: 02/22/2023] Open
Abstract
Bone development and healing processes involve a complex cascade of biological events requiring well-orchestrated synergism with bone cells, growth factors, and other trophic signaling molecules and cellular structures. Beyond health processes, MMPs play several key roles in the installation of heart and blood vessel related diseases and cancer, ranging from accelerating metastatic cells to ectopic vascular mineralization by smooth muscle cells in complementary manner. The tissue inhibitors of MMPs (TIMPs) have an important role in controlling proteolysis. Paired with the post-transcriptional efficiency of specific miRNAs, they modulate MMP performance. If druggable, these molecules are suggested to be a platform for development of "smart" medications and further clinical trials. Thus, considering the pleiotropic effect of MMPs on mammals, the purpose of this review is to update the role of those multifaceted proteases in mineralized tissues in health, such as bone, and pathophysiological disorders, such as ectopic vascular calcification and cancer.
Collapse
Affiliation(s)
- Cintia Kazuko Tokuhara
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Bauru, São Paulo, Brasil
| | - Mariana Rodrigues Santesso
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Bauru, São Paulo, Brasil
| | - Gabriela Silva Neubern de Oliveira
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Bauru, São Paulo, Brasil
| | - Talita Mendes da Silva Ventura
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Bauru, São Paulo, Brasil
| | - Julio Toshimi Doyama
- Universidade Estadual Paulista Júlio de Mesquita Filho, Campus Botucatu, Rubião Jr, São Paulo, Brasil
| | - Willian Fernando Zambuzzi
- Universidade Estadual Paulista Júlio de Mesquita Filho, Campus Botucatu, Rubião Jr, São Paulo, Brasil
| | - Rodrigo Cardoso de Oliveira
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Bauru, São Paulo, Brasil
| |
Collapse
|
35
|
Xu X, Liu T, Wang Y, Fu J, Yang Q, Wu J, Zhou H. miRNA-mRNA Associated With Survival in Endometrial Cancer. Front Genet 2019; 10:743. [PMID: 31481972 PMCID: PMC6710979 DOI: 10.3389/fgene.2019.00743] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 07/16/2019] [Indexed: 12/29/2022] Open
Abstract
Although various factors may contribute to its initiation and progression, the etiology and prognostic factors of endometrial carcinoma (EC) remains not fully understood. We sought to understand the role of changes in transcriptome during the progress of EC by exploring public datasets. The aberrant expression characteristics of EC based on RNA-Seq and miRNA-seq data from The Cancer Genome Atlas (TCGA) were analyzed. Kaplan-Meier analysis was performed to assess the relationship between differently expressed genes (DEGs) and patient survival. As a result, 320 out of 4,613 differently expressed mRNAs (DE mRNAs) and 68 out of 531 differently expressed miRNAs (DE miRNAs) with a significantly poorer survival were determined. We predicted eight paired DE miRNAs and DE mRNAs through TargetScan. Patients with three out of the eight paired low rate of miRNA/mRNA (miR-497/EMX1, miR-23c/DMBX1, and miR-670/KCNS1) expression had a significantly poorer survival. Furthermore, the simultaneous presence of these selected low miRNA/mRNA pairs occurred in most patients and resulted in a significantly poorer survival rate. Luciferase reporter assay identified that EMX1 was a direct target of miR-497. Both low expression of miR-497 and overexpression of EMX1 were significantly associated with more advanced clinicopathologic characteristics (stage, tumor status, grade, and histology) besides survival (all P values < 0.05). Multivariate analysis also demonstrated that miR-497 remained an independent prognostic variable for overall survival. In summary, we identified that a series of DE mRNAs and miRNAs, including eight paired DE miRNAs and mRNAs, were associated with survival in EC. Clinical evaluation of downregulated miR-497 and paired upregulated EMX1 confirmed the value of our prediction analysis. The simultaneous presence of low rate of these selected low miRNA/mRNA pairs (miR-497/EMX1, miR-23c/DMBX1, and miR-670/KCNS1) might have a better prediction value. Therefore, further studies are required to validate these findings.
