1
|
Sun Y, Tang Y, Qi Q, Pang J, Chen Y, Wang H, Liang J, Tang W. 101 Machine Learning Algorithms for Mining Esophageal Squamous Cell Carcinoma Neoantigen Prognostic Models in Single-Cell Data. Int J Mol Sci 2025; 26:3373. [PMID: 40244296 PMCID: PMC11989522 DOI: 10.3390/ijms26073373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/23/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive malignant tumors in the digestive tract, characterized by a high recurrence rate and inadequate immunotherapy options. We analyzed mutation data of ESCC from public databases and employed 10 machine learning algorithms to generate 101 algorithm combinations. Based on the optimal range determined by the concordance index, we randomly selected one combination from the best-performing algorithms to construct a prognostic model consisting of five genes (DLX5, MAGEA4, PMEPA1, RCN1, and TIMP1). By validating the correlation between the prognostic model and antigen-presenting cells (APCs), we revealed the antigen-presentation efficacy of the model. Through the analysis of immune infiltration in ESCC, we uncovered the mechanisms of immune evasion associated with the disease. In addition, we examined the potential impact of the five prognostic genes on ESCC progression. Based on these insights, we identified anti-tumor small-molecule compounds targeting these prognostic genes. This study primarily simulates the tumor microenvironment (TME) and antigen presentation processes in ESCC patients, predicting the role of the neoantigen-based prognostic model in ESCC patients and their potential responses to immunotherapy. These results suggest a potential approach for identifying therapeutic targets in ESCC, which may contribute to the development of more effective treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenru Tang
- Laboratory of Molecular Genetics of Aging & Tumor, Medicine School, Kunming University of Science and Technology, No. 727, Jingming South Road, Kunming 650500, China; (Y.S.); (Y.T.); (Q.Q.); (J.P.); (Y.C.); (H.W.); (J.L.)
| |
Collapse
|
2
|
Huang L, Sun X, Zuo Q, Song T, Liu N, Liu Z, Xue W. A pH-responsive PROTAC-based nanosystem triggers tumor-specific ferroptosis to construct in situ tumor vaccines. Mater Today Bio 2025; 31:101523. [PMID: 39935894 PMCID: PMC11810845 DOI: 10.1016/j.mtbio.2025.101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/18/2025] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
Bromodomain-containing protein 4 (BRD4) is a key protein that drives the development of malignant melanoma and is closely associated with the ferroptosis signaling pathway. Degradation of BRD4 can downregulate the expression of ferroptosis-related genes such as GPX4, thereby promoting tumor-specific ferroptosis. Therefore, targeting BRD4 for degradation is a promising strategy for inhibiting tumor growth. We constructed a PROTAC drug-based tumor antigen capture system to protect the activity of antigen-presenting cells (APCs) and promote antigen capture. The selected PROTAC drug (ARV-825) can specifically degrade BRD4 without harming immune cells. Specifically, magnetic nanoclusters (MNC) coated with calcium-doped manganese carbonate (Ca/MnCO3), were used to load PROTAC drug (ARV-825) and anti-PD1, forming the MNC@Ca/MnCO3/ARV/anti-PD1 system. ARV-825 can specifically degrade BRD4 and GPX4, significantly inducing ferroptosis in tumor cells and releasing tumor-associated antigens. The MNC@Ca/MnCO3 particles, with their large specific surface area, adsorbed the tumor antigens, preventing antigen loss and enhancing antigen presentation. Additionally, Mn2+ served as an adjuvant to promote the maturation and cross-presentation of APCs. Together with the PD1 antibody, this further enhanced the anti-tumor response of the in situ tumor vaccine and reversed the suppressive immune microenvironment. This antigen capture system provides a novel strategy to improve the anti-tumor efficacy of in situ tumor vaccines.
Collapse
Affiliation(s)
- Linghong Huang
- Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
- Department of Urology, Guangdong Provincial Key Laboratory of Urological Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Xinyuan Sun
- Department of Urology, Guangdong Provincial Key Laboratory of Urological Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Qinhua Zuo
- Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Ting Song
- Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Ning Liu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 5106323, China
| | - Zonghua Liu
- Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Wei Xue
- Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
3
|
Omoto M, Sugimoto K, Kurebayashi Y, Kakegawa T, Takahashi H, Wada T, Takeuchi H, Nagao T, Nagakawa Y, Itoi T. Advanced intrahepatic cholangiocarcinoma successfully treated with combined immunotherapy: focusing on the tumor immune microenvironment. Clin J Gastroenterol 2025:10.1007/s12328-025-02113-2. [PMID: 40153223 DOI: 10.1007/s12328-025-02113-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/11/2025] [Indexed: 03/30/2025]
Abstract
A 61-year-old female patient with advanced intrahepatic cholangiocarcinoma diagnosed based on imaging and tumor biopsy findings was treated with combination therapy comprising gemcitabine, cisplatin, and durvalumab. After eight cycles of therapy comprising gemcitabine, cisplatin, and durvalumab and two subsequent cycles of maintenance immunotherapy, significant tumor shrinkage enabled conversion surgery with R0 resection. The tumor immune microenvironment has a critical role in predicting the efficacy of combined immunotherapy in some types of cancer; however, its role in advanced intrahepatic cholangiocarcinoma remains largely unclear. In the current case, the tumor exhibited increased infiltration of CD8 T cells before treatment, and significant increase in CD8 T-cell infiltration, decrease in Treg/CD8 ratio, and development of tertiary lymphoid structures were observed after treatment. Pretreatment tumor immune microenvironment analyses may predict treatment outcomes and optimize strategies for advanced intrahepatic cholangiocarcinoma. Therapy comprising gemcitabine, cisplatin, and durvalumab and immune-based approaches may enhance personalized medicine for patients with advanced intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Mayu Omoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 1600023, Japan
| | - Katsutoshi Sugimoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 1600023, Japan.
| | - Yutaka Kurebayashi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuya Kakegawa
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 1600023, Japan
| | - Hiroshi Takahashi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 1600023, Japan
| | - Takuya Wada
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 1600023, Japan
| | - Hirohito Takeuchi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 1600023, Japan
| | - Toshitaka Nagao
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Yuichi Nagakawa
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 1600023, Japan
| |
Collapse
|
4
|
Wang X, Niu Y, Bian F. The progress of tumor vaccines clinical trials in non-small cell lung cancer. Clin Transl Oncol 2025; 27:1062-1074. [PMID: 39179939 PMCID: PMC11914286 DOI: 10.1007/s12094-024-03678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) remains a significant global health challenge, with high mortality rates and limited treatment options. Tumor vaccines have emerged as a potential therapeutic approach, aiming to stimulate the immune system to specifically target tumor cells. METHODS This study screened 283 clinical trials registered on ClinicalTrials.gov through July 31, 2023. After excluding data that did not meet the inclusion criteria, a total of 108 trials were assessed. Data on registered number, study title, study status, vaccine types, study results, conditions, interventions, outcome measures, sponsor, collaborators, drug target, phases, enrollment, start date, completion date and locations were extracted and analyzed. RESULTS The number of vaccines clinical trials for NSCLC has continued to increase in recent years, the majority of which were conducted in the United States. Most of the clinical trials were at stages ranging from Phase I to Phase II. Peptide-based vaccines accounted for the largest proportion. Others include tumor cell vaccines, DNA/RNA vaccines, viral vector vaccines, and DC vaccines. Several promising tumor vaccine candidates have shown encouraging results in early-phase clinical trials. However, challenges such as heterogeneity of tumor antigens and immune escape mechanisms still need to be addressed. CONCLUSION Tumor vaccines represent a promising avenue in the treatment of NSCLC. Ongoing clinical trials are crucial for optimizing vaccine strategies and identifying the most effective combinations. Further research is needed to overcome existing limitations and translate these promising findings into clinical practice, offering new hope for NSCLC patients.
Collapse
Affiliation(s)
- Xiaomu Wang
- Department of Pharmacy, Xiangyang Key Laboratory of Special Preparation of Vitiligo, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yunping Niu
- Department of Laboratory Medicine, The First People's Hospital of Xiangyang, Xiangyang, Hubei, China
| | - Fang Bian
- Department of Pharmacy, Xiangyang Key Laboratory of Special Preparation of Vitiligo, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
| |
Collapse
|
5
|
Chen Z, Song H, Tang J, Liu J, Xia L. New direction: identification of immunoinflammatory subtypes and potential therapeutic targets for cholangiocarcinoma. Discov Oncol 2024; 15:726. [PMID: 39612077 DOI: 10.1007/s12672-024-01628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CHOL) is a rare cancer with low survival rates. Despite advances in precision medicine targeting molecular subtypes, the immune subtypes of CHOL remain poorly understood. This study aimed to identify immune subtypes of CHOL and investigate their implications in the metabolic regulation of macrophage functions in inflammation. METHODS We conducted a comprehensive analysis of transcriptome and single-cell sequencing data from multiple databases to classify the immune subtypes of CHOL. Immune cell infiltration within the tumor microenvironment (TME) and the metabolic pathways involved in macrophage activation and polarization were also analyzed. RESULTS Two distinct immune subtypes, immune-infiltrated CS1 and immune-depleted CS2, were identified in CHOL. CS1 exhibited a highly active TME with substantial immune cell infiltration, including macrophages, and activation of immune-related signaling pathways, such as inflammatory and interferon pathways. In contrast, CS2 was characterized by a deficiency in immune components and poorer prognosis. Metabolic regulation of macrophages, particularly the downregulation of oxidative phosphorylation in CS1, suggested a shift towards glycolysis as an energy source for activated macrophages, contributing to the immune-responsive phenotype observed in CS1. Additionally, the oncogenic role of DLX5 in CHOL was revealed, with potential impacts on macrophage functions in inflammation. CONCLUSION This study provides insights into immune subtype classification, novel biomarker identification, and the metabolic regulation of macrophage functions in CHOL. Understanding macrophage metabolic reprogramming within immune subtypes may contribute to the development of targeted immunotherapies for CHOL.
Collapse
Affiliation(s)
- Zhixuan Chen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Honghu Song
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Junrui Tang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Jiao Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Lina Xia
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
6
|
Zhai Q, Wang Z, Tang H, Hu S, Chen M, Ji P. Identification of ferroptosis-associated tumor antigens as the potential targets to prevent head and neck squamous cell carcinoma. Genes Dis 2024; 11:101212. [PMID: 39286654 PMCID: PMC11403004 DOI: 10.1016/j.gendis.2024.101212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 09/19/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSC) represents nearly 90% of all head and neck tumors. The current treatment modality for HNSC patients primarily involves surgical intervention and radiotherapy, but its therapeutic efficacy remains limited. The mRNA vaccine based on tumor antigens seems promising for cancer treatment. Ferroptosis, a novel form of cell death, is linked to tumor progression and cancer immunotherapy. Nevertheless, the effectiveness of ferroptosis-associated tumor antigens in treating HNSC remains uncertain. In this study, we identified three ferroptosis-associated tumor antigens, namely caveolin1 (CAV1), ferritin heavy chain (FTH1), and solute carrier 3A2 (SLC3A2), as being overexpressed and mutated based on data obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. These antigens were strongly associated with poor prognosis and infiltration of antigen-presenting cells in HNSC. We further identified two ferroptosis subtypes (FS1 and FS2) with distinct molecular, cellular, and clinical properties to identify antigen-sensitive individuals. Our findings indicate that FS1 exhibits an immune "hot" phenotype, whereas FS2 displays an immune "cold" phenotype. Additionally, differential expression of immunogenic cell death modulators and immune checkpoints was observed between these two immune subtypes. Further exploration of the HNSC's immune landscape revealed significant heterogeneity among individual patients. Our findings suggest that CAV1, FTH1, and SLC3A2 are potential targets to prevent HNSC in FS2 patients. Overall, our research reveals the potential of ferroptosis-associated mRNA vaccines for HNSC and identifies an effective patient population for vaccine treatment.
