1
|
Fang F, Zhao M, Meng J, He J, Yang C, Wang C, Wang J, Xie S, Jin X, Shi W. Upregulation of TTYH3 by lncRNA LUCAT1 through interacting with ALYREF facilitates the metastasis in non-small cell lung cancer. Cancer Biol Ther 2025; 26:2464966. [PMID: 39930621 DOI: 10.1080/15384047.2025.2464966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/17/2024] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
Metastasis is the predominant culprit of cancer-associated mortality in non-small cell lung cancer (NSCLC). Tweety homolog 3 (TTYH3) reportedly functions vitally in the development of diverse cancers, including NSCLC; nevertheless, its role in NSCLC metastasis remains ambiguous. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot were initially employed to detect TTYH3 expression in NSCLC and normal lung epithelial cells. Subsequently, A549 and NCI-H1650 cells were chosen as NSCLC models in vitro and transfected with short hairpin RNAs (sh-TTYH3, sh-LUCAT1, and sh-ALYREF) or overexpression plasmids (oe-ALYREF and oe-TTYH3). Transwell assays were used for migrative and invasive tests. Epithelial mesenchymal transformation (EMT)-related proteins (E-cadherin, N-cadherin, Vimentin, and Snail) were measured by western blot. A mouse lung metastasis model was built to define the function of TTYH3 in NSCLC metastasis, followed by hematoxylin-eosin staining. RNA pull-down, RNA immunoprecipitation, qRT-PCR, western blot, and actinomycin D assays were adopted to determine the relationships among LUCAT1, ALYREF, and TTYH3. TTYH3 was highly expressed in NSCLC cells relative to normal lung cells. Functionally, TTYH3 knockdown restrained NSCLC migration, invasion, EMT, and metastasis. Mechanistic experiments demonstrated that LUCAT1 bound to ALYREF. After LUCAT1 knockdown, TTYH3 expression and mRNA stability were reduced, which was reversed by ALYREF overexpression. Furthermore, ALYREF overexpression counteracted the inhibitory effects of LUCAT1 knockdown on NSCLC cell migration, invasion, and EMT. TTYH3 overexpression eliminated the suppressive functions of ALYREF downregulation in NSCLC progression. LUCAT1 promotes TTYH3 expression via interacting with ALYREF, thereby facilitating NSCLC migration, invasion, and EMT.
Collapse
Affiliation(s)
- Fang Fang
- Department of OncologyII, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, P. R. China
| | - Mei Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, P. R. China
| | - Jinming Meng
- Department of Chinese Internal Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, P. R. China
| | - Jiaqi He
- Department of Chinese Internal Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, P. R. China
| | - Chunlei Yang
- Department of Chinese Internal Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, P. R. China
| | - Changhong Wang
- Department of OncologyII, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, P. R. China
| | - Jiaxiao Wang
- Department of OncologyII, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, P. R. China
| | - Sheng Xie
- Preventive Treatment of Disease Center, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, P. R. China
| | - Xiaowei Jin
- Department of Integrated TCM & Western Medicine, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Wei Shi
- Department of OncologyII, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, P. R. China
| |
Collapse
|
2
|
Chen Z, Tai Y, Deng C, Sun Y, Chen H, Luo T, Lin J, Chen W, Xu H, Song G, Tang Q, Lu J, Zhu X, Wen S, Wang J. Innovative sarcoma therapy using multifaceted nano-PROTAC-induced EZH2 degradation and immunity enhancement. Biomaterials 2025; 321:123344. [PMID: 40262462 DOI: 10.1016/j.biomaterials.2025.123344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 04/05/2025] [Accepted: 04/12/2025] [Indexed: 04/24/2025]
Abstract
Sarcomas are highly malignant tumors characterized by their heterogeneity and resistance to conventional therapies, which significantly limit treatment options. EZH2 is highly expressed in sarcomas, but targeting it is difficult. In this study, we uncovered the non-canonical transcriptional mechanisms of EZH2 in sarcoma and highlighted the essential role of EZH2 in regulating YAP1 through non-canonical transcriptional pathways in the progression of sarcoma. Building on this, we developed YM@VBM, a novel and versatile nano-PROTAC (proteolysis-targeting chimera), by integrating a polyphenol-vanadium oxide system with the EZH2 degrader YM281 PROTAC, encapsulated in methoxy polyethylene glycol-NH2 to enhance biocompatibility. To further facilitate targeted drug delivery to tumors, YM@VBM nano-PROTACs were incorporated into microneedle patches. Our engineered YM@VBM exhibited multiple functionalities, including the peroxidase-like activity to generate reactive oxygen species, depletion of glutathione, and photothermal effects, specifically targeting sarcoma characteristics. YM@VBM significantly enhanced targeting efficacy via inducing potent EZH2 degradation. Most importantly, it can also activate anti-tumor immunity via excluding myeloid-derived suppressor cells, maturing dendritic cells, and forming tertiary lymphoid structures. Hence, we reveal that YM@VBM presents a promising treatment strategy for sarcoma, offering a multifaceted approach to combat this challenging malignancy.