Collapse
Affiliation(s)
- Xiaofeng Xu
- Department of Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Tao Liu
- Department of Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Medical College, Nanjing University, Nanjing, China
| | - Yijin Wang
- Department of Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Medical College, Southeast University, Nanjing, China
| | - Jian Fu
- Department of Gynecology, Suqian People’s Hospital of Nanjing Drum Tower Hospital Group, Suqian, China
| | - Qian Yang
- Department of Gynecology and Obstetrics, The Pukou Hospital of Nanjing, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Wu
- Department of Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Huaijun Zhou
- Department of Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
36
|
Ren L, Yao Y, Wang Y, Wang S. MiR-505 suppressed the growth of hepatocellular carcinoma cells via targeting IGF-1R. Biosci Rep 2019; 39:BSR20182442. [PMID: 31160483 PMCID: PMC6603277 DOI: 10.1042/bsr20182442] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/14/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers globally. An increasing body of evidence has demonstrated the critical function of microRNAs (miRNAs) in the initiation and progression of human cancers. Here, we showed that miR-505 was down-regulated in HCC tissues and cell lines. Reduced expression of miR-505 was significantly correlated with the worse prognosis of HCC patients. Overexpression of miR-505 suppressed the proliferation, colony formation and induced apoptosis of both HepG2 and Huh7 cells. Further mechanism study uncovered that miR-505 bound the 3'-untranslated region (3'-UTR) of the insulin growth factor receptor (IGF-1R) and inhibited the expression of IGF-1R in HCC cells. The down-regulation of IGF-1R by miR-505 further suppressed the phosphorylation of AKT at the amino acid S473. Consistently, the abundance of glucose transporter (GLUT) 1 (GLUT1) was reduced with the overexpression of miR-505. Down-regulation of GLUT1 by miR-505 consequently attenuated the glucose uptake, lactate production and ATP generation of HCC cells. Collectively, our results demonstrated the tumor suppressive function of miR-505 possibly via inhibiting the glycolysis of HCC cells. These findings suggested miR-505 as an interesting target for designing anti-cancer strategy in HCC.
Collapse
Affiliation(s)
- Liang Ren
- Department of Ultrasound and Imaging, Yichang Yiling Hospital, Yichang city 443100, Hubei province, China
| | - Yongshan Yao
- Emergency and Trauma Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang city 443100, Hubei province, China
| | - Yang Wang
- Department of Ultrasound and Imaging, Yichang Yiling Hospital, Yichang city 443100, Hubei province, China
| | - Shengqiang Wang
- Department of Pediatrics, Yichang Yiling Hospital, No.32 of Dong Hu street, Yiling district, Yichang city 443100, Hubei province, China
| |
Collapse
|
37
|
Lan T, Lu Y, Xiao Z, Xu H, He J, Hu Z, Mao W. A six-microRNA signature can better predict overall survival of patients with esophagus adenocarcinoma. PeerJ 2019; 7:e7353. [PMID: 31380150 PMCID: PMC6661144 DOI: 10.7717/peerj.7353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022] Open
Abstract
Background The microRNAs (miRNAs) have been validated as prognostic markers in many cancers. Here, we aimed at developing a miRNA-based signature for predicting the prognosis of esophagus adenocarcinoma (EAC). Methods The RNA-sequencing data set of EAC was downloaded from The Cancer Genome Atlas (TCGA). Eighty-four patients with EAC were classified into a training set and a test set randomly. Using univariate Cox regression analysis and the least absolute shrinkage and selection operator (LASSO), we identified prognostic factors and constructed a prognostic miRNA signature. The accuracy of the signature was evaluated by the receiver operating characteristic (ROC) curve. Result In general, in the training set, six miRNAs (hsa-mir-425, hsa-let-7b, hsa-mir-23a, hsa-mir-3074, hsa-mir-424 and hsa-mir-505) displayed good prognostic power as markers of overall survival for EAC patients. Relative to patients in the low-risk group, those assigned to the high-risk group according to their risk scores of the designed miRNA model displayed reduced overall survival. This 6-miRNA model was validated in test and entire set. The area under curve (AUC) for ROC at 3 years was 0.959, 0.840, and 0.868 in training, test, and entire set, respectively. Molecular functional analysis and pathway enrichment analysis indicated that the target messenger RNAs associated with 6-miRNA signature were closely related to several pathways involved in carcinogenesis, especially cell cycle. Conclusion In summary, a novel 6-miRNA expression-based prognostic signature derived from the EAC data of TCGA was constructed and validated for predicting the prognosis of EAC.