Collapse
Affiliation(s)
- Qiming Zhai
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Zhiwei Wang
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Han Tang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Shanshan Hu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Meihua Chen
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| |
Collapse
|
7
|
Suzuki N, Shindo Y, Nakajima M, Tsunedomi R, Nagano H. Current status of vaccine immunotherapy for gastrointestinal cancers. Surg Today 2024; 54:1279-1291. [PMID: 38043066 DOI: 10.1007/s00595-023-02773-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/14/2023] [Indexed: 12/05/2023]
Abstract
Recent advances in tumor immunology and molecular drug development have ushered in a new era of cancer immunotherapy. Immunotherapy has shown promising results for several types of tumors, such as advanced melanoma, non-small cell lung cancer, renal cell carcinoma, bladder cancers, and refractory Hodgkin's lymphoma. Similarly, efforts have been made to develop immunotherapies such as adoptive T-cell transplantation, peptide vaccines, and dendritic cell vaccines, specifically for gastrointestinal tumors. However, before the advent of immune checkpoint inhibitors, immunotherapy did not work as well as expected. In this article, we review immunotherapy, focusing on cancer vaccines for gastrointestinal tumors, which generally target eliciting tumor-specific CD8 + cytotoxic T lymphocytes (CTLs). We also review various vaccine therapies and describe the relationship between vaccines and adjuvants. Finally, we discuss prospects for the combination of immunotherapy with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Nobuaki Suzuki
- Department of Gastroenterological, Breast, and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast, and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Masao Nakajima
- Department of Gastroenterological, Breast, and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast, and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast, and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| |
Collapse
|
8
|
Lin X, Liu J, Zhang N, Zhou D, Liu Y. Decoding the immune microenvironment: unveiling CD8 + T cell-related biomarkers and developing a prognostic signature for personalized glioma treatment. Cancer Cell Int 2024; 24:331. [PMID: 39354483 PMCID: PMC11443942 DOI: 10.1186/s12935-024-03517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Gliomas are aggressive brain tumors with poor prognosis. Understanding the tumor immune microenvironment (TIME) in gliomas is essential for developing effective immunotherapies. This study aimed to identify TIME-related biomarkers in glioma using bioinformatic analysis of RNA-seq data. METHODS In this study, we employed weighted gene co-expression network analysis (WGCNA) on bulk RNA-seq data to identify TIME-related genes. To identify prognostic genes, we performed univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses. Based on these genes, we constructed a prognostic signature and delineated risk groups. To validate the prognostic signature, external validation was conducted. RESULTS CD8 + T cell infiltration was strongly correlated with glioma patient prognosis. We identified 115 CD8 + T cell-related genes through integrative analysis of bulk-seq data. CDCA5, KIF11, and KIF4A were found to be significant immune-related genes (IRGs) associated with overall survival in glioma patients and served as independent prognostic factors. We developed a prognostic nomogram that incorporated these genes, age, gender, and grade, providing a reliable tool for clinicians to predict patient survival probabilities. The nomogram's predictions were supported by calibration plots, further validating its accuracy. CONCLUSION In conclusion, our study identifies CD8 + T cell infiltration as a strong predictor of glioma patient outcomes and highlights the prognostic value of genes. The developed prognostic nomogram, incorporating these genes along with clinical factors, provides a reliable tool for predicting patient survival probabilities and has important implications for personalized treatment decisions in glioma.
Collapse
Affiliation(s)
- Xiaofang Lin
- Laboratory Department of Zengcheng Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianqiang Liu
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ni Zhang
- Department of Physical Medicine and Rehabilitation, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, 510080, China.
| | - Dexiang Zhou
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, 510080, China.
| | - Yakang Liu
- Department of Physical Medicine and Rehabilitation, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Dadgar N, Arunachalam AK, Hong H, Phoon YP, Arpi-Palacios JE, Uysal M, Wehrle CJ, Aucejo F, Ma WW, Melenhorst JJ. Advancing Cholangiocarcinoma Care: Insights and Innovations in T Cell Therapy. Cancers (Basel) 2024; 16:3232. [PMID: 39335203 PMCID: PMC11429565 DOI: 10.3390/cancers16183232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a rare and aggressive malignancy originating from the bile ducts, with poor prognosis and limited treatment options. Traditional therapies, such as surgery, chemotherapy, and radiation, have shown limited efficacy, especially in advanced cases. Recent advancements in immunotherapy, particularly T cell-based therapies like chimeric antigen receptor T (CAR T) cells, tumor-infiltrating lymphocytes (TILs), and T cell receptor (TCR)-based therapies, have opened new avenues for improving outcomes in CCA. This review provides a comprehensive overview of the current state of T cell therapies for CCA, focusing on CAR T cell therapy. It highlights key challenges, including the complex tumor microenvironment and immune evasion mechanisms, and the progress made in preclinical and clinical trials. The review also discusses ongoing clinical trials targeting specific CCA antigens, such as MUC1, EGFR, and CD133, and the evolving role of precision immunotherapy in enhancing treatment outcomes. Despite significant progress, further research is needed to optimize these therapies for solid tumors like CCA. By summarizing the most recent clinical results and future directions, this review underscores the promising potential of T cell therapies in revolutionizing CCA treatment.
Collapse
Affiliation(s)
- Neda Dadgar
- Cleveland Clinic Foundation, Enterprise Cancer Institute, Translational Hematology & Oncology Research, Cleveland, OH 44114, USA;
| | - Arun K. Arunachalam
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Hanna Hong
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Yee Peng Phoon
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Jorge E. Arpi-Palacios
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Melis Uysal
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Chase J. Wehrle
- Cleveland Clinic Foundation, Digestive Diseases & Surgery Institute, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Federico Aucejo
- Cleveland Clinic Foundation, Digestive Diseases & Surgery Institute, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Wen Wee Ma
- Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH 44106, USA;
| | - Jan Joseph Melenhorst
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| |
Collapse
|
10
|
Lin WW, Zhao WJ, Ou GY. Molecular subtypes based on immunologic and epithelial-mesenchymal transition gene sets reveal tumor immune microenvironment characteristics and implications for immunotherapy of patients with glioma. Heliyon 2024; 10:e36986. [PMID: 39319121 PMCID: PMC11419884 DOI: 10.1016/j.heliyon.2024.e36986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
The tumor immune microenvironment (TIME) significantly influences cancer progression and treatment. This study sought to uncover novel TIME-related glioma biomarkers to advance antitumor immunotherapies by integrating data from sequencing of bulk RNA as well as scRNA. Immunologic and epithelial-mesenchymal transition (EMT) characteristics were used to classify glioma patients into two immune subtypes (ISs) and two EMT subtypes (ESs). Patients in IS1 and ES1, characterized by high immune infiltration and low stemness scores, exhibited poor clinical outcomes and limited responsiveness to immunotherapy. A new risk signature was developed using 16 genes and validated in independent glioma cohorts. Among these, HAVCR2, IL18, LAGLS9, and PTPN6 emerged as hub genes, with IL18 identified as a potential independent indicator. The upregulation of IL18 in high-grade gliomas and U-251 MG cells aligned with bioinformatics analysis. These insights deepen the understanding of TIME-related mechanisms in glioma and highlight potential therapeutic targets, offering a theoretical foundation for effective antitumor immunotherapies in glioma.
Collapse
Affiliation(s)
- Wen-Wen Lin
- Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China
| | - Wei-Jiang Zhao
- Cell biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Guan-Yong Ou
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
11
|
Zanuso V, Tesini G, Valenzi E, Rimassa L. New systemic treatment options for advanced cholangiocarcinoma. JOURNAL OF LIVER CANCER 2024; 24:155-170. [PMID: 39113642 PMCID: PMC11449581 DOI: 10.17998/jlc.2024.08.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024]
Abstract
Cholangiocarcinoma (CCA) is a rare and aggressive cancer, mostly diagnosed at advanced or metastatic stage, at which point systemic treatment represents the only therapeutic option. Chemotherapy has been the backbone of advanced CCA treatment. More recently, immunotherapy has changed the therapeutic landscape, as immune checkpoint inhibitors have yielded the first improvement in survival and currently, the addition of either durvalumab or pembrolizumab to standard of care cisplatin plus gemcitabine represents the new first-line treatment option. However, the use of immunotherapy in subsequent lines has not demonstrated its efficacy and therefore, it is not approved, except for pembrolizumab in the selected microsatellite instability-high population. In addition, advances in comprehensive genomic profiling have led to the identification of targetable genetic alterations, such as isocitrate dehydrogenase 1 (IDH1), fibroblast growth factor receptor 2 (FGFR2), human epidermal growth factor receptor 2 (HER2), proto-oncogene B-Raf (BRAF), neurotrophic tropomyosin receptor kinase (NTRK), rearranged during transfection (RET), Kirsten rat sarcoma virus (KRAS), and mouse double minute 2 homolog (MDM2), thus favoring the development of a precision medicine approach in previously treated patients. Despite these advances, the use of molecularly driven agents is limited to a subgroup of patients. This review aims to provide an overview of the newly approved systemic therapies, the ongoing studies, and future research challenges in advanced CCA management.
Collapse
Affiliation(s)
- Valentina Zanuso
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giulia Tesini
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Elena Valenzi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
12
|
Xu Z, Wu Y, Chen X, Jin B. Identification of tumor-antigen signatures and immune subtypes for messenger RNA vaccine selection in advanced clear cell renal cell carcinoma. Surgery 2024; 176:785-797. [PMID: 38851900 DOI: 10.1016/j.surg.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Advanced clear cell renal cell carcinoma still lacks reliable diagnostic and prognostic biomarkers. Recently, tumor vaccines targeting specific molecules have been proposed as a promising treatment in mitigating tumor progression, which was rekindled under the background of the COVID-19 pandemic. However, the application of messenger RNA vaccine against advanced clear cell renal cell carcinoma antigens remains stagnant, and no subgroup of patients deemed suitable for vaccination has been extensively studied or validated. Our study aims to explore novel advanced clear cell renal cell carcinoma antigen signatures to select suitable patients for vaccination. METHODS Gene expression profiles of advanced clear cell renal cell carcinoma samples and their corresponding clinical data were retrieved from The Cancer Genome Atlas. The least absolute shrinkage and selection operator model was applied to develop signatures to stratify patients with advanced clear cell renal cell carcinoma. Receiver operating characteristic analysis was used to compare the prognostic accuracy of each factor. Tumor Immune Estimation Resource was used to visualize the relationship between the proportion of antigen-presenting cells and the expression of filtered genes. The "CIBERSORT" and "WGCNA" R Packages were employed to ascertain disparities in immune infiltration levels between advanced clear cell renal cell carcinoma subgroups. The Search Tools for the Retrieval of Interacting Genes database and Cytoscape were used to construct the protein-protein interaction network. CCK-8 and colony formation assays were included in the invitro experiment. RESULTS In total, 244 potential tumor antigens were identified. Using the least absolute shrinkage and selection operator Cox regression, 21 tumor antigens were selected for developing a risk evaluation signature. The risk score signature can be a useful tool to predict the outcome of advanced clear cell renal cell carcinoma patients. According to the differential clinical, molecular, and immune-related genes, we divided advanced clear cell renal cell carcinoma patients into the immune "cold" subtype and immune "hot" subtype. By developing a logistic score, the immune subtype signature can better distinguish a patient more likely to be immune "cold" subtype or immune "hot" subtype. Interestingly, patients with high risk scores had a higher proportion of immune "hot" subtype than those with a low risk score. Furthermore, the prognostic value was significantly improved when combining risk score and immune subtype. Distinct immune landscapes and signal pathways were observed between different tumor subtypes. Finally, novel tumor antigens related to oxidative stress were identified. CONCLUSION The tumor-antigens-based risk score and immune subtype signatures identified potentially effective neo-antigens for advanced clear cell renal cell carcinoma messenger RNA vaccine development, and patients with low risk scores and immune "cold" subtype tumors are more prone to benefit from messenger RNA vaccination. Furthermore, our study highlights the significant role of oxidative stress in determining the efficacy of the messenger RNA vaccine.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Engineering Research Center for Bladder Tumor Innovation Diagnosis and Treatment, Hangzhou, China.
| | - Yunfei Wu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Engineering Research Center for Bladder Tumor Innovation Diagnosis and Treatment, Hangzhou, China
| | - Xiaoyi Chen
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Engineering Research Center for Bladder Tumor Innovation Diagnosis and Treatment, Hangzhou, China
| | - Baiye Jin
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Engineering Research Center for Bladder Tumor Innovation Diagnosis and Treatment, Hangzhou, China
| |
Collapse
|
13
|
Zhang G, Li J, Li G, Zhang J, Yang Z, Yang L, Jiang S, Wang J. Strategies for treating the cold tumors of cholangiocarcinoma: core concepts and future directions. Clin Exp Med 2024; 24:193. [PMID: 39141161 PMCID: PMC11324771 DOI: 10.1007/s10238-024-01460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
Cholangiocarcinoma (CCA) is a rare type of digestive tract cancer originating from the epithelial cells of the liver and biliary tract. Current treatment modalities for CCA, such as chemotherapy and radiation therapy, have demonstrated limited efficacy in enhancing survival rates. Despite the revolutionary potential of immunotherapy in cancer management, its application in CCA remains restricted due to the minimal infiltration of immune cells in these tumors, rendering them cold and unresponsive to immune checkpoint inhibitors (ICIs). Cancer cells within cold tumors deploy various mechanisms for evading immune attack, thus impeding clinical management. Recently, combination immunotherapy has become increasingly essential to comprehend the mechanisms underlying cold tumors to enhance a deficient antitumor immune response. Therefore, a thorough understanding of the knowledge on the combination immunotherapy of cold CCA is imperative to leverage the benefits of immunotherapy in treating patients. Moreover, gut microbiota plays an essential role in the immunotherapeutic responses in CCA. In this review, we summarize the current concepts of immunotherapy in CCA and clarify the intricate dynamics within the tumor immune microenvironment (TIME) of CCA. We also delve into the evasion mechanisms employed by CCA tumors against the anti-tumor immune responses. The context of combination immunotherapies in igniting cold tumors of CCA and the critical function of gut microbiota in prompting immune responses have also been annotated. Furthermore, we have proposed future directions in the realm of CCA immunotherapy, aiming to improve the clinical prognosis of CCA patients.