Collapse
Affiliation(s)
- Zhihao Chen
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Yi Tai
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China; Surgical Department of Colorectal Cancer, Zhejiang Cancer Hospital, 1st BanShan East Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, PR China
| | - Chuangzhong Deng
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Yameng Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Hongmin Chen
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Tianqi Luo
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Jiaming Lin
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Weiqing Chen
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Huaiyuan Xu
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Guohui Song
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Qinglian Tang
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Jinchang Lu
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Xiaojun Zhu
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China.
| | - Jin Wang
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China.
| |
Collapse
|
3
|
Jiang X, Liu Z, Wang H, Wang L. Discovery of lncRNA-Based ProsRISK Score in Serum as Potential Biomarkers for Improved Accuracy of Prostate Cancer Detection. J Cell Mol Med 2025; 29:e70555. [PMID: 40259205 PMCID: PMC12011553 DOI: 10.1111/jcmm.70555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/23/2025] Open
Abstract
Circulating lncRNAs have emerged as promising biomarkers for the diagnosis of various cancers. This study aimed to establish an accurate risk prediction model based on serum lncRNAs to facilitate the detection of prostate cancer (PCA). RT-qPCR was used to analyse the levels of candidate lncRNAs, and four lncRNAs (NEAT1, ARLNC1, FOXP4-AS1 and DSCAM-AS1) were identified to be differently expressed in serum from 190 PCA patients, 140 benign controls, and 170 healthy controls. A ProsRISK score based on four lncRNAs and prostate-specific antigen (PSA) was established in the training set. ROC analysis in the validation set revealed that the ProsRISK demonstrated more powerful capacity in discriminating PCA from healthy and benign controls, with an AUC of 0.926 (95% CI: 0.882-0.970) and 0.837 (95% CI: 0.770-0.904), which were significantly higher than those of the lncRNA panel or PSA alone (all at p < 0.05). Moreover, the ProsRISK showed good diagnostic performance for PCA I-II patients compared with healthy and benign controls, and the corresponding AUCs were 0.905 (95% CI: 0.843-0.968) and 0.819 (95% CI: 0.732-0.907). Our findings indicated that the constructed ProsRISK could be a reliable risk stratification model and have great potential for clinical use to improve the precision surveillance for PCA.