Collapse
Affiliation(s)
- Tian Lan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China.,Department of Breast Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yunyan Lu
- Department of Cardiology, Hangzhou Xiaoshan First People's Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Zunqiang Xiao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Haibin Xu
- Department of Breast Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Junling He
- Department of Breast Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Zujian Hu
- Department of Breast Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Weimin Mao
- Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), Zhejiang Cancer Hospital, Hangzhou, Zhejiang, People's Republic of China.,Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
38
|
MicroRNA-505-5p functions as a tumor suppressor by targeting cyclin-dependent kinase 5 in cervical cancer. Biosci Rep 2019; 39:BSR20191221. [PMID: 31266812 PMCID: PMC6658724 DOI: 10.1042/bsr20191221] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/19/2019] [Accepted: 07/02/2019] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRs) are considered to be tumor suppressors or oncogenes as they regulate cell proliferation, migration, invasion, and differentiation. Recently, microRNA-505 (miR-505) has been reported as being involved in the progression of several human cancers. In the present study, we aim to investigate the expression rate and functional role of miR-505-5p in cervical cancer (CC) to determine its significance regarding the disease’s development. The expression of miR-505-5p and cyclin-dependent kinase 5 (CDK5) in specimens of patients with CC and CC cell lines was examined by quantitative real-time PCR (qRT-PCR) and Western Blot. The relationship between miR-505-5p and CDK5 was verified by luciferase reporter assay. Cell counting kit-8 (CCK-8) assay, Scratch wound healing assay and transwell assay were used to detect the roles of miR-505-5p and CDK5 in CC cell functions. Western Blot was utilized to explore the epithelial–mesenchymal transition (EMT) markers. The result showed that in CC tissues and CC cell lines miR-505-5p was down-regulated while CDK5 level was up-regulated. MiR-505-5p was closely correlated with the metastasis-associated clinicopathological features. Overexpression of miR-505-5p inhibited cell viability, cell metastasis and EMT in CC cells. CDK5 was confirmed as a direct target of miR-505-5p and inverse relationship between them was also observed. Overexpression of CDK5 reduces the inhibitory effects of miR-505-5p in CC. Taken together, these results determine that miR-505-5p is a tumor suppressor miRNA which regulates tumor cell proliferation, migration, and invasion via binding to the functional target CDK5 and demonstrates its potential for future use in the treatment of CC.
Collapse
|
39
|
Ling XH, Fu H, Chen ZY, Lu JM, Zhuo YJ, Chen JH, Zhong WD, Jia Z. miR‑505 suppresses prostate cancer progression by targeting NRCAM. Oncol Rep 2019; 42:991-1004. [PMID: 31322225 PMCID: PMC6667922 DOI: 10.3892/or.2019.7231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/05/2019] [Indexed: 12/22/2022] Open
Abstract
Previous researchers have demonstrated that microRNA-505 (miR-505) is negatively correlated with progression in various malignancies. However, the detailed function and molecular mechanisms of miR-505 have yet to be completely elucidated in prostate cancer (PCa). The present study initially identified the potential role of miR-505 in PCa using in vitro experiments, and demonstrated that restoration of miR-505 inhibited proliferation, invasion and migration, yet induced cell cycle arrest and promoted apoptosis in PCa cells. The present study also demonstrated that the expression of neuron-glial-related cell adhesion molecule (NRCAM) was markedly upregulated in PCa cells when compared with benign prostate epithelium. A luciferase reporter assay demonstrated that miR-505 directly targeted NRCAM in PCa cells. In addition, NRCAM stimulation antagonized the inhibitory effects of miR-505 on the proliferation, migration, and invasion of PCa cells. Furthermore, lower levels of miR-505 and higher levels of NRCAM may serve as a predictor of worse biochemical recurrence-free survival or disease-free survival in patients with PCa. In conclusion, the present study revealed the inhibitory effects of miR-505 on PCa tumorigenesis, which potentially occur by targeting NRCAM. The combined analysis of NRCAM and miR-505 may predict disease progression in patients with PCa following radical prostatectomy.
Collapse
Affiliation(s)
- Xiao-Hui Ling
- Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hao Fu
- Department of Urology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhi-Yun Chen
- Reproductive Medicine Centre, Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong 516001, P.R. China
| | - Jian-Ming Lu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Yang-Jia Zhuo
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Jia-Hong Chen
- Reproductive Medicine Centre, Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong 516001, P.R. China
| | - Wei-De Zhong
- Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
40
|
Wang Q, Zhu W. MicroRNA-873 inhibits the proliferation and invasion of endometrial cancer cells by directly targeting hepatoma-derived growth factor. Exp Ther Med 2019; 18:1291-1298. [PMID: 31363373 DOI: 10.3892/etm.2019.7713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
An accumulation of evidence has demonstrated that abnormal microRNA (miRNA or miR) expression is associated with different types of cancer, including endometrial cancer (EC). The dysregulation of miRNAs may serve important roles in the development and progression of EC by regulating multiple aggressive biological behaviors, including cell proliferation, apoptosis, metastasis and angiogenesis. An in-depth understanding of the miRNAs associated with EC initiation and progression may be crucial for identifying successful therapeutic techniques. miR-873 has been demonstrated to be dysregulated in different types of cancer. However, the expression status and regulatory roles of miR-873 are yet to be elucidated in EC. In the present study, reverse transcription-quantitative PCR was carried out to detect miR-873 expression in EC tissues and cell lines. Cell Counting Kit-8 and in vitro invasion assays were utilized to determine the influence of miR-873 on the proliferation and invasion of EC cells. miR-873 expression was revealed to be downregulated in EC tissues and cell lines. Decreased miR-873 expression was significantly associated with International Federation of Gynecology and Obstetrics stage and lymph node metastasis of patients with EC. Functional assays revealed that resumed miR-873 expression suppressed the proliferation and invasion of EC cells. Additionally, hepatoma-derived growth factor (HDGF) was indicated to be a direct target gene of miR-873 in EC cells. HDGF was highly expressed in EC tissues and inversely correlated with miR-873 expression. HDGF silencing also imitated the tumor-suppressor activity of miR-873 overexpression in EC cells. A series of rescue experiments identified that recovered HDGF expression hindered the anti-proliferative and anti-invasive roles of miR-873 upregulation in EC cells. In conclusion, the present study indicated that miR-873 serves an important role as a tumor suppressor in EC development by directly targeting HDGF. The results may provide a novel insight into clinical treatments, which can be used to prevent EC aggression.