Collapse
Affiliation(s)
- GuanBo Zhang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - JinSong Li
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Gang Li
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Jie Zhang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Zhi Yang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Lin Yang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - ShiJie Jiang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - JiaXing Wang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
14
|
Chen B, Yang Y, Wang X, Yang W, Lu Y, Wang D, Zhuo E, Tang Y, Su J, Tang G, Shao S, Gu K. mRNA vaccine development and applications: A special focus on tumors (Review). Int J Oncol 2024; 65:81. [PMID: 38994758 PMCID: PMC11251742 DOI: 10.3892/ijo.2024.5669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/20/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer is characterized by unlimited proliferation and metastasis, and traditional therapeutic strategies usually result in the acquisition of drug resistance, thus highlighting the need for more personalized treatment. mRNA vaccines transfer the gene sequences of exogenous target antigens into human cells through transcription and translation to stimulate the body to produce specific immune responses against the encoded proteins, so as to enable the body to obtain immune protection against said antigens; this approach may be adopted for personalized cancer therapy. Since the recent coronavirus pandemic, the development of mRNA vaccines has seen substantial progress and widespread adoption. In the present review, the development of mRNA vaccines, their mechanisms of action, factors influencing their function and the current clinical applications of the vaccine are discussed. A focus is placed on the application of mRNA vaccines in cancer, with the aim of highlighting unique advances and the remaining challenges of this novel and promising therapeutic approach.
Collapse
Affiliation(s)
- Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yipin Yang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xinyi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wenzhi Yang
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - You Lu
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Daoyue Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Enba Zhuo
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yanchao Tang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Junhong Su
- Department of Rehabilitation, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Guozheng Tang
- Department of Orthopedics, Lu'an Hospital of Anhui Medical University, Lu'an, Anhui 237008, P.R. China
| | - Song Shao
- Department of Orthopedics, Lu'an Hospital of Anhui Medical University, Lu'an, Anhui 237008, P.R. China
| | - Kangsheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
15
|
Chen L, Yin G, Wang Z, Liu Z, Sui C, Chen K, Song T, Xu W, Qi L, Li X. A predictive radiotranscriptomics model based on DCE-MRI for tumor immune landscape and immunotherapy in cholangiocarcinoma. Biosci Trends 2024; 18:263-276. [PMID: 38853000 DOI: 10.5582/bst.2024.01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
This study aims to determine the predictive role of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) derived radiomic model in tumor immune profiling and immunotherapy for cholangiocarcinoma. To perform radiomic analysis, immune related subgroup clustering was first performed by single sample gene set enrichment analysis (ssGSEA). Second, a total of 806 radiomic features for each phase of DCE-MRI were extracted by utilizing the Python package Pyradiomics. Then, a predictive radiomic signature model was constructed after a three-step features reduction and selection, and receiver operating characteristic (ROC) curve was employed to evaluate the performance of this model. In the end, an independent testing cohort involving cholangiocarcinoma patients with anti-PD-1 Sintilimab treatment after surgery was used to verify the potential application of the established radiomic model in immunotherapy for cholangiocarcinoma. Two distinct immune related subgroups were classified using ssGSEA based on transcriptome sequencing. For radiomic analysis, a total of 10 predictive radiomic features were finally identified to establish a radiomic signature model for immune landscape classification. Regarding to the predictive performance, the mean AUC of ROC curves was 0.80 in the training/validation cohort. For the independent testing cohort, the individual predictive probability by radiomic model and the corresponding immune score derived from ssGSEA was significantly correlated. In conclusion, radiomic signature model based on DCE-MRI was capable of predicting the immune landscape of chalangiocarcinoma. Consequently, a potentially clinical application of this developed radiomic model to guide immunotherapy for cholangiocarcinoma was suggested.
Collapse
Affiliation(s)
- Lu Chen
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Guotao Yin
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ziyang Wang
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Nuclear Medicine, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zifan Liu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chunxiao Sui
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Kun Chen
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Tianqiang Song
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lisha Qi
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
16
|
Yu J, Yuan Z, Liu J, Deng L, Zhao Y, Wang S, Tang E, Yang X, Li N, An J, Wu L. CCZ1 Accelerates the Progression of Cervical Squamous Cell Carcinoma by Promoting MMP2/MMP17 Expression. Biomedicines 2024; 12:1468. [PMID: 39062041 PMCID: PMC11274717 DOI: 10.3390/biomedicines12071468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Cervical squamous cell carcinoma (CSCC) represents a significant global health concern among females. Identifying new biomarkers and therapeutic targets is pivotal for improving the prognosis of CSCC. This study investigates the prognostic relevance of CCZ1 in CSCC and elucidates its downstream pathways and targets using a combination of bioinformatics analysis and experimental validation. Transcriptomic analysis of 239 CSCC and 3 normal cervical samples from The Cancer Genome Atlas database reveals a marked upregulation of CCZ1 mRNA levels in CSCC, and elevated CCZ1 mRNA levels were associated with poor prognosis. Immunohistochemical analysis of clinical samples also confirmed these findings. Furthermore, functional assays, including Cell Counting Kit-8, colony formation, Transwell, and flow cytometry, elucidated the influence of CCZ1 on CSCC cell proliferation, migration, invasion, and cell cycle progression. Remarkably, CCZ1 knockdown suppressed CSCC progression both in vitro and in vivo. Mechanistically, CCZ1 knockdown downregulated MMP2 and MMP17 expression. Restoring MMP2 or MMP17 expression rescued phenotypic alterations induced by CCZ1 knockdown. Hence, CCZ1 promotes CSCC progression by upregulating MMP2 and MMP17 expression, emerging as a novel biomarker in CSCC and presenting potential as a therapeutic target in CSCC.
Collapse
Affiliation(s)
- Jing Yu
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (J.Y.); (Z.Y.); (J.L.); (L.D.); (Y.Z.); (S.W.); (E.T.); (X.Y.); (N.L.)
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhenlong Yuan
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (J.Y.); (Z.Y.); (J.L.); (L.D.); (Y.Z.); (S.W.); (E.T.); (X.Y.); (N.L.)
| | - Jing Liu
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (J.Y.); (Z.Y.); (J.L.); (L.D.); (Y.Z.); (S.W.); (E.T.); (X.Y.); (N.L.)
| | - Lu Deng
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (J.Y.); (Z.Y.); (J.L.); (L.D.); (Y.Z.); (S.W.); (E.T.); (X.Y.); (N.L.)
| | - Yuting Zhao
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (J.Y.); (Z.Y.); (J.L.); (L.D.); (Y.Z.); (S.W.); (E.T.); (X.Y.); (N.L.)
| | - Shengnan Wang
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (J.Y.); (Z.Y.); (J.L.); (L.D.); (Y.Z.); (S.W.); (E.T.); (X.Y.); (N.L.)
| | - Enyu Tang
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (J.Y.); (Z.Y.); (J.L.); (L.D.); (Y.Z.); (S.W.); (E.T.); (X.Y.); (N.L.)
| | - Xi Yang
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (J.Y.); (Z.Y.); (J.L.); (L.D.); (Y.Z.); (S.W.); (E.T.); (X.Y.); (N.L.)
| | - Ning Li
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (J.Y.); (Z.Y.); (J.L.); (L.D.); (Y.Z.); (S.W.); (E.T.); (X.Y.); (N.L.)
| | - Jusheng An
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (J.Y.); (Z.Y.); (J.L.); (L.D.); (Y.Z.); (S.W.); (E.T.); (X.Y.); (N.L.)
| | - Lingying Wu
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (J.Y.); (Z.Y.); (J.L.); (L.D.); (Y.Z.); (S.W.); (E.T.); (X.Y.); (N.L.)
| |
Collapse
|
17
|
Du Q, Yu Z, Zhang Z, Yang J, Jonckheere N, Shi S, Wang W, Xu J, Liu J, Yu X. Identification of pancreatic adenocarcinoma immune subtype associated with tumor neoantigen from aberrant alternative splicing. J Gastrointest Oncol 2024; 15:1179-1197. [PMID: 38989416 PMCID: PMC11231849 DOI: 10.21037/jgo-24-340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) is referred to as an immunologically "cold" tumor that responds poorly to immunotherapy. A fundamental theory that explains the low immunogenicity of PAAD is the dramatically low tumor mutation burden (TMB) of PAAD tumors, which fails to induce sufficient immune response. Alternative splicing of pre-mRNA, which could alter the proteomic diversity of many cancers, has been reported to be involved in neoantigen production. Therefore, we aim to identify novel PAAD antigens and immune subtypes through systematic bioinformatics research. Methods Data for splicing analysis were downloaded from The Cancer Genome Atlas (TCGA) SpliceSeq database. Among the available algorithms, we chose CIBERSORT to evaluate the immune cell distribution among PAADs. The TCGA-PAAD expression matrix was used to construct a co-expression network. Single-cell analysis was performed based on the Seurat workflow. Results Integrated analysis of aberrantly upregulated genes, alternatively spliced genes, genes associated with nonsense-mediated RNA decay (NMD) factors, antigen presentation and overall survival (OS) in TCGA-PAAD revealed that PLEC is a promising neoantigen for PAAD-targeted therapy. We identified a C2 TCGA-PAAD subtype that had better prognosis and more CD8+ T-cell infiltration. We propose a novel immune subtyping system for PAAD to indicate patient prognosis and opportunities for immunotherapy, such as immune checkpoint (ICP) inhibitors. Conclusions In conclusion, the present study used a transcriptome-guided approach to screen neoantigen candidates based on alternative splicing, NMD factors, and antigen-presenting signatures for PAAD. A prognosis model with guidance of immunotherapy will aid in patient selection for appropriate treatment.
Collapse
Affiliation(s)
- Qiong Du
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhan Yu
- State Key Laboratory of Radiation Medicine and Protection/Proton & Heavy Ion Medical Research Center, Soochow University, Suzhou, China
- Radiation Oncology Department, Shanghai Concord Medical Cancer Center, Shanghai, China
| | - Zifeng Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jianhui Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Nicolas Jonckheere
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Zhang M, Xu G, Xi C, Yu E. Identification of immune-related tumor antigens and immune subtypes in osteosarcoma. Heliyon 2024; 10:e32231. [PMID: 38912457 PMCID: PMC11190600 DOI: 10.1016/j.heliyon.2024.e32231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Purpose The development of tumor vaccines has become a hot topic in immunotherapy for osteosarcoma (OS); however, more tumor antigens with stronger immunogenicity need to be identified. Methods We downloaded six sets of gene expression profile data from online databases. The overexpressed genes were analyzed, intersected, and used to calculate the immune infiltration abundance in the TARGET OS dataset based on their expression matrix. Potential tumor antigen genes were identified based on whether they exhibited a high correlation with the antigen-presenting cells (APCs). A total of 1330 immune-related genes (IRGs) from the ImmPort website were retrieved based on their expression, and the Consensus Cluster method was used to obtain immune subtypes of the OS samples. Prognosis, immune microenvironment, and sensitivity to drugs were compared among the immune subtypes. Results In total, 680 genes were overexpressed in at least two datasets, of which TREM2, TNFRSF12A, and THY1 were positively correlated with different APCs. Based on the expression matrix of 1330 IRGs in TARGET-OS, two immune subtypes, IS1 and IS2, were identified. The prognosis of the IS1 subtype was better than that of IS2, the expression of immune checkpoint (ICP)-related genes was higher in patients with the IS1 subtype, and immune cell infiltration and sensitivity to 16 drugs were generally higher in IS1 subtype patients. Conclusion We identified three APC-correlated genes that can be considered to code for potential novel tumor antigens for OS vaccines. Two immune subtypes in patients with OS were identified to implement personalized treatments using mRNA vaccines.
Collapse
Affiliation(s)
- Mingshu Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gongping Xu
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunyang Xi
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Enming Yu
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Song J, Zhang Y, Zhou C, Zhan J, Cheng X, Huang H, Mao S, Zong Z. The dawn of a new Era: mRNA vaccines in colorectal cancer immunotherapy. Int Immunopharmacol 2024; 132:112037. [PMID: 38599100 DOI: 10.1016/j.intimp.2024.112037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Colorectal cancer (CRC) is a typical cancer that accounts for 10% of all new cancer cases annually and nearly 10% of all cancer deaths. Despite significant progress in current classical interventions for CRC, these traditional strategies could be invasive and with numerous adverse effects. The poor prognosis of CRC patients highlights the evident and pressing need for more efficient and targeted treatment. Novel strategies regarding mRNA vaccines for anti-tumor therapy have also been well-developed since the successful application for the prevention of COVID-19. mRNA vaccine technology won the 2023 Nobel Prize in Physiology or Medicine, signaling a new direction in human anti-cancer treatment: mRNA medicine. As a promising new immunotherapy in CRC and other multiple cancer treatments, the mRNA vaccine has higher specificity, better efficacy, and fewer side effects than traditional strategies. The present review outlines the basics of mRNA vaccines and their advantages over other vaccines and informs an available strategy for developing efficient mRNA vaccines for CRC precise treatment. In the future, more exploration of mRNA vaccines for CRC shall be attached, fostering innovation to address existing limitations.