Collapse
Affiliation(s)
- Xiumei Jiang
- Department of Clinical Laboratory, Qilu HospitalShandong UniversityJinanShandong ProvincePeople's Republic of China
| | - Zhongchao Liu
- Department of Clinical Laboratory, Qilu HospitalShandong UniversityJinanShandong ProvincePeople's Republic of China
| | - Hongxing Wang
- Department of Clinical Laboratory, Qilu HospitalShandong UniversityJinanShandong ProvincePeople's Republic of China
| | - Lishui Wang
- Department of Clinical Laboratory, Qilu HospitalShandong UniversityJinanShandong ProvincePeople's Republic of China
| |
Collapse
|
4
|
Ke B, Zhong H, Gong Y, Chen X, Yan C, Shi L. LINC00323 knockdown suppresses the proliferation, migration, and vascular mimicry of non-small cell lung cancer cells by promoting ubiquitinated degradation of AKAP1. Noncoding RNA Res 2025; 11:131-140. [PMID: 39802612 PMCID: PMC11720444 DOI: 10.1016/j.ncrna.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/22/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025] Open
Abstract
Background LINC00323, a new long noncoding RNA, is aberrantly expressed in several cancers. However, the expression, function, and mechanism of LINC00323 in non-small cell lung cancer (NSCLC) are unclear. Methods In the present study, LINC00323, VEGFA, microvessel density (MVD), and AKAP1 levels were confirmed in NSCLC tissues. Cell proliferation, migration, and vascular mimicry (VM) were examined to assess the effects of LINC00323 and AKAP1 on NSCLC cells. In addition, the interaction between LINC00323 and AKAP1 was verified by RNA pull-down, LC-MS/MS and RNA immunoprecipitation. The ubiquitination level of AKAP1 was also confirmed through coimmunoprecipitation, cycloheximide (CHX) chase, and ubiquitination assays in vitro. Results Our results revealed that LINC00323 was upregulated in NSCLC tissues and was positively correlated with metastasis, poor prognosis, VEGFA expression, elevated MVD, and AKAP1 expression. Functionally, LINC00323 or AKAP1 knockdown suppressed the proliferation, migration, and VM of NSCLC cells. Mechanistically, LINC00323 could target AKAP1, and LINC00323 knockdown accelerated ubiquitination-mediated AKAP1 protein degradation. Moreover, LINC00323 silencing suppressed NSCLC cell progression by downregulating AKAP1. Conclusions LINC00323 knockdown prevents NSCLC cell proliferation, migration, and VM formation by targeting AKAP1, indicating that LINC00323 and AKAP1 might be biological targets for NSCLC treatment.
Collapse
Affiliation(s)
- Bin Ke
- Department of VIP Ward, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Hai Zhong
- Department of Thoracic Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Yuxin Gong
- Department of Respiratory Diseases, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Xiaofei Chen
- Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Chenxin Yan
- Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Lin Shi
- Department of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| |
Collapse
|
5
|
Yang H, Ding N, Qing S, Hao Y, Zhao C, Wu K, Li G, Zhang H, Ma S, Bai Z, Jiang Y. Knockdown of lncRNA XR_877193.1 suppresses ferroptosis and promotes osteogenic differentiation via the PI3K/AKT signaling pathway in SONFH. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40091620 DOI: 10.3724/abbs.2025014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Ferroptosis is a novel form of regulated cell death characterized by the iron-dependent accumulation of lipid peroxides. Recent research has suggested that ferroptosis in osteoblasts contributes to steroid-induced osteonecrosis of the femoral head (SONFH). However, the relationship between ferroptosis and SONFH remains unclear. In this study, in vitro experiments show that dexamethasone (Dex) treatment reduces the expressions of key ferroptosis regulators, SLC7A11 and GPX4, in MC3T3-E1 cells. This reduction leads to a decrease in intracellular glutathione (GSH) levels, accompanied by elevated levels of total iron, malondialdehyde (MDA), and reactive oxygen species (ROS). Importantly, the ferroptosis inhibitor ferrostatin-1 (Fer-1) effectively reverses Dex-induced ferroptosis in MC3T3-E1 cells. Furthermore, RNA-seq analysis reveals that the long noncoding RNA (lncRNA) XR_877193.1is significantly upregulated in Dex-treated MC3T3-E1 cells. Functional studies demonstrate that the knockdown of lncRNA XR_877193.1 promotes osteogenic differentiation by inhibiting Dex-induced ferroptosis in MC3T3-E1 cells, whereas its overexpression exacerbates cell death via ferroptosis. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis reveals that the differentially expressed lncRNA XR_877193.1 is enriched in ferroptosis-related pathways, including the PI3K/AKT signaling pathway. Moreover, PI3K/AKT inhibitors reverse ferroptosis in MC3T3-E1 cells inhibited by lncRNA XR_877193.1 knockdown. Collectively, our findings indicate that lncRNA XR_877193.1 knockdown exerts anti-ferroptosis effects by stimulating the PI3K/AKT signaling pathway, suggesting a promising therapeutic strategy for attenuating SONFH.