Collapse
Affiliation(s)
- Qin Wang
- Department of Gynaecology and Obstetrics, The First People's Hospital of Kunshan, Kunshan, Jiangsu 215000, P.R. China
| | - Weipei Zhu
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
41
|
Feng J, Zhou Q, Yi H, Ma S, Li D, Xu Y, Wang J, Yin S. A novel lncRNA n384546 promotes thyroid papillary cancer progression and metastasis by acting as a competing endogenous RNA of miR-145-5p to regulate AKT3. Cell Death Dis 2019; 10:433. [PMID: 31160577 PMCID: PMC6547665 DOI: 10.1038/s41419-019-1637-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are emerging as important regulators in the development of cancer cells. However, the role and mechanisms of most lncRNAs in papillary thyroid carcinoma (PTC) remain unknown. In this study, we investigated lncRNA expression profiles of PTC using RNA-seq in two groups of PTC tissues and adjacent normal tissues, and validated by real-time PCR analysis in another 53 pairs of tissues. We identified a novel lncRNA, n384546, which is highly expressed in PTC tissues and cell lines. n384546 expression was associated with clinicopathological features of PTC patients, such as tumor size, lymph node metastasis, and TNM stage. Functionally, knockdown of n384546 inhibited PTC cell proliferation, invasion, and migration both in vitro and in vivo. In addition, we identified miR-145-5p as a key miRNA target of n384546 using online bioinformatics tools. Anti-miR-145 could partially reverse the effects of n384546 knockdown. Furthermore, we found that n384546 could regulate the expression of AKT3 by sponging miR-145-5p, which was confirmed using an in vitro luciferase assay. In conclusion, we validated n384546 as a novel oncogenic lncRNA in PTC and determined that the n384546/miR-145-5p/AKT3 pathway contributes to PTC progression, which might be used as potential therapeutic targets for PTC patients.
Collapse
Affiliation(s)
- Jiajia Feng
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai, 200233, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Yishan Road 600, Shanghai, 200233, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Yishan Road 600, Shanghai, 200233, China
| | - Qinyi Zhou
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai, 200233, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Yishan Road 600, Shanghai, 200233, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Yishan Road 600, Shanghai, 200233, China.,Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shandongzhong Road 145, Shanghai, 200001, China
| | - Hongliang Yi
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai, 200233, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Yishan Road 600, Shanghai, 200233, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Yishan Road 600, Shanghai, 200233, China
| | - Shiyin Ma
- Department of Otolaryngology, the First Affiliated Hospital, Bengbu Medical College, Changhuai Road 287, Bengbu, 233004, Anhui, China
| | - Dawei Li
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai, 200233, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Yishan Road 600, Shanghai, 200233, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Yishan Road 600, Shanghai, 200233, China
| | - Yanan Xu
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shandongzhong Road 145, Shanghai, 200001, China
| | - Jiadong Wang
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shandongzhong Road 145, Shanghai, 200001, China.
| | - Shankai Yin
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai, 200233, China. .,Shanghai Key Laboratory of Sleep Disordered Breathing, Yishan Road 600, Shanghai, 200233, China. .,Otolaryngological Institute of Shanghai Jiao Tong University, Yishan Road 600, Shanghai, 200233, China.