Collapse
Affiliation(s)
- Jingjing Song
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; School of Ophthalmology and Optometry, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yujun Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; Huankui Academy, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Chulin Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; The Second Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jianhao Zhan
- Huankui Academy, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Xifu Cheng
- School of Ophthalmology and Optometry, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Haoyu Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China
| | - Shengxun Mao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China.
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
20
|
Zhao Z, Xing N, Guo H, Li J, Sun G. Identification of Lower Grade Glioma Antigens Based on Ferroptosis Status for mRNA Vaccine Development. Pharmgenomics Pers Med 2024; 17:105-123. [PMID: 38623558 PMCID: PMC11018127 DOI: 10.2147/pgpm.s449230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/16/2024] [Indexed: 04/17/2024] Open
Abstract
Purpose mRNA vaccines represent a promising and innovative strategy within the realm of cancer immunotherapy. However, their efficacy in treating lower-grade glioma (LGG) requires evaluation. Ferroptosis exhibits close associations with the initiation, evolution, and suppression of cancer. In this study, we explored the landscape of the ferroptosis-associated tumor microenvironment to facilitate the development of mRNA vaccines for LGG patients. Patients and Methods Genomic and clinical data of the LGG patients was obtained from the Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. Ferroptosis-related tumor antigens were identified based on differential expression, mutation status, correlation with antigen-presenting cells, and prognosis, relevance to immunogenic cell death (ICD). Antigen expression levels in LGG specimens and cell lines were validated using real time-polymerase chain reaction (RT-PCR). Consensus clustering was employed for patient classification. The immune landscapes of ferroptosis subtypes were further characterized, including immune responses, prognostic ability, tumor microenvironment, and tumor-related signatures. Results Five tumor antigens, namely, HOTAIR, IDO1, KIF20A, NR5A2, and RRM2 were identified in LGG. RT-PCR demonstrated higher expression of these genes in LGG compared to the control. Twelve gene modules and four ferroptosis subtypes (FS1-FS4) of LGG were defined. FS2 and FS4, characterized as "cold" tumors due to their decreased tumor mutation burden (TMB) and immune checkpoint proteins (ICPs), were deemed appropriate candidates for the mRNA vaccine. Conclusion HOTAIR, IDO1, KIF20A, NR5A2, and RRM2 were identified as promising candidate antigens for the development of an LGG mRNA vaccine, particularly offering potential benefits to FS2 and FS4 patients.
Collapse
Affiliation(s)
- Zhenxiang Zhao
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Na Xing
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Hao Guo
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Jianfeng Li
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| |
Collapse
|
21
|
Zhou F, Huang L, Li S, Yang W, Chen F, Cai Z, Liu X, Xu W, Lehto V, Lächelt U, Huang R, Shi Y, Lammers T, Tao W, Xu ZP, Wagner E, Xu Z, Yu H. From structural design to delivery: mRNA therapeutics for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20210146. [PMID: 38855617 PMCID: PMC11022630 DOI: 10.1002/exp.20210146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/15/2023] [Indexed: 06/11/2024]
Abstract
mRNA therapeutics have emerged as powerful tools for cancer immunotherapy in accordance with their superiority in expressing all sequence-known proteins in vivo. In particular, with a small dosage of delivered mRNA, antigen-presenting cells (APCs) can synthesize mutant neo-antigens and multi-antigens and present epitopes to T lymphocytes to elicit antitumor effects. In addition, expressing receptors like chimeric antigen receptor (CAR), T-cell receptor (TCR), CD134, and immune-modulating factors including cytokines, interferons, and antibodies in specific cells can enhance immunological response against tumors. With the maturation of in vitro transcription (IVT) technology, large-scale and pure mRNA encoding specific proteins can be synthesized quickly. However, the clinical translation of mRNA-based anticancer strategies is restricted by delivering mRNA into target organs or cells and the inadequate endosomal escape efficiency of mRNA. Recently, there have been some advances in mRNA-based cancer immunotherapy, which can be roughly classified as modifications of the mRNA structure and the development of delivery systems, especially the lipid nanoparticle platforms. In this review, the latest strategies for overcoming the limitations of mRNA-based cancer immunotherapies and the recent advances in delivering mRNA into specific organs and cells are summarized. Challenges and opportunities for clinical applications of mRNA-based cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Feng Zhou
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lujia Huang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shiqin Li
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Wenfang Yang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Fangmin Chen
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Wujun Xu
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Vesa‐Pekka Lehto
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Ulrich Lächelt
- Department of Pharmaceutical SciencesUniversity of ViennaViennaAustria
| | - Rongqin Huang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug DeliveryMinistry of Education, Fudan UniversityShanghaiChina
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachenGermany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachenGermany
| | - Wei Tao
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Zhi Ping Xu
- Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhenChina
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for NanoscienceLudwig‐Maximilians‐UniversitätMunichGermany
| | - Zhiai Xu
- School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
| | - Haijun Yu
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
22
|
Lin Q, Liang L, Wang Q, Wang X, You Y, Rong Y, Zhou Y, Guo X. Identification of Novel Tumor Pyroptosis-Related Antigens and Pyroptosis Subtypes for Developing mRNA Vaccines in Pancreatic Adenocarcinoma. Biomedicines 2024; 12:726. [PMID: 38672082 PMCID: PMC11048009 DOI: 10.3390/biomedicines12040726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND As one of the important components of immunotherapies, mRNA vaccines have displayed promising clinical outcomes in solid tumors. Nonetheless, their efficacy remains unclear in pancreatic adenocarcinoma (PAAD). Given the interaction of pyroptosis with anticancer immunity, our study aims to identify pyroptosis-related antigens for mRNA vaccine development and discern eligible candidates for vaccination. METHODS Utilizing gene expression data from TCGA and ICGC, we integrated RNA-seq data and compared genetic alterations through cBioPortal. Differential gene expressions were integrated using GEPIA. Relationships between immune cell abundance and tumor antigens were analyzed and visualized via TIMER. WGCNA facilitated the clustering of pyroptosis-related genes, identification of hub genes, and pathway enrichment analyses. Pyroptosis landscape was depicted through graph learning-based dimensional reduction. RESULTS Four overexpressed and mutant pyroptosis-related genes associated with poor prognosis were identified as potential antigens for mRNA vaccines in PAAD, including ANO6, PAK2, CHMP2B, and RAB5A. These genes displayed positive associations with antigen-presenting cells. PAAD patients were stratified into three pyroptosis subtypes. Notably, the PS3 subtype, characterized by a lower mutation count and TMB, exhibited "cold" immunological traits and superior survival compared to other subtypes. The pyroptosis landscape exhibited considerable heterogeneity among individuals. Furthermore, the turquoise module emerged as an independent prognostic indicator and patients with high expressions of hub genes might not be suitable candidates for mRNA vaccination. CONCLUSIONS In PAAD, ANO6, PAK2, CHMP2B, and RAB5A are prospective pyroptosis-related antigens for mRNA vaccine development, which holds potential benefits for patients classified as PS3 and those with diminished hub gene expressions, providing insights into personalized mRNA vaccine strategies.
Collapse
Affiliation(s)
- Qiaowei Lin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (Q.L.); (Y.R.)
| | - Li Liang
- Medical Oncology department of Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen 361015, China;
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (Q.W.); (X.W.); (Y.Y.)
| | - Qing Wang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (Q.W.); (X.W.); (Y.Y.)
| | - Xiao Wang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (Q.W.); (X.W.); (Y.Y.)
| | - Yang You
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (Q.W.); (X.W.); (Y.Y.)
| | - Yefei Rong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (Q.L.); (Y.R.)
| | - Yuhong Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (Q.W.); (X.W.); (Y.Y.)
| | - Xi Guo
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (Q.W.); (X.W.); (Y.Y.)
| |
Collapse
|
23
|
Yan T, Wang L. Discovering ferroptosis-associated tumor antigens and ferroptosis subtypes in pancreatic adenocarcinoma to facilitate mRNA vaccine development. Heliyon 2024; 10:e27194. [PMID: 38463885 PMCID: PMC10923709 DOI: 10.1016/j.heliyon.2024.e27194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is an aggressive, heterogeneous malignancy. We studied the potential of ferroptosis-related tumor vaccines for PAAD treatment. Ferroptosis-related genes, gene expression profiles, and clinical information were extracted from the FerrDB, UCSC Xena, and International Cancer Genome Consortium databases. Differential expression levels and prognostic indices were calculated, genetic alterations and correlations with immune-infiltrating cells were explored, and consensus clustering analysis was performed to identify ferroptosis subtypes and gene modules. Immune enrichment scores were calculated using gene set enrichment analysis, and gene modules were screened using weighted gene co-expression network analysis. The ferroptosis subtype distribution was visualized using graph learning-based dimensionality reduction analysis of the Monocle package with a Gaussian distribution. We identified four ferroptosis-related tumor antigens, AGPS, KDM5A, NRAS, and OSBPL9, which were associated with pancreatic cancer prognosis and antigen-presenting cell infiltration. We determined three minor ferroptosis subtypes, with different clinical prognosis and tumor immune status. Of the subtypes, FS3 may be more suitable for mRNA therapy. We constructed a PAAD ferroptosis landscape to identify the ferroptosis status of patients and predict their prognosis. Finally, we found that the eigengene of the green module was an independent prognostic factor, with a significantly better prognosis in the high-score group than in the low-score group. In conclusion, we identified four ferroptosis-related genes as targets for mRNA vaccines and three ferroptosis subtypes, providing a theoretical basis for the anti-PAAD mRNA vaccine and defining suitable patients for vaccination.
Collapse
Affiliation(s)
- Ting Yan
- Department of General Surgery, Second Affiliated People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Lingxiang Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
24
|
Zhao Y, Yang M, Feng J, Wang X, Liu Y. Advances in immunotherapy for biliary tract cancers. Chin Med J (Engl) 2024; 137:524-532. [PMID: 37646139 DOI: 10.1097/cm9.0000000000002759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Indexed: 09/01/2023] Open
Abstract
ABSTRACT Biliary tract cancers (BTC), a heterogeneous disease with poor prognosis, including gallbladder cancer (GBC), intrahepatic cholangiocarcinoma (ICC), and extrahepatic cholangiocarcinoma (ECC). Although surgery is currently the primary regimen to treat BTC, most BTC patients are diagnosed at an advanced stage and miss the opportunity of surgical eradication. As a result, non-surgical therapy serves as the main intervention for advanced BTC. In recent years, immunotherapy has emerged as one of the most promising therapies in a number of solid cancers, and it includes immune checkpoint inhibitors (ICIs) monotherapy or combined therapy, tumor vaccines, oncolytic virus immunotherapy, adoptive cell therapy (ACT), and cytokine therapy. However, these therapies have been practiced in limited clinical settings in patients with BTC. In this review, we focus on the discussion of latest advances of immunotherapy in BTC and update the progress of multiple current clinical trials with different immunotherapies.
Collapse
Affiliation(s)
- Yuhao Zhao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai 200082, China
| | - Mao Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai 200082, China
| | - Jiayi Feng
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai 200082, China
| | - Xu'an Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai 200082, China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease, Shanghai 200082, China
| |
Collapse
|
25
|
Wilbur HC, Azad NS. Immunotherapy for the treatment of biliary tract cancer: an evolving landscape. Ther Adv Med Oncol 2024; 16:17588359241235799. [PMID: 38449562 PMCID: PMC10916472 DOI: 10.1177/17588359241235799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
Biliary tract cancers (BTCs), consisting of intrahepatic and extrahepatic cholangiocarcinoma and gallbladder cancer, are an aggressive, heterogeneous malignancy. They are most often diagnosed in the locally advanced or metastatic setting, at which point treatment consists of systemic therapy or best supportive care. Our understanding of the tumor microenvironment and the molecular classification has led to the identification of targetable mutations, such as isocitrate dehydrogenase 1 and fibroblast growth factor receptor 2. Despite the identification of these genomic alterations, until recently, little advancement had been made in the first-line setting for advanced BTC. While immunotherapy (IO) has revolutionized the treatment of many malignancies, the use of IO in BTC had yielded limited results prior to TOPAZ-1. In this review, we discuss the systemic therapeutic advances for BTC over the past decade, the rationale for immunotherapy in BTC, prior trials utilizing IO in BTC, and current and emerging immune-based therapeutic options. We further analyze the culmination of these advances, which resulted in the approval of durvalumab with gemcitabine and cisplatin for the first-line treatment of BTC per TOPAZ-1. We also discuss the results of KEYNOTE-966, which similarly reported improved clinical outcomes with the use of pembrolizumab in combination with gemcitabine and cisplatin.