Collapse
Affiliation(s)
- Huixia Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Ning Ding
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Shi Qing
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China
- General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Yinju Hao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China
- General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Cilin Zhao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China
| | - Kai Wu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Guizhong Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Huiping Zhang
- Department of Medical Genetics, Maternal and Child Health of Hunan Province, Changsha 410008, China
- General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Shengchao Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China
| | - Zhigang Bai
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China
- Department of Orthopedics, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750004, China
| | - Yideng Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
6
|
Zhao X, Zhang H, Liu Y, Li L, Wei H. Study on the metastatic mechanism of LINC00115 in adenocarcinoma of the Esophagogastric junction. Hum Mol Genet 2025; 34:492-511. [PMID: 39807637 DOI: 10.1093/hmg/ddae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/16/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Adenocarcinoma of the esophagogastric junction (AEG) is a common and deadly cancer, and an in-depth investigation of its molecular mechanisms of metastasis is crucial for discovering new therapeutic targets. This study explores the role of the long non-coding RNA (lncRNA) LINC00115 in AEG metastasis and its underlying mechanisms. Through the analysis of 108 pairs of AEG cancer tissues and matched adjacent tissues, we found a significant upregulation of LINC00115 in AEG tissues, closely associated with TNM staging and lymph node metastasis. Utilizing cell counting kit-8 (CCK-8) assays, colony formation experiments, wound healing assays, flow cytometry for apoptosis and cell cycle analysis, and Transwell assays, we have confirmed that LINC00115 significantly promotes proliferation, migration, and invasion of AEG cells in vitro. Animal experiments further validate the role of LINC00115 in promoting tumor growth and metastasis in vivo. Additionally, our nuclear-cytoplasmic fractionation experiments and RNA fluorescence in situ hybridization (FISH) reveal that LINC00115, along with its interacting protein KH-Type splicing regulatory protein (KHSRP), predominantly localizes to the cell nucleus. By conducting RNA pull-down assays and mass spectrometry (MS) analysis, we have identified a direct interaction between LINC00115 and KHSRP protein and further determined their binding sites through catRAPID and ENCORI databases. This study provides evidence of LINC00115 as a novel biomarker and potential therapeutic target for AEG and offers a fresh perspective on understanding the molecular mechanisms of AEG metastasis.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Gastroenterology, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng City, Henan Province, China
| | - Haifeng Zhang
- Department of Thoracic Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng City, Henan Province, China
| | | | - Li Li
- Department of Thoracic Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng City, Henan Province, China
- Department of Thoracic Surgery, Huaihe Hospital of Henan University/Henan University School of Nursing and Health, No. 8, Baobei Road, Gulou District, Kaifeng City, Henan Province, China
| | - Haitao Wei
- Department of Thoracic Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng City, Henan Province, China
| |
Collapse
|
7
|
Hu X, Liu Y, Zhang S, Liu K, Gu X. The multifaceted role of m5C RNA methylation in digestive system tumorigenesis. Front Cell Dev Biol 2025; 13:1533148. [PMID: 40114967 PMCID: PMC11922842 DOI: 10.3389/fcell.2025.1533148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/05/2025] [Indexed: 03/22/2025] Open
Abstract
5-Methylcytosine (m5C) is a widespread RNA methylation modification, wherein a methyl group is enzymatically transferred to specific RNA sites by methyltransferases, such as the NSUN family and DNMT2. The m5C modification not only impacts RNA structure and stability but also governs post-transcriptional regulation by influencing RNA transport, translation, and protein interactions. Recently, the functional importance of m5C in complex diseases, including cancer, has gained substantial attention. Increasing evidence highlights the critical roles of m5C in digestive system malignancies, where it contributes to tumor progression by modulating oncogene expression and regulating processes such as tumor cell proliferation, migration, invasion, and resistance to chemotherapy. Furthermore, m5C's involvement in non-coding RNAs reveals additional dimensions in elucidating their roles in cancer. This review summarizes recent advances in m5C RNA methylation research within digestive system tumors, focusing on its functional mechanisms, clinical significance, and potential applications. Specifically, it aims to explore m5C's role in tumor diagnosis, prognosis, and treatment, while proposing future directions to address current challenges and broaden its clinical utility.