| |
Collapse
|
42
|
Wang J, Liu H, Li M. Downregulation of miR-505 promotes cell proliferation, migration and invasion, and predicts poor prognosis in breast cancer. Oncol Lett 2019; 18:247-254. [PMID: 31289494 DOI: 10.3892/ol.2019.10334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 04/15/2019] [Indexed: 12/17/2022] Open
Abstract
microRNAs are involved in the tumor progression of various cancer types. The present study aimed to determine the prognostic significance of microRNA-505 (miR-505) in patients with breast cancer and investigate the functional role of miR-505 in BCa progression. The expression of miR-505 was estimated using reverse transcription-quantitative polymerase chain reaction. Kaplan-Meier survival curves and Cox regression analysis were used to evaluate the prognostic value of miR-505 in patients with BCa. Cell experiments were performed to assess the biological function of miR-505 during BCa progression. A significant downregulated expression level of miR-505 was observed in BCa tissues and cells compared with the corresponding controls (P<0.001). The expression of miR-505 was significantly associated with distant metastasis status (P=0.013) and Tumor-Node-Metastasis staging (P=0.002). Furthermore, the overall survival time was significantly shorter for patients with low miR-505 expression compared with those with high miR-505 expression (P<0.001). In addition, miR-505 was identified as an independent prognostic factor for BCa. The results of cell experiments revealed that an overexpression of miR-505 could significantly inhibit BCa cell proliferation, migration and invasion, whereas a downregulation of miR-505 significantly enhanced BCa cell proliferation, migration and invasion (P<0.05). In summary, all data indicated that a low miR-505 expression level is associated with a poor prognosis for patients with BCa and promotes tumor cell proliferation, migration and invasion. Therefore, the aberrant expression of miR-505 may serve as a therapeutic target for BCa.
Collapse
Affiliation(s)
- Jian Wang
- Department of Laboratory Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Haibo Liu
- Department of Laboratory Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Minghong Li
- Department of Laboratory Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| |
Collapse
|
43
|
Tian L, Wang ZY, Hao J, Zhang XY. miR-505 acts as a tumor suppressor in gastric cancer progression through targeting HMGB1. J Cell Biochem 2019; 120:8044-8052. [PMID: 30525214 DOI: 10.1002/jcb.28082] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
Gastric cancer (GC) is a frequent type of malignant tumor worldwide. GC metastasis results in the majority of clinical treatment failures. MicroRNAs (miRNA) are identified to exhibit crucial roles in GC. Our current study aimed to explore the biological roles of miR-505 in GC progression. It was observed that miR-505 was robustly decreased in GC cells compared with human normal gastric epithelial GES-1 cells. Overexpression of miR-505 was able to repress GC progression in AGS and BGC-823 cells. In addition, high-mobility group box 1 (HMGB1) has been identified as a crucial oncogene in several cancer types. By carrying out bioinformatics analysis, HMGB1 was predicted as a direct target of miR-505. Meanwhile, HMGB1 was found to be significantly increased in GC cells and it was confirmed in our study that miR-505 can directly target HMGB1 in vitro. miR-505 mimics can inhibit HMGB1 messenger RNA and protein expression dramatically. Subsequently, knockdown of HMGB1 can inhibit GC cell proliferation, colony formation, and induce cell apoptosis. Furthermore, HMGB1 silence suppressed GC cell migration and invasion greatly in vitro. Finally, it was validated that miR-505 can inhibit GC progression by targeting HMGB1 in vivo. Taken these together, it was indicated that miR-505/HMGB1 axis was involved in the development of GC. miR-505 can serve as a potential prognostic indicator in GC therapy.
Collapse
Affiliation(s)
- Liang Tian
- Department of Rehabilitation, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Zheng-Yu Wang
- Department of Pharmacy, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Jun Hao
- Department of Clinical Laboratory Center, Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, China
| | - Xiao-Yu Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
44
|
Liu Y, Tan J, Ou S, Chen J, Chen L. MicroRNA-101-3p suppresses proliferation and migration in hepatocellular carcinoma by targeting the HGF/c-Met pathway. Invest New Drugs 2019; 38:60-69. [PMID: 30929159 DOI: 10.1007/s10637-019-00766-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/21/2019] [Indexed: 10/27/2022]
Abstract
MicroRNAs are involved in each stage of tumor development. Activation of the hepatocyte growth factor (HGF)/c-Met axis facilitates the proliferation and migration of cancer cells, and the HGF/c-MET pathway provides potential targets for anticancer treatment. However, the interaction between HGF and miRNAs in hepatocellular carcinoma (HCC) remains unknown. Previous studies have shown that miR-101 is downregulated in various types of cancer and acts as a tumor suppressor, but the role of miR-101 in HCC has not yet been well defined. Here, we show that HGF is upregulated while microRNA-101-3p is significantly downregulated in the tumor tissues of HCC. By combining bioinformatics analysis and luciferase reporter assays, we demonstrated that HGF is a direct target of miR-101. In vitro experiments indicated that miR-101 inhibits the migration and proliferation of HCC cells by targeting the HGF/c-MET axis, and in vivo studies showed that overexpressed miR-101 dramatically suppresses tumor growth. Therefore, the present study identifies miR-101 as a negative regulator of HGF/c-MET and suggests that miRNAs can be used as targeted drugs for the clinical treatment of HCC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pathology, Infectious Diseases Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Juan Tan