Collapse
Affiliation(s)
- Helen Catherine Wilbur
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Nilofer S. Azad
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 401 N. Broadway, Baltimore, MD 21287, USA
| |
Collapse
|
26
|
Li J, Li Z, Yang W, Pan J, You H, Yang L, Zhang X. Development and verification of a novel immunogenic cell death-related signature for predicting the prognosis and immune infiltration in triple-negative breast cancer. Cancer Rep (Hoboken) 2024; 7:e2007. [PMID: 38425247 PMCID: PMC10905160 DOI: 10.1002/cnr2.2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/01/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Insufficient understanding of the pathogenesis and tumor immunology of triple-negative breast cancer (TNBC) has limited the development of immunotherapy. The importance of tumor microenvironment (TME) in immunotyping, prognostic assessment and immunotherapy efficacy of cancer has been emphasized, however, potential immunogenic cell death (ICD) related genes function in TME of TNBC has been rarely investigated. AIMS To initially explore the role and related mechanisms of ICD in TNBC, especially the role played in the TME of TNBC, and to identify different relevant subtypes based on ICD, and then develop an ICD-related risk score to predict each TNBC patient TME status, prognosis and immunotherapy response. METHODS AND RESULTS In this study, we identified distinct ICD-related modification patterns based on 158 TNBC cases in the TCGA-TNBC cohort. We then investigated the possible correlation between ICD-related modification patterns and TME cell infiltration characteristics in TNBC. By using univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analysis, we created a risk scoring system (ICD score) to quantifiably evaluate the impact of ICD-related modification patterns in individual TNBC patient. Two different ICD-related modification patterns were found with significant differences in immune infiltration. Lower ICD score was correlated with higher immune infiltration, tumor mutational burden and significantly enriched in immune-related pathways, indicating a strong ability to activate immune response, which might account for relatively favorable prognosis of TNBC patients and could serve as a predictor to select suitable candidates for immunotherapy. We used two independent cohorts, GSE58812 cohort and Metabric cohort to validate prognosis and immunohistochemistry for preliminary in vitro validation. CONCLUSION This study evidenced that the ICD-related modification patterns might exert pivotal roles in the immune infiltration landscape of TNBC and ICD score might act as potential predictors of prognostic assessment and immunotherapy response. This research provides unique insights for individualize immune treatment strategies and promising immunotherapy candidates screening.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Gastrointestinal and Gland SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Zhengtian Li
- Department of Bone and Joint SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Wenkang Yang
- Department of Gastrointestinal and Gland SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Jianmin Pan
- Department of Gastrointestinal and Gland SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Huazong You
- Department of Gastrointestinal and Gland SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Lixiang Yang
- Department of Gastrointestinal and Gland SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Xiaodong Zhang
- Department of Gastrointestinal and Gland SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| |
Collapse
|
27
|
Al-Hawary SIS, Jasim SA, Hjazi A, Oghenemaro EF, Kaur I, Kumar A, Al-Ani AM, Alwaily ER, Redhee AH, Mustafa YF. Nucleic acid-based vaccine for ovarian cancer cells; bench to bedside. Cell Biochem Funct 2024; 42:e3978. [PMID: 38515237 DOI: 10.1002/cbf.3978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Ovarian cancer continues to be a difficult medical issue that affects millions of individuals worldwide. Important platforms for cancer immunotherapy include checkpoint inhibitors, chimeric antigen receptor T cells, bispecific antibodies, cancer vaccines, and other cell-based treatments. To avoid numerous infectious illnesses, conventional vaccinations based on synthetic peptides, recombinant subunit vaccines, and live attenuated and inactivated pathogens are frequently utilized. Vaccine manufacturing processes, however, are not entirely safe and carry a significant danger of contaminating living microorganisms. As a result, the creation of substitute vaccinations is required for both viral and noninfectious illnesses, including cancer. Recently, there has been testing of nucleic acid vaccines, or NAVs, as a cancer therapeutic. Tumor antigens (TAs) are genetically encoded by DNA and mRNA vaccines, which the host uses to trigger immune responses against ovarian cancer cells that exhibit the TAs. Despite being straightforward, safe, and easy to produce, NAVs are not currently thought to be an ideal replacement for peptide vaccines. Some obstacles to this strategy include selecting the appropriate therapeutic agents (TAs), inadequate immunogenicity, and the immunosuppressive characteristic of ovarian cancer. We focus on strategies that have been employed to increase NAVs' effectiveness in the fight against ovarian cancer in this review.
Collapse
Affiliation(s)
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Anbar, Iraq
- Biotechnology Department, College of Applied Science, Fallujah University, Fallujah, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Nigeria
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after The First President of Russia, Yekaterinburg, Russia
| | | | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Huseen Redhee
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
28
|
Xu L, Cao Y, Xu Y, Li R, Xu X. Redox-Responsive Polymeric Nanoparticle for Nucleic Acid Delivery and Cancer Therapy: Progress, Opportunities, and Challenges. Macromol Biosci 2024; 24:e2300238. [PMID: 37573033 DOI: 10.1002/mabi.202300238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Cancer development and progression of cancer are closely associated with the activation of oncogenes and loss of tumor suppressor genes. Nucleic acid drugs (e.g., siRNA, mRNA, and DNA) are widely used for cancer therapy due to their specific ability to regulate the expression of any cancer-associated genes. However, nucleic acid drugs are negatively charged biomacromolecules that are susceptible to serum nucleases and cannot cross cell membrane. Therefore, specific delivery tools are required to facilitate the intracellular delivery of nucleic acid drugs. In the past few decades, a variety of nanoparticles (NPs) are designed and developed for nucleic acid delivery and cancer therapy. In particular, the polymeric NPs in response to the abnormal redox status in cancer cells have garnered much more attention as their potential in redox-triggered nanostructure dissociation and rapid intracellular release of nucleic acid drugs. In this review, the important genes or signaling pathways regulating the abnormal redox status in cancer cells are briefly introduced and the recent development of redox-responsive NPs for nucleic acid delivery and cancer therapy is systemically summarized. The future development of NPs-mediated nucleic acid delivery and their challenges in clinical translation are also discussed.
Collapse
Affiliation(s)
- Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Yuan Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| |
Collapse
|
29
|
Chen Y, Zhang C, Li Y, Tan X, Li W, Tan S, Liu G. Discovery of lung adenocarcinoma tumor antigens and ferroptosis subtypes for developing mRNA vaccines. Sci Rep 2024; 14:3219. [PMID: 38331967 PMCID: PMC10853282 DOI: 10.1038/s41598-024-53622-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024] Open
Abstract
mRNA vaccines are becoming a feasible alternative for treating cancer. To develop mRNA vaccines against LUAD, potential antigens were identified and LUAD ferroptosis subtypes distinguished for selecting appropriate patients. The genome expression omnibus, cancer genome atlas (TCGA) and FerrDB were used to collect gene expression profiles, clinical information, and the genes involved in ferroptosis, respectively. cBioPortal was used to visualize and compare genetic alterations, GEPIA2 to calculate prognostic factors of the selected antigens, and TIMER to visualize the relationship between potential antigens and tumor immune cell infiltration. Consensus clustering analysis was utilized to identify ferroptosis subtypes and their prognostic value assessed by Log-rank and cox regression tests. The modules of ferroptosis-related gene screening were conducted by weight gene co-expression network analysis. The LUAD ferroptosis landscape was visualized through dimensionality reduction and graph learning. Six tumor antigens had obvious LUAD-mutations, positively correlated with different antigen-presenting cells, and might induce tumor cell ferroptosis. LUAD patients were stratified into three ferroptosis subtypes (FS1, FS2, and FS3) according to diverse molecular, cellular, and clinical characteristics. FS3 showed the highest tumor mutation burden and the most somatic mutations, deemed potential indicators of mRNA vaccine effectiveness. Moreover, different ferroptosis subtypes expressed distinct immune checkpoints and immunogenic cell death modulators. AGPS, NRAS, MTDH, PANX1, NOX4, and PPARD are potentially suitable for mRNA vaccinations against LUAD, specifically in patients with FS3 tumors. This study defines vaccination candidates and establishes a theoretical basis for LUAD mRNA vaccinations.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Daxue East Road No.166, Nanning, 530007, Guangxi, China
| | - Changwen Zhang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Daxue East Road No.166, Nanning, 530007, Guangxi, China
| | - Yu Li
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Daxue East Road No.166, Nanning, 530007, Guangxi, China
| | - Xiaoyu Tan
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Daxue East Road No.166, Nanning, 530007, Guangxi, China
| | - Wentao Li
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Daxue East Road No.166, Nanning, 530007, Guangxi, China
| | - Sen Tan
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Daxue East Road No.166, Nanning, 530007, Guangxi, China
| | - Guangnan Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Daxue East Road No.166, Nanning, 530007, Guangxi, China.
| |
Collapse
|
30
|
Zhuang H, Tang C, Lin H, Zhang Z, Chen X, Wang W, Wang Q, Tan W, Yang L, Xie Z, Wang B, Chen B, Shang C, Chen Y. A novel risk score system based on immune subtypes for identifying optimal mRNA vaccination population in hepatocellular carcinoma. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00921-1. [PMID: 38315287 DOI: 10.1007/s13402-024-00921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
PURPOSE Although mRNA vaccines have shown certain clinical benefits in multiple malignancies, their therapeutic efficacies against hepatocellular carcinoma (HCC) remains uncertain. This study focused on establishing a novel risk score system based on immune subtypes so as to identify optimal HCC mRNA vaccination population. METHODS GEPIA, cBioPortal and TIMER databases were utilized to identify candidate genes for mRNA vaccination in HCC. Subsequently, immune subtypes were constructed based on the candidate genes. According to the differential expressed genes among various immune subtypes, a risk score system was established using machine learning algorithm. Besides, multi-color immunofluorescence of tumor tissues from 72 HCC patients were applied to validate the feasibility and efficiency of the risk score system. RESULTS Twelve overexpressed and mutated genes associated with poor survival and APCs infiltration were identified as potential candidate targets for mRNA vaccination. Three immune subtypes (e.g. IS1, IS2 and IS3) with distinct clinicopathological and molecular profiles were constructed according to the 12 candidate genes. Based on the immune subtype, a risk score system was developed, and according to the risk score from low to high, HCC patients were classified into four subgroups on average (e.g. RS1, RS2, RS3 and RS4). RS4 mainly overlapped with IS3, RS1 with IS2, and RS2+RS3 with IS1. ROC analysis also suggested the significant capacity of the risk score to distinguish between the three immune subtypes. Higher risk score exhibited robustly predictive ability for worse survival, which was further independently proved by multi-color immunofluorescence of HCC samples. Notably, RS4 tumors exhibited an increased immunosuppressive phenotype, higher expression of the twelve potential candidate targets and increased genome altered fraction, and therefore might benefit more from vaccination. CONCLUSIONS This novel risk score system based on immune subtypes enabled the identification of RS4 tumor that, due to its highly immunosuppressive microenvironment, may benefit from HCC mRNA vaccination.
Collapse
Affiliation(s)
- Hongkai Zhuang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Chenwei Tang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Han Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zedan Zhang
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Xinming Chen
- Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516400, China
| | - Wentao Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qingbin Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wenliang Tan
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lei Yang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhiqin Xie
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Bingkun Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Bo Chen
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Changzhen Shang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Yajin Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
31
|
Cheng B, Lai Y, Huang H, Peng S, Tang C, Chen J, Luo T, Wu J, He H, Wang Q, Huang H. MT1G, an emerging ferroptosis-related gene: A novel prognostic biomarker and indicator of immunotherapy sensitivity in prostate cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:927-941. [PMID: 37972062 DOI: 10.1002/tox.23997] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/24/2023] [Accepted: 10/07/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Prostate cancer is a leading cause of cancer-related deaths in men worldwide. Despite advances in treatment strategies, there is still a need for novel therapeutic targets and approaches. Ferroptosis has emerged as a critical process in the development and progression of several cancers, including prostate cancer (PCA). In this study, we investigate the role of MT1G, a gene implicated in immune responses and ferroptosis, in the pathogenesis of PCA. Our objective is to elucidate its prognostic significance and its impact on the tumor microenvironment, while exploring its potential in enhancing the sensitivity to immune checkpoint inhibitor (ICI) therapy. METHODS We utilized a combination of in silico analysis and experimental techniques to investigate the role of MT1G in PCA. First, we analyzed large-scale genomic datasets to assess the expression pattern and prognostic significance of MT1G in PCA patients. Subsequently, we performed functional assays to explore the impact of MT1G in PCA and its potential involvement in modulating immune responses. In addition, we conducted in vivo experiments to evaluate the effect of MT1G on tumor growth and response to ICI therapy. RESULTS Our analysis revealed that MT1G expression is significantly downregulated in PCA tissues compared to normal prostate tissues and is associated with poor prognosis. Furthermore, MT1G overexpression inhibited the growth of PCA cells in vitro and in vivo. Importantly, we found that MT1G regulates the tumor microenvironment by modulating immune cell infiltration and inhibiting immunosuppressive factors. Furthermore, our study reveals a significant correlation between MT1G expression levels and the response to immune checkpoint inhibitor (ICI) therapy in prostate cancer (PCA) patients, as MT1G upregulation leads to an increase in PDL-1 expression. These findings underscore the potential of MT1G as a promising predictive biomarker for ICI therapy response in PCA patients. CONCLUSION Our study elucidates the pivotal role played by MT1G in the pathogenesis of prostate cancer (PCA) and its profound implications for prognosis. Moreover, it raises the intriguing possibility that MT1G could pave the way for novel therapeutic approaches in PCA treatment. This potential arises from its ability to orchestrate immune infiltration within the tumor microenvironment, consequently enhancing sensitivity to immune checkpoint inhibitor (ICI) therapy. Therefore, our findings hold substantial promise for advancing our comprehension of PCA and exploring innovative therapeutic strategies.