Collapse
Affiliation(s)
- Xinjun Hu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yafeng Liu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Shujun Zhang
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Kaijie Liu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
8
|
Bi L, Wang X, Li J, Li W, Wang Z. Epigenetic modifications in early stage lung cancer: pathogenesis, biomarkers, and early diagnosis. MedComm (Beijing) 2025; 6:e70080. [PMID: 39991629 PMCID: PMC11843169 DOI: 10.1002/mco2.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 02/25/2025] Open
Abstract
The integration of liquid biopsy with epigenetic markers offers significant potential for early lung cancer detection and personalized treatment. Epigenetic alterations, including DNA methylation, histone modifications, and noncoding RNA changes, often precede genetic mutations and are critical in cancer progression. In this study, we explore how liquid biopsy, combined with epigenetic markers, can provide early detection of lung cancer, potentially predicting onset up to 4 years before clinical diagnosis. We discuss the challenges of targeting epigenetic regulators, which could disrupt cellular balance if overexploited, and the need for maintaining key gene expressions in therapeutic applications. This review highlights the promise and challenges of using liquid biopsy and epigenetic markers for early-stage lung cancer diagnosis, with a focus on optimizing treatment strategies for personalized and precision medicine.
Collapse
Affiliation(s)
- Lingfeng Bi
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xin Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Jiayi Li
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan UniversityChengduSichuanChina
- The Research Units of West China, Chinese Academy of Medical SciencesWest China HospitalChengduSichuanChina
| | - Zhoufeng Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan UniversityChengduSichuanChina
- The Research Units of West China, Chinese Academy of Medical SciencesWest China HospitalChengduSichuanChina
| |
Collapse
|
9
|
Li Z, Wu X. NSUN4 Facilitates the Activity of Oncogenic Protein CDC20 to Promote NSCLC Development by Mediating m5C Modification of CDC20 mRNA. Thorac Cancer 2025; 16:e70023. [PMID: 40051202 PMCID: PMC11885798 DOI: 10.1111/1759-7714.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/19/2024] [Accepted: 02/10/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND 5-methylcytosine (m5C) methylation is the crucial posttranscriptional modification of RNA. NSUN4, a methyltransferase for m5C methylation, contributes to lung tumorigenesis. Here, we determined the precise action of NSUN4 on the development of non-small cell lung cancer (NSCLC). METHODS NSUN4 and CDC20 mRNA expression was detected by quantitative PCR. Western blot and immunohistochemistry were used for the analysis of protein expression. Cell growth, apoptosis, invasiveness, migratory ability, and stemness potential were evaluated by colony formation, flow cytometry, transwell, and sphere formation assays. The influence of NSUN4 in CDC20 mRNA was analyzed using RNA immunoprecipitation (RIP) assay and Actinomycin D (Act D) treatment. Subcutaneous xenograft studies were performed to analyze the function in vivo. RESULTS In human NSCLC tumors and cell lines, NSUN4 and CDC20 levels were upregulated. NSUN4 inhibition diminished NSCLC cell growth, stemness, invasiveness, and migratory ability in vitro, while NSUN4 increase had opposite effects. A positive expression association between CDC20 and NSUN4 was observed in NSCLC samples. Mechanistically, NSUN4 enhanced the stability of