- Department of Pathology, Infectious Diseases Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shuangyan Ou
- Medical Oncology Institute, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Jun Chen
- Hunan Polytechnic of Environment and Biology, Hengyang, Hunan, China
| | - Limin Chen
- Department of Pathology, Infectious Diseases Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
45
|
Fang H, Liu Y, He Y, Jiang Y, Wei Y, Liu H, Gong Y, An G. Extracellular vesicle‑delivered miR‑505‑5p, as a diagnostic biomarker of early lung adenocarcinoma, inhibits cell apoptosis by targeting TP53AIP1. Int J Oncol 2019; 54:1821-1832. [PMID: 30864684 DOI: 10.3892/ijo.2019.4738] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/25/2019] [Indexed: 12/24/2022] Open
Abstract
Lung adenocarcinoma (LA) is the most commonly occurring histological type of non‑small cell lung cancer. Diagnosis and treatment of LA remain a major clinical challenge. In the present study, to identify early LA biomarkers, extracellular vesicles (EVs) were separated from the plasma samples from 153 patients with LA and 75 healthy controls. microRNA (miRNA) expression profiling was performed at the screening stage (5 patients with LA vs. 5 controls), followed by verification at the validation stage (40 patients with LA vs. 20 controls) using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). The four disordered miRNAs (miR‑505‑5p, miR‑486‑3p, miR‑486‑3p and miR‑382‑3p) identified in the plasma EVs were further evaluated at the testing stage (108 patients with LA vs. 50 controls) by RT‑qPCR. It was revealed that miR‑505‑5p was upregulated, whereas miR‑382‑3p was downregulated, in the EVs from patients with LA. Furthermore, miR‑505‑5p was also upregulated in tumor tissues, compared with adjacent non‑tumor control tissues. Subsequently, the direct targets of miR‑505‑5p were predicted using bioinformatics analyses, and verified by luciferase assay and immunoblotting. The present study determined that miR‑505‑5p functions as an oncogene, promoting lung cancer cell proliferation and inhibiting cancer cell apoptosis via the targeting of tumor protein P53‑regulated apoptosis‑inducing protein 1 (TP53AIP1). Finally, it was confirmed that miR‑505‑5p in plasma EVs could be delivered to lung cancer cells, inhibiting cell apoptosis and promoting cell proliferation by targeting TP53AIP1. In conclusion, the present study indicated that miRNA‑505‑5p functions as an oncogene that may be used as a novel biomarker for the diagnosis and treatment of LA.
Collapse
Affiliation(s)
- Hua Fang
- Department of Oncology, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Yutao Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yaohong He
- Department of Respiratory Medicine, Fuxing Hospital, The Eighth Clinical Medical College, Capital Medical University, Beijing 100038, P.R. China
| | - Yang Jiang
- Department of Thoracic Surgery, Fuxing Hospital, The Eighth Clinical Medical College, Capital Medical University, Beijing 100038, P.R. China
| | - Yaping Wei
- Department of Oncology, Capital Medical University, Beijing 100038, P.R. China
| | - Han Liu
- Department of Oncology, Capital Medical University, Beijing 100038, P.R. China
| | - Yueqing Gong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, P.R. China
| | - Guangyu An
- Department of Oncology, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
46
|
Su Y, Wang J, Ma Z, Gong W, Yu L. miR-142 Suppresses Endometrial Cancer Proliferation In Vitro and In Vivo by Targeting Cyclin D1. DNA Cell Biol 2019; 38:144-150. [PMID: 30585737 DOI: 10.1089/dna.2018.4441] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Endometrial cancer (EC), a prevalent gynecologic tumor, is a great threat to women. We aimed to explore miR-142's effects on EC and the relevant mechanisms. Cell proliferation was evaluated with MTT, cell counting, and colony formation assay. MRNA abundances of miR-142 and cyclin D1 (CCND1) were examined with quantitative real-time PCR. CCND1 protein level in cells was analyzed with Western blot. miR-142's downstream target was identified with targetscan and luciferase reporter assay. Nude mice were injected subcutaneously with Ishikawa (ISK) cells transfected with or without miR-142 mimics. Ki-67 and CCND1 expressions in tumors of xenograft mice were analyzed with immunohistochemical assay. miR-142 was expressed at a lower level in human EC tumor samples than matched normal tissues, and its mRNA level in EC patients without metastasis was higher than that in patients with metastatic EC. Additionally, low-level miR-142 was closely linked with the poor prognosis of EC patients. miR-142 restricted ISK and HEC-1A cell proliferation. Targetscan and luciferase reporter assay proved the target relationship between miR-142 and CCND1. Moreover, high-level CCND1 was positively correlated with the poor prognosis of EC patients. Besides, miR-142 mimics restricted tumor growth in ISK xenografted mice, as well as inhibited the expression of Ki67 and CCND1 in excised tumors. miR-142 restricted EC proliferation by targeting CCND1.