Collapse
Affiliation(s)
- Bisheng Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiming Lai
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shirong Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chen Tang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junxiu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianlong Luo
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jilin Wu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haixia He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Gorji L, Brown ZJ, Pawlik TM. Advances and considerations in the use of immunotherapies for primary hepato-biliary malignancies. Surg Oncol 2024; 52:102031. [PMID: 38128340 DOI: 10.1016/j.suronc.2023.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) comprise the two most common primary liver malignancies. Curative treatment options often include hepatectomy or liver transplantation; however, many patients present with advanced disease that is not amenable to surgical management. In turn, many patients are treated with systemic or targeted therapy. The tumor microenvironment (TME) is a complex network of immune cells and somatic cells, which can foster an environment for disease development and progression, as well as susceptibility and resistance to systemic therapeutic agents. In particular, the TME is comprised of both immune and non-immune cells. Immune cells such as T lymphocytes, natural killer (NK) cells, macrophages, and neutrophils reside in the TME and can affect tumorigenesis, disease progression, as well as response to therapy. Given the importance of the immune system, there are many emerging approaches for cancer immunotherapy. We herein provide a review the latest data on immunotherapy for primary HCC and BTC relative to the TME.
Collapse
Affiliation(s)
- Leva Gorji
- Department of Surgery, Kettering Health Dayton, Dayton, OH, USA.
| | - Zachary J Brown
- Department of Surgery, Division of Surgical Oncology, New York University - Long Island, Mineola, NY, 11501, USA.
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Cancer Hospital, Columbus, OH, USA.
| |
Collapse
|
33
|
Wang J, Li X, Xiao G, Desai J, Frentzas S, Wang ZM, Xia Y, Li B. CD74 is associated with inflamed tumor immune microenvironment and predicts responsiveness to PD-1/CTLA-4 bispecific antibody in patients with solid tumors. Cancer Immunol Immunother 2024; 73:36. [PMID: 38280003 PMCID: PMC10822011 DOI: 10.1007/s00262-023-03604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/03/2023] [Indexed: 01/29/2024]
Abstract
INTRODUCTION Cadonilimab (AK104) is a first-in-class tetravalent bispecific antibody that targets both PD-1 and CTLA-4, showing a manageable safety profile and favorable clinical benefits. This study aimed to identify the biomarkers of clinical response and explore the immune response within the tumor microenvironment upon the AK104 therapy in advanced solid tumors. MATERIAL AND METHODS Gene expression profiles of paired pre- and post-treatment tumor tissues from twenty-one patients were analyzed. The association of gene expression levels with either clinical efficacy or prognosis was evaluated and subsequently validated with published datasets using log-rank for Kaplan-Meier estimates. Comparative immune profile analyses of tumor microenvironment before and after AK104 treatment were conducted. The visualization of tumor-infiltrating lymphocytes was performed using multiplex immunohistochemistry. The predictive value of CD74 was further validated with protein expression by immunohistochemistry. RESULTS Baseline CD74 gene expression was associated with favorable patient outcomes (overall survival [OS], HR = 0.33, 95% CI 0.11-1.03, p = 0.0463), which was further confirmed with the published datasets. Tumors with high CD74 gene expression at baseline were more likely to exhibit an immune-inflamed microenvironment. AK104 efficiently enhanced the infiltration of immune cells in the tumor microenvironment. Additionally, high CD74 protein expression (≥ 10% of the tumor area occupied by CD74 stained immune cells) at baseline was associated with better progressive-free survival (HR = 0.21, 95% CI 0.06-0.68, p = 0.0065) and OS (HR = 0.35, 95% CI 0.12-1.08, p = 0.0615). CONCLUSIONS Our findings demonstrate that CD74 is a promising predictive biomarker for AK104 therapeutic response in advanced solid tumors. Trial registration number NCT03261011.
Collapse
Affiliation(s)
- Jianghua Wang
- Research and Development Department, Akeso Biopharma Inc, Zhongshan, Guangdong, China
| | - Xiaoting Li
- Research and Development Department, Akeso Biopharma Inc, Zhongshan, Guangdong, China
| | - Guanxi Xiao
- Research and Development Department, Akeso Biopharma Inc, Zhongshan, Guangdong, China
| | - Jayesh Desai
- Department of Oncology, Sir Peter MacCallum, The University of Melbourne, Parkville, VIC, Australia
| | - Sophia Frentzas
- Department of Medical Oncology, Monash Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Zhongmin Maxwell Wang
- Procurement and Sourcing Department and Clinical Operation Department, Akeso Biopharma Inc, Zhongshan, Guangdong, China
| | - Yu Xia
- President Office, Akeso Biopharma Inc, Zhongshan, Guangdong, China
| | - Baiyong Li
- Research and Development Department, Akeso Biopharma Inc, Zhongshan, Guangdong, China.
| |
Collapse
|
34
|
Zhou F, Wang M, Wang Z, Li W, Lu X. Screening of novel tumor-associated antigens for lung adenocarcinoma mRNA vaccine development based on pyroptosis phenotype genes. BMC Cancer 2024; 24:28. [PMID: 38166691 PMCID: PMC10763439 DOI: 10.1186/s12885-023-11757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
This study aimed to identify new pyroptosis-associated tumor antigens for use in mRNA vaccines and the screening of sensitive LUAD populations suitable for vaccination. The association between tumor immune infiltrating cell abundance and potential tumor antigens was investigated and visualized using the analysis modules of gene expression, clinical outcomes, and somatic copy number variation. In addition, the pyroptosis-related genes (PRGs) were clustered, the relative pyroptosis subtypes (PSs) and gene modules were identified, and the prognostic value of the PSs was examined. The expression of key PRGs in two lung adenocarcinoma cell lines was verified by RT-qPCR. Four tumor pyroptosis-associated antigens, CARD8, NAIP, NLRP1, and NLRP3, were screened as potential candidates for LUAD mRNA vaccine development. In the construction of consensus clusters for PRGs, two PSs, PS1 and PS2, were classified, in which patients with PS1 LUAD had a better prognosis. In contrast, patients with PS2 LUAD may have better responsiveness to mRNA vaccine treatment. The key PRGs can be regarded as biomarkers to predict the LUAD prognosis and identify patients suitable for mRNA vaccines. The RT-qPCR results showed that the expression levels of CSMD3, LRP1B, MUC16 and TTN were significantly increased in the two lung adenocarcinoma cell lines, while the expression levels of CARD8, TP53 and ZFHX4 were significantly reduced. The antigens CARD8, NAIP, NLRP1, and NLRP3, which are associated with tumor pyroptosis, could be candidate molecules for LUAD mRNA vaccine development. Patients with PS2 LUAD may be suitable candidates for mRNA vaccine treatment.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Thoracic Surgery, Tianjin Chest Hospital of Tianjin University, 261 Taierzhuang South Road, Jinnan District, Tianjin, 300222, China
| | - Meng Wang
- Department of Thoracic Surgery, Tianjin Chest Hospital of Tianjin University, 261 Taierzhuang South Road, Jinnan District, Tianjin, 300222, China
| | - Zheng Wang
- Department of Thoracic Surgery, Tianjin Chest Hospital of Tianjin University, 261 Taierzhuang South Road, Jinnan District, Tianjin, 300222, China
| | - Wei Li
- Department of Thoracic Surgery, Tianjin Chest Hospital of Tianjin University, 261 Taierzhuang South Road, Jinnan District, Tianjin, 300222, China
| | - Xike Lu
- Department of Thoracic Surgery, Tianjin Chest Hospital of Tianjin University, 261 Taierzhuang South Road, Jinnan District, Tianjin, 300222, China.
| |
Collapse
|
35
|
Yu G, Lin Y, Wang J, Zhou L, Lu Y, Fei X, Gu X, Song S, Wang J, Liu Y, Yang Q, Zhan M, Seo SY, Xu B. Screening of tumor antigens and immunogenic cell death landscapes of prostate adenocarcinoma for exploration of mRNA vaccine. Expert Rev Vaccines 2024; 23:830-844. [PMID: 39193620 DOI: 10.1080/14760584.2024.2396086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/17/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND In this study, effective antigens of mRNA vaccine were excavated from the perspective of ICD, and ICD subtypes of PRAD were further distinguished to establish an ICD landscape, thereby determining suitable vaccine recipients. RESEARCH DESIGN AND METHODS TCGA and MSKCC databases were applied to acquire RNA-seq data and corresponding clinical data of 554 and 131 patients, respectively. GEPIA was employed to measure prognostic indices. Then, a comparison of genetic alterations was performed utilizing cBioPortal, and correlation of identified ICD antigens with immune infiltrating cells was analyzed employing TIMER. Moreover, ICD subtypes were identified by means of consensus cluster, and ICD landscape of PRAD was depicted utilizing graph learning-based dimensional reduction. RESULTS In total, 4 PRAD antigens were identified in PRAD, including FUS, LMNB2, RNPC3, and ZNF700, which had association with adverse prognosis and infiltration of APCs. PRAD patients were classified as two ICD subtypes based on their differences in molecular, cellular, and clinical features. Furthermore, ICD modulators and immune checkpoints were also differentially expressed between two ICD subtype tumors. Finally, the ICD landscape of PRAD showed substantial heterogeneity among individual patients. CONCLUSIONS In summary, the research may provide a theoretical foundation for developing mRNA vaccine against PRAD as well as determining appropriate vaccine recipients.
Collapse
Affiliation(s)
- Guopeng Yu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuansheng Lin
- Department of Intensive Care Unit, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Jianqing Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lin Zhou
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yingying Lu
- University Hospital, Department of Logistics Support, East China University of Science and Technology, Shanghai, China
| | - Xiang Fei
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea
| | - Xin Gu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shangqing Song
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiangyi Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yushan Liu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Yang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Seung-Yong Seo
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Hadfield MJ, DeCarli K, Bash K, Sun G, Almhanna K. Current and Emerging Therapeutic Targets for the Treatment of Cholangiocarcinoma: An Updated Review. Int J Mol Sci 2023; 25:543. [PMID: 38203714 PMCID: PMC10779232 DOI: 10.3390/ijms25010543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Cholangiocarcinoma is a malignancy of the bile ducts that is often associated with late diagnosis, poor overall survival, and limited treatment options. The standard of care therapy for cholangiocarcinoma has been cytotoxic chemotherapy with modest improvements in overall survival with the addition of immune checkpoint inhibitors. The discovery of actionable mutations has led to the advent of targeted therapies against FGFR and IDH-1, which has expanded the treatment landscape for this patient population. Significant efforts have been made in the pre-clinical space to explore novel immunotherapeutic approaches, as well as antibody-drug conjugates. This review provides an overview of the current landscape of treatment options, as well as promising future therapeutic targets.
Collapse
Affiliation(s)
- Matthew J. Hadfield
- Division of Hematology/Oncology, Department of Medicine, The Warren Alpert School of Medicine of Brown University, Providence, RI 02806, USA; (M.J.H.); (G.S.)
| | - Kathryn DeCarli
- Division of Hematology/Oncology, Department of Medicine, The Warren Alpert School of Medicine of Brown University, Providence, RI 02806, USA; (M.J.H.); (G.S.)
| | - Kinan Bash
- Department of Graduate Studies, University of New England, Biddeford, ME 04005, USA;
| | - Grace Sun
- Division of Hematology/Oncology, Department of Medicine, The Warren Alpert School of Medicine of Brown University, Providence, RI 02806, USA; (M.J.H.); (G.S.)
| | - Khaldoun Almhanna
- Division of Hematology/Oncology, Department of Medicine, The Warren Alpert School of Medicine of Brown University, Providence, RI 02806, USA; (M.J.H.); (G.S.)
| |
Collapse
|
37
|
Yang S, Zou R, Dai Y, Hu Y, Li F, Hu H. Tumor immune microenvironment and the current immunotherapy of cholangiocarcinoma (Review). Int J Oncol 2023; 63:137. [PMID: 37888583 PMCID: PMC10631767 DOI: 10.3892/ijo.2023.5585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a highly heterogeneous malignancy originating from the epithelial system of the bile ducts, and its incidence in recent years is steadily increasing. The immune microenvironment of CCA is characterized by diversity and complexity, with a substantial presence of cancer‑associated fibroblasts and immune cell infiltration, which plays a key role in regulating the distinctive biological behavior of cholangiocarcinoma, including tumor growth, angiogenesis, lymphangiogenesis, invasion and metastasis. Despite the notable success of immunotherapy in the treatment of solid tumors in recent years, patients with CCA have responded poorly to immune checkpoint inhibitor therapy. The interaction of tumor cells with cellular components of the immune microenvironment can regulate the activity and function of immune cells and form an immunosuppressive microenvironment, which may cause ineffective immunotherapy. Therefore, the components of the tumor immune microenvironment appear to be novel targets for immune therapies. Combination therapy focusing on immune checkpoint inhibitors is a promising and valuable first‑line or translational treatment approach for intractable biliary tract malignancies. The present review discusses the compositional characteristics and regulatory factors of the CCA immune microenvironment and the possible immune escape mechanisms. In addition, a summary of the advances in immunotherapy for CCA is also provided. It is hoped that the present review may function as a valuable reference for the development of novel immunotherapeutic strategies for CCA.
Collapse
Affiliation(s)
- Siqi Yang
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ruiqi Zou
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yushi Dai
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yafei Hu
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fuyu Li
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Haijie Hu
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
38
|
Dong Y, Yu X, Song H, Chen Q, Zheng B, Ji X, Xu M, Liu J, Sun X, Wang Q, Ren R, Lu H. Identification of molecular subtypes and prognostic model to reveal immune infiltration and predict prognosis based on immunogenic cell death-related genes in lung adenocarcinoma. Cell Cycle 2023; 22:2566-2583. [PMID: 38164943 PMCID: PMC10936658 DOI: 10.1080/15384101.2023.2300591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/18/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024] Open
Abstract
Immunogenic cell death (ICD) has been increasingly indicated to be related to caners. However, ICD's role in Lung adenocarcinoma (LUAD) is still not well investigated. Clinical data along with associated mRNA expression profiles from LUAD cases were collected in TCGA and GEO databases. 13 ICD-related genes were identified. Relations of ICD-related genes expression with prognosis of patients, tumor immune microenvironment (TIME) was analyzed. Then, candidate genes were identified and the prognostic signature were constructed. Afterwards, one nomogram incorporating those chosen clinical data together with risk scores were built. Finally, the effect of HSP90AA1, one gene of the prognostic signature, on LUAD cell were analyzed. Two clusters were identified, which were designated as the ICD-high or -low subtype according to ICD-related genes levels. ICD-high subgroup showed good prognosis, high immune cell infiltration degrees, and enhanced immune response signaling activity compared with ICD-low subtype. Moreover, we established and verified the risk signature based on ICD-related genes. High risk group predicted poor prognosis of LUAD independently and presented negative association with immune score and immune status. Furthermore, nomogram contributed to the accurate prediction of LUAD prognostic outcome. Finally, HSP90AA1 levels were remarkably elevated within tumor cells in comparison with healthy pulmonary epithelial cells. HSP90α, HSP90AA1 protein product, promoted growth, migration, and invasion of LUAD cells. Molecular subtypes and prognostic model were identified by incorporating ICD-related genes, and it was related to TIME and might be adopted for the accurate prediction of LUAD prognosis.
Collapse
Affiliation(s)
- Yinying Dong
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Yu
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hao Song
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qingfeng Chen
- Breast Disease Diagnosis and Treatment Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Xiaomeng Ji
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingjin Xu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jian Liu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangyin Sun
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiuxiao Wang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruimei Ren
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haijun Lu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
39
|
Zhang YJ, Yi DH. CDK1-SRC Interaction-Dependent Transcriptional Activation of HSP90AB1 Promotes Antitumor Immunity in Hepatocellular Carcinoma. J Proteome Res 2023; 22:3714-3729. [PMID: 37949475 DOI: 10.1021/acs.jproteome.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
This study aimed to analyze multiomics data and construct a regulatory network involving kinases, transcription factors, and immune genes in hepatocellular carcinoma (HCC) prognosis. The researchers used transcriptomic, proteomic, and clinical data from TCGA and GEO databases to identify immune genes associated with HCC. Statistical analysis, meta-analysis, and protein-protein interaction analyses were performed to identify key immune genes and their relationships. In vitro and in vivo experiments validated the CDK1-SRC-HSP90AB1 network's effects on HCC progression and antitumor immunity. A prognostic risk model was developed using clinicopathological features and immune infiltration. The immune genes LPA, BIRC5, HSP90AB1, ROBO1, and CCL20 were identified as the key prognostic factors. The CDK1-SRC-HSP90AB1 network promoted HCC cell proliferation and migration, with HSP90AB1 being transcriptionally activated by the CDK1-SRC interaction. Manipulating SRC or HSP90AB1 reversed the effects of CDK1 and SRC on HCC. The CDK1-SRC-HSP90AB1 network also influenced HCC tumor formation and antitumor immunity. Overall, this study highlights the importance of the CDK1-SRC-HSP90AB1 network as a crucial immune-regulatory network in the HCC prognosis.
Collapse
Affiliation(s)
- Yi-Jie Zhang
- Department of Hepatobiliary and Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang 110001, P. R. China
- The Key Laboratory of Organ Transplantation of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, P. R. China
| | - De-Hui Yi
- Department of Hepatobiliary and Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang 110001, P. R. China
- The Key Laboratory of Organ Transplantation of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, P. R. China
| |
Collapse
|
40
|
Wei Y, Zheng L, Yang X, Luo Y, Yi C, Gou H. Identification of Immune Subtypes and Candidate mRNA Vaccine Antigens in Small Cell Lung Cancer. Oncologist 2023; 28:e1052-e1064. [PMID: 37399175 PMCID: PMC10628581 DOI: 10.1093/oncolo/oyad193] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/12/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have demonstrated promising outcomes in small cell lung cancer (SCLC), but not all patients benefit from it. Thus, developing precise treatments for SCLC is a particularly urgent need. In our study, we constructed a novel phenotype for SCLC based on immune signatures. METHODS We clustered patients with SCLC hierarchically in 3 publicly available datasets according to the immune signatures. ESTIMATE and CIBERSORT algorithm were used to evaluate the components of the tumor microenvironment. Moreover, we identified potential mRNA vaccine antigens for patients with SCLC, and qRT-PCR were performed to detect the gene expression. RESULTS We identified 2 SCLC subtypes and named Immunity High (Immunity_H) and Immunity Low (Immunity_L). Meanwhile, we obtained generally consistent results by analyzing different datasets, suggesting that this classification was reliable. Immunity_H contained the higher number of immune cells and a better prognosis compared to Immunity_L. Gene-set enrichment analysis revealed that several immune-related pathways such as cytokine-cytokine receptor interaction, programmed cell death-Ligand 1 expression and programmed cell death-1 checkpoint pathway in cancer were hyperactivated in the Immunity_H. However, most of the pathways enriched in the Immunity_L were not associated with immunity. Furthermore, we identified 5 potential mRNA vaccine antigens of SCLC (NEK2, NOL4, RALYL, SH3GL2, and ZIC2), and they were expressed higher in Immunity_L, it indicated that Immunity_L maybe more suitable for tumor vaccine development. CONCLUSIONS SCLC can be divided into Immunity_H and Immunity_L subtypes. Immunity_H may be more suitable for treatment with ICIs. NEK2, NOL4, RALYL, SH3GL2, and ZIC2 may be act as potential antigens for SCLC.
Collapse
Affiliation(s)
- Yuanfeng Wei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Lingnan Zheng
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Xi Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yong Luo
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Cheng Yi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Hongfeng Gou
- Gastric Cancer Center, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
41
|
Zhang A, Ji Q, Sheng X, Wu H. mRNA vaccine in gastrointestinal tumors: Immunomodulatory effects and immunotherapy. Biomed Pharmacother 2023; 166:115361. [PMID: 37660645 DOI: 10.1016/j.biopha.2023.115361] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Gastrointestinal tumors remain a significant healthcare burden worldwide, necessitating the development of innovative therapeutic strategies. mRNA vaccines have emerged as a promising approach in cancer immunotherapy, harnessing the immune system's potential to recognize and eliminate tumor cells. mRNA vaccines offer several advantages, including their ability to elicit both innate and adaptive immune responses, ease of production, and adaptability to different tumor types. In the context of gastrointestinal tumors, mRNA vaccines hold great potential as a therapeutic strategy. In this review, we will delve into the immunomodulatory mechanisms and immunotherapy strategies of mRNA vaccines in gastrointestinal tumors. Additionally, we will discuss the challenges and ongoing research efforts in optimizing mRNA vaccine development, delivery, and stability. By understanding the potential of mRNA vaccines in addressing the unmet medical need of gastrointestinal tumors, we aim to pave the way for improved treatment strategies and better patient outcomes.
Collapse
Affiliation(s)
- Ao Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun 130012, China
| | - Qingming Ji
- Department of Intensive Care Medicine, The First Hospital of Jilin University, Changchun 130012, China
| | - Xia Sheng
- Department of Cadre Ward, The First Hospital of Jilin University, Changchun 130012, China
| | - Hui Wu
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun 130012, China.
| |
Collapse
|
42
|
Zhang G, Tang T, Chen Y, Huang X, Liang T. mRNA vaccines in disease prevention and treatment. Signal Transduct Target Ther 2023; 8:365. [PMID: 37726283 PMCID: PMC10509165 DOI: 10.1038/s41392-023-01579-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/01/2023] [Accepted: 07/30/2023] [Indexed: 09/21/2023] Open
Abstract
mRNA vaccines have emerged as highly effective strategies in the prophylaxis and treatment of diseases, thanks largely although not totally to their extraordinary performance in recent years against the worldwide plague COVID-19. The huge superiority of mRNA vaccines regarding their efficacy, safety, and large-scale manufacture encourages pharmaceutical industries and biotechnology companies to expand their application to a diverse array of diseases, despite the nonnegligible problems in design, fabrication, and mode of administration. This review delves into the technical underpinnings of mRNA vaccines, covering mRNA design, synthesis, delivery, and adjuvant technologies. Moreover, this review presents a systematic retrospective analysis in a logical and well-organized manner, shedding light on representative mRNA vaccines employed in various diseases. The scope extends across infectious diseases, cancers, immunological diseases, tissue damages, and rare diseases, showcasing the versatility and potential of mRNA vaccines in diverse therapeutic areas. Furthermore, this review engages in a prospective discussion regarding the current challenge and potential direction for the advancement and utilization of mRNA vaccines. Overall, this comprehensive review serves as a valuable resource for researchers, clinicians, and industry professionals, providing a comprehensive understanding of the technical aspects, historical context, and future prospects of mRNA vaccines in the fight against various diseases.
Collapse
Affiliation(s)
- Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yinfeng Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
43
|
Wu Y, Li Z, Lin H, Wang H. Identification of Tumor Antigens and Immune Subtypes of High-grade Serous Ovarian Cancer for mRNA Vaccine Development. J Cancer 2023; 14:2655-2669. [PMID: 37779866 PMCID: PMC10539400 DOI: 10.7150/jca.87184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/24/2023] [Indexed: 10/03/2023] Open
Abstract
High-grade serous ovarian cancer (HGSC) is the most common pathology of ovarian cancer and has aggressive characteristics and poor prognosis. mRNA vaccines are a novel tool for cancer immune treatment and may play an important role in HGSC therapy. Our study aimed to explore tumour antigens for vaccine development and identify potential populations amenable to vaccine treatment. Based on transcription data from The Cancer Genome Atlas (TCGA), we identified four tumour-specific antigens for vaccine production: ARPC1B, ELF3, VSTM2L, and IL27RA. In addition to being associated with HGSC patient prognosis, the expression of these antigens was positively correlated with the abundances of antigen-presenting cells (APCs). Furthermore, we stratified HGSC samples into three immune subtypes (IS1-IS3) with different immune characteristics. A corhort from ICGC (International Cancer Genome Consortium) was used to validate. Patients of IS3 had the best prognosis, while patients of IS1 were most likely to benefit from vaccination. There was substantial heterogeneity in immune signatures and immune-associated molecule expression in HGSC. Finally, weighted gene coexpression network analysis (WGCNA) was employed to cluster immune-related genes and explore potential biomarkers related to vaccination. In conclusion, we identified four potential tumour antigens for mRNA vaccine production for HGSC treatment, and the immune subtype could be an important indicator to select suitable HGSC patients to receive vaccination.