Collapse
Affiliation(s)
- Yi Su
- 1 Department of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jing Wang
- 2 Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhao Ma
- 1 Department of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Wenjing Gong
- 3 Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Lianzhi Yu
- 4 Department of Physical Examination, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
47
|
Dang SC, Wang F, Qian XB, Abdul M, Naseer QA, Jin W, Hu R, Gu Q, Gu M. MicroRNA-505 suppresses gastric cancer cell proliferation and invasion by directly targeting Polo-like kinase-1. Onco Targets Ther 2019; 12:795-803. [PMID: 30774367 PMCID: PMC6352865 DOI: 10.2147/ott.s189521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose The expression of microRNA-505 (miR-505) has been investigated in various cancers; however, its effect and mechanism in relation to gastric cancer (GC) are yet to be determined. Thus, the current evaluation aimed to examine the expression and potential role of miR-505 in GC. Materials and methods Quantitative real-time PCR was carried out to analyze miR-505 expression in GC cells and tissues. We observed that miR-505 is differentially expressed in GC cells following transfection of its mimics or inhibitors. Changes in cell invasion, cell proliferation, and epithelial–mesenchymal transition markers were measured. Results These findings indicated that miR-505 expression is downregulated in both GC cell lines and GC tissues. In addition, knockdown miR-505 induced the invasion and proliferation of GC cells. Transfection of miR-505 mimics led to an elevation in N-cadherin expression but a decrease in E-cadherin expression. Furthermore, we have shown that miR-505 binds to the 3′-UTR region of Polo-like kinase-1. Conclusion Our results indicated that miR-505 suppresses GC cell proliferation and invasion; it may be a valuable candidate gene for seeking therapy strategy for GC.
Collapse
Affiliation(s)
- Sheng-Chun Dang
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212001, People's Republic of China
| | - Fei Wang
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212001, People's Republic of China
| | - Xiao-Bao Qian
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212001, People's Republic of China
| | - Malik Abdul
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212001, People's Republic of China
| | - Qais-Ahmad Naseer
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212001, People's Republic of China
| | - Wei Jin
- Department of Obstetrics and Gynecology, The Changshu No. 2 People's Hospital, Changshu, Jiangsu Province 215500, People's Republic of China
| | - Rong Hu
- Department of Geriatrics, Zhenjiang First People's Hospital, Jiangsu Province 212001, People's Republic of China
| | - Qian Gu
- Department of Geriatrics, Zhenjiang First People's Hospital, Jiangsu Province 212001, People's Republic of China
| | - Min Gu
- Department of Oncology, Zhenjiang Hospital of Traditional Chinese and Western Medicine, Zhenjiang, Jiangsu 212001, People's Republic of China,
| |
Collapse
|
48
|
MiR-708-5p inhibits the progression of pancreatic ductal adenocarcinoma by targeting Sirt3. Pathol Res Pract 2019; 215:794-800. [PMID: 30683474 DOI: 10.1016/j.prp.2019.01.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/28/2018] [Accepted: 01/17/2019] [Indexed: 12/30/2022]
Abstract
Numbers of studies have indicated that miRNA-708 plays an important role in many types of cancer. However, the role of miRNA-708 in pancreatic ductal adenocarcinoma (PDAC) has yet to be fully elucidated. The present study aimed to investigate the role of miRNA-708-5p in the proliferation, invasion and metastasis of PDAC in vitro, as well as the underlying mechanism. We found that miRNA-708-5p was upregulated in PDAC tissues and cell lines, and high miRNA-708 expression indicated poor prognosis in PDAC patients. Besides, the CCK-8 assay, colony formation assay and transwell assay results suggested that miRNA-708-5p overexpression enhanced the ability of proliferation, invasion and migration in PDAC cell lines. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blotting and luciferase reporter assay demonstrated that SIRT3 was a direct target of miRNA-708-5p. Furthermore, a series of rescue experiments manifested that SIRT3 was involved in the oncogenic function of miRNA-708-5p in PDAC cells. Taken together, our study established a novel miRNA-708-5p/SIRT3 axis in the progression of pancreatic cancer and provided insight for pancreatic cancer treatment.