Collapse
Affiliation(s)
- Yanxuan Wu
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhifeng Li
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hong Lin
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hongbiao Wang
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
44
|
Fu Y, Zheng Y. The identification of tumor antigens and immune subtypes based on the development of immunotherapies targeting head and neck squamous cell carcinomas resulting from periodontal disease. Front Oncol 2023; 13:1256105. [PMID: 37675228 PMCID: PMC10477783 DOI: 10.3389/fonc.2023.1256105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Among cancer treatments, immunotherapy is considered a promising strategy. Nonetheless, only a small number of individuals with head and neck squamous cell carcinoma exhibit positive responses to immunotherapy. This study aims to discover possible antigens for head and neck squamous cell carcinoma, create an mRNA vaccine for this type of cancer, investigate the connection between head and neck squamous cell carcinoma and periodontal disease, and determine the immune subtype of cells affected by head and neck squamous cell carcinoma. To ascertain gene expression profiles and clinical data corresponding to them, an examination was carried out on the TCGA database. Antigen-presenting cells were detected using TIMER. Targeting six immune-related genes (CXCL5, ADM, FGF9, AIMP1, STC1, and CDKN2A) in individuals diagnosed with head and neck squamous cell carcinoma has shown promising results in immunotherapy triggered by periodontal disease. These genes have been linked to improved prognosis and increased immune cell infiltration. Additionally, CXCL5, ADM, FGF9, AIMP1, STC1, and CDKN2A exhibited potential as antigens in the creation of an mRNA vaccine. A nomogram model containing ADM expression and tumor stage was constructed for clinical practice. To summarize, ADM shows potential as a candidate biomarker for predicting the prognosis, molecular features, and immune characteristics of head and neck squamous cell carcinoma cells. Our results, obtained through real-time PCR analysis, showed a significant upregulation of ADM in the SCC-25 cell line compared to the NOK-SI cell line. This suggests that ADM might be implicated in the pathogenesis of HNSC, highlighting the potential of ADM as a target in HNSC treatment. However, further research is needed to elucidate the functional role of ADM in HNSC. Our findings provide a basis for the further exploration of the molecular mechanisms underlying HNSC and could help develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Yangju Fu
- Operating Room, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yongbo Zheng
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Wang J, Zhu Y, Chen Y, Huang Y, Guo Q, Wang Y, Chen A, Zhou Y, Xu L, Wang L, Zou X, Li X. Three-in-One Oncolytic Adenovirus System Initiates a Synergetic Photodynamic Immunotherapy in Immune-Suppressive Cholangiocarcinoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207668. [PMID: 37127884 DOI: 10.1002/smll.202207668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Although photodynamic immunotherapy has been promoted in the clinical practice of cholangiocarcinoma, the insensitivity to photodynamic immunotherapy remains to be a great problem. This can be largely attributed to an immune-suppressive tumor microenvironment (TME) manifested as immature myeloid cells and exhausted cytotoxic T lymphocytes. Here, a three-in-one oncolytic adenovirus system PEG-PEI-Adv-Catalase-KillerRed (p-Adv-CAT-KR) has been constructed to multiply, initiate, and enhance immune responses in photodynamic immunotherapy, using genetically-engineered KillerRed as photosensitizer, catalase as in situ oxygen-supplying mediator, and adenovirus as immunostimulatory bio-reproducible carrier. Meanwhile, PEG-PEI is applied to protect adenovirus from circulating immune attack. The administration of p-Adv-CAT-KR induces increased antigen presenting cells, elevated T cell infiltrations, and reduced tumor burden. Further investigation into underlying mechanism indicates that hypoxia inducible factor 1 subunit alpha (Hif-1α) and its downstream PD-1/PD-L1 pathway contribute to the transformation of immune-suppressive TME in cholangiocarcinoma. Collectively, the combination of KillerRed, catalase, and adenovirus brings about multi-amplified antitumor photo-immunity and has the potential to be an effective immunotherapeutic strategy for cholangiocarcinoma.
Collapse
Affiliation(s)
- Jialun Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Nanjing Medical Center for Clinical Pharmacy, Nanjing, 210008, China
| | - Yu Chen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Ying Huang
- Department of Pain, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Qiyuan Guo
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yue Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Aotian Chen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yue Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Lei Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xihan Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| |
Collapse
|
46
|
Manthopoulou E, Ramai D, Dhar J, Samanta J, Ioannou A, Lusina E, Sacco R, Facciorusso A. Cholangiocarcinoma in the Era of Immunotherapy. Vaccines (Basel) 2023; 11:1062. [PMID: 37376451 PMCID: PMC10301507 DOI: 10.3390/vaccines11061062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/27/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a rare malignancy of the gastrointestinal tract, with aggressive behavior, and portends a poor prognosis. Traditionally, it is classified according to its site of involvement as intrahepatic, perihilar, and distal cholangiocarcinoma. A host of genetic and epigenetic factors have been involved in its pathogenesis. Chemotherapy has remained the standard first-line treatment over the last decade, with a disappointing median overall survival of 11 months for locally advanced and metastatic CCA. The advent of immunotherapy has revolutionized the treatment of many pancreaticobiliary malignancies, offering durable responses with a safe therapeutic profile. To date, there have been no significant advances in the management of CCA. Novel immunotherapeutic methods, such as cancer vaccines, adoptive cell therapy, and combinations of immune checkpoint inhibitors with other agents, are currently under investigation and may improve prognosis with overall survival. Efforts to find robust biomarkers for response to treatment along with multiple clinical trials are also ongoing in this regard. In this review, we present an overview of the current advances and the future perspectives of immunotherapy in the management of CCA.
Collapse
Affiliation(s)
- Eleni Manthopoulou
- Department of Gastroenterology, St. Savvas Oncology Hospital of Athens, 11522 Athens, Greece;
| | - Daryl Ramai
- Gastroenterology and Hepatology, University of Utah Health, Salt Lake City, UT 801385, USA;
| | - Jahnvi Dhar
- Department of Gastroenterology, Sohana Multi-Speciality Hospital, Mohali 140308, India;
- Department of Gastroenterology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India;
| | - Jayanta Samanta
- Department of Gastroenterology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India;
| | - Alexandros Ioannou
- Department of Gastroenterology, Alexandra General Hospital, Lourou 4-2, 11528 Athens, Greece;
| | - Ekaterina Lusina
- Therapeutic Unit, Gastroenterology Department, Chaika Clinics, Lesnaya Street 9, 125196 Moscow, Russia;
| | - Rodolfo Sacco
- Department Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto 1, 71122 Foggia, Italy;
| | - Antonio Facciorusso
- Department Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto 1, 71122 Foggia, Italy;
| |
Collapse
|
47
|
Greten TF, Schwabe R, Bardeesy N, Ma L, Goyal L, Kelley RK, Wang XW. Immunology and immunotherapy of cholangiocarcinoma. Nat Rev Gastroenterol Hepatol 2023; 20:349-365. [PMID: 36697706 DOI: 10.1038/s41575-022-00741-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/23/2022] [Indexed: 01/27/2023]
Abstract
Cholangiocarcinoma is the second most common primary liver cancer. Its incidence is low in the Western world but is rising globally. Surgery, chemotherapy and radiation therapy have been the only treatment options for decades. Progress in our molecular understanding of the disease and the identification of druggable targets, such as IDH1 mutations and FGFR2 fusions, has provided new treatment options. Immunotherapy has emerged as a potent strategy for many different types of cancer and has shown efficacy in combination with chemotherapy for cholangiocarcinoma. In this Review, we discuss findings related to key immunological aspects of cholangiocarcinoma, including the heterogeneous landscape of immune cells within the tumour microenvironment, the immunomodulatory effect of the microbiota and IDH1 mutations, and the association of immune-related signatures and patient outcomes. We introduce findings from preclinical immunotherapy studies, discuss future immune-mediated treatment options, and provide a summary of results from clinical trials testing immune-based approaches in patients with cholangiocarcinoma. This Review provides a thorough survey of our knowledge on immune signatures and immunotherapy in cholangiocarcinoma.
Collapse
Affiliation(s)
- Tim F Greten
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
- Liver Cancer Program, Bethesda, MD, USA.
| | - Robert Schwabe
- Institute of Human Nutrition, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| | - Nabeel Bardeesy
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Lipika Goyal
- Division of Oncology, Stanford School of Medicine, Palo Alto, CA, USA
| | - Robin K Kelley
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Xin W Wang
- Liver Cancer Program, Bethesda, MD, USA
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
48
|
Zhao LM, Shi AD, Yang Y, Liu ZL, Hu XQ, Shu LZ, Tang YC, Zhang ZL. Advances in molecular and cell therapy for immunotherapy of cholangiocarcinoma. Front Oncol 2023; 13:1140103. [PMID: 37064120 PMCID: PMC10090456 DOI: 10.3389/fonc.2023.1140103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a highly malignant tumor of the hepatobiliary system that has failed to respond to many traditional therapies to a certain extent, including surgery, chemotherapy and radiotherapy. In recent years, the new therapeutic schemes based on immunology have fundamentally changed the systemic treatment of various malignant tumors to a certain extent. In view of the immunogenicity of CCA, during the occurrence and development of CCA, some immunosuppressive substances are released from cells and immunosuppressive microenvironment is formed to promote the escape immune response of its own cells, thus enhancing the malignancy of the tumor and reducing the sensitivity of the tumor to drugs. Some immunotherapy regimens for cholangiocarcinoma have produced good clinical effects. Immunotherapy has more precise characteristics and less adverse reactions compared with traditional treatment approaches. However, due to the unique immune characteristics of CCA, some patients with CCA may not benefit in the long term or not benefit at all after current immunotherapy. At present, the immunotherapy of CCA that have been clinically studied mainly include molecular therapy and cell therapy. In this article, we generalized and summarized the current status of immunotherapy strategies including molecular therapy and cell therapy in CCA in clinical studies, and we outlined our understanding of how to enhance the clinical application of these immunotherapy strategies.
Collapse
Affiliation(s)
- Li-ming Zhao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - An-da Shi
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Yan Yang
- Department of General Surgery, Shanxian Central Hospital, Heze, China
| | - Zeng-li Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
- Department of General Surgery, Qilu Hospital (Qingdao), Shandong University, Jinan, China
| | - Xiao-Qiang Hu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Li-Zhuang Shu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Yong-chang Tang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
- *Correspondence: Yong-chang Tang, ; Zong-li Zhang,
| | - Zong-li Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
- *Correspondence: Yong-chang Tang, ; Zong-li Zhang,
| |
Collapse
|
49
|
Zhang S, Liu Q, Wei Y, Xiong Y, Gu Y, Huang Y, Tang F, Ouyang Y. Anterior gradient-2 regulates cell communication by coordinating cytokine-chemokine signaling and immune infiltration in breast cancer. Cancer Sci 2023. [PMID: 36853166 DOI: 10.1111/cas.15775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/01/2023] Open
Abstract
Anterior gradient-2 (AGR2) is crucial to breast cancer progression. However, its role in the tumor immune microenvironment remains unclear. RNA sequencing expression profiles and associated clinical information were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases, respectively. The AGR2 expression patterns were verified using clinical samples of breast cancer. Based on single-cell transcriptomic data, AGR2 expression patterns were identified and cell communication analysis was carried out. Furthermore, the roles of AGR2 in breast tumor progression were explored by a series of functional experiments. We found that DNA methylation was an important mechanism for regulating the expression patterns of AGR2. Patients with AGR2 low expression displayed an immune "hot" and immunosuppressive phenotype characterized by high abundance of tumor immune cell infiltration and increased enrichment scores for transforming growth factor-β (TGF-β) and epithelial-mesenchymal transition pathways, whereas patients with AGR2 high expression showed an opposite immunologic feature with a lack of immune cell infiltration, suggestive of an immune "cold" and desert phenotype. Moreover, single-cell analysis further revealed that AGR2 in malignant cells alters cell-cell interactions by coordinating cytokine-chemokine signaling and immune infiltration. Notably, two immunotherapy cohorts revealed that AGR2-coexpressed genes could serve as prognostic indicators of patient survival. In conclusion, AGR2 could promote breast cancer progression by affecting the tumor immune microenvironment. Patients with AGR2 low expression could be suitable for combination treatment with immune checkpoint inhibitor agents and TGF-β blockers. Therefore, this study provides a theoretical foundation for developing a strategy for personalized immunotherapy to patients with breast cancer.
Collapse
Affiliation(s)
- Shichao Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Qin Liu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yimei Wei
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yu Xiong
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yan Gu
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Ya Huang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Fuzhou Tang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yan Ouyang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| |
Collapse
|
50
|
Identification of potential tumor antigens and immune subtypes for lung adenocarcinoma. Med Oncol 2023; 40:100. [PMID: 36809467 DOI: 10.1007/s12032-023-01973-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/05/2023] [Indexed: 02/23/2023]
Abstract
In lung adenocarcinoma (LUAD), tumor antigens and immune phenotypes are important for cancer immunotherapy. This study aims to identify potential tumor antigens and immune subtypes for LUAD. In this study, the gene expression profiles and related clinical data of LUAD patients were collected from the TCGA and the GEO database. Then, we first identified four genes with copy number variation and mutation related to the survival of LUAD patients, in which FAM117A, INPP5J, and SLC25A42 were screened as potential tumor antigens. The expressions of these genes were significantly correlated with the infiltration of B cells CD4+ T cells and dendritic cells using TIMER and CIBERSORT algorithms. LUAD patients were divided into three immune clusters: C1(immune-desert), C2(immune-active), and C3(inflamed) using the Non-negative matrix factorization algorithm by using survival-related immune genes. The C2 cluster showed favorable overall survival compared to C1 and C3 clusters in both TCGA and two GEO LUAD cohorts. Different immune cell infiltration patterns, immune-associated molecular characteristics, and drug sensitivity were found among the three clusters. Moreover, different positions in the immune landscape map exhibited different prognostic characteristics using dimensionality reduction, providing further evidence of the immune clusters. The Weighted Gene Co-Expression Network Analysis was used to identify the co-expression modules of these immune genes. the three subtypes were significantly positively correlated with the turquoise module gene list, indicating a good prognosis with high scores. We hope that the identified tumor antigens and immune subtypes can be used for immunotherapy and prognosis in LUAD patients.
Collapse
|