Collapse
|
49
|
Tang H, Lv W, Sun W, Bi Q, Hao Y. miR‑505 inhibits cell growth and EMT by targeting MAP3K3 through the AKT‑NFκB pathway in NSCLC cells. Int J Mol Med 2018; 43:1203-1216. [PMID: 30628663 PMCID: PMC6365022 DOI: 10.3892/ijmm.2018.4041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs, which generally regulate gene expression at the post-transcriptional level. Dysregulation of miRNAs has been reported in numerous cancer types, including lung cancer. In the present study, the role of miR-505 in non-small cell lung cancer (NSCLC) cells was investigated. miR-505 served a tumor suppressor role in NSCLC cells. By reverse transcriptase-quantitative polymerase chain reaction detection, it was demonstrated that miR-505 was downregulated in NSCLC tissues and cell lines, which is negatively associated with large tumor size, Tumor-Node-Metastasis stage and distant metastasis in patients with NSCLC. Functional studies revealed that miR-505 inhibited cell proliferation, migration, invasion and epithelial-mesenchymal transition progress in vitro and tumor growth in vivo. Mechanically, mitogen-activated protein kinase kinase kinase 3 (MAP3K3) was identified as a direct target of miR-505 by binding to its 3′untranslated region and demonstrated to mediate the tumor suppressor roles of miR-505 in NSCLC cells. The effect of miR-505 on the activation of AKT/nuclear factor-κB (NFκB) pathway, which was downstream targets of MAP3K3, was further analyzed by western blot analysis and immunofluorescence analyses. The data demonstrated the inhibition of the AKT/NFκB pathway upon overexpressing miR-505 and the activation of AKT/NFκB pathway upon silencing miR-505. Collectively, the data revealed the novel role and target of miR-505 in NSCLC cells, which may provide novel insights regarding its role in the carcinogenesis of NSCLC and its potential values for clinical applications.
Collapse
Affiliation(s)
- Huaping Tang
- Department of Respiration, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Weihong Lv
- Department of Medical, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Wenxin Sun
- Department of Respiration, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Qiaojie Bi
- Department of Emergency, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Yueqin Hao
- Department of Respiration, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
50
|
Schoen C, Glennon JC, Abghari S, Bloemen M, Aschrafi A, Carels CEL, Von den Hoff JW. Differential microRNA expression in cultured palatal fibroblasts from infants with cleft palate and controls. Eur J Orthod 2018; 40:90-96. [PMID: 28486694 DOI: 10.1093/ejo/cjx034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background The role of microRNAs (miRNAs) in animal models of palatogenesis has been shown, but only limited research has been carried out in humans. To date, no miRNA expression study on tissues or cells from cleft palate patients has been published. We compared miRNA expression in palatal fibroblasts from cleft palate patients and age-matched controls. Material and Methods Cultured palatal fibroblasts from 10 non-syndromic cleft lip and palate patients (nsCLP; mean age: 18 ± 2 months), 5 non-syndromic cleft palate only patients (nsCPO; mean age: 17 ± 2 months), and 10 controls (mean age: 24 ± 5 months) were analysed with next-generation small RNA sequencing. All subjects are from Western European descent. Sequence reads were bioinformatically processed and the differentially expressed miRNAs were technically validated using quantitative reverse-transcription polymerase chain reaction (RT-qPCR). Results Using RNA sequencing, three miRNAs (hsa-miR-93-5p, hsa-miR-18a-5p, and hsa-miR-92a-3p) were up-regulated and six (hsa-miR-29c-5p, hsa-miR-549a, hsa-miR-3182, hsa-miR-181a-5p, hsa-miR-451a, and hsa-miR-92b-5p) were down-regulated in nsCPO fibroblasts. One miRNA (hsa-miR-505-3p) was down-regulated in nsCLP fibroblasts. Of these, hsa-miR-505-3p, hsa-miR-92a, hsa-miR-181a, and hsa-miR-451a were also differentially expressed using RT-PCR with a higher fold change than in RNAseq. Limitations The small sample size may limit the value of the data. In addition, interpretation of the data is complicated by the fact that biopsy samples are taken after birth, while the origin of the cleft lies in the embryonic period. This, together with possible effects of the culture medium, implies that only cell-autonomous genetic and epigenetic differences might be detected. Conclusions For the first time, we have shown that several miRNAs appear to be dysregulated in palatal fibroblasts from patients with nsCLP and nsCPO. Furthermore, large-scale genomic and expression studies are needed to validate these findings.
Collapse
Affiliation(s)
- Christian Schoen
- Departments of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeffrey C Glennon
- Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Shaghayegh Abghari
- Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjon Bloemen
- Departments of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Armaz Aschrafi
- Laboratory of Molecular Biology, Division of Intramural Research Programs, National Institute of Mental Health, National Institute of Health, Bethesda, USA
| | - Carine E L Carels
- Departments of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Oral Health Sciences, KU Leuven, University Hospitals, Belgium.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johannes W Von den Hoff
- Departments of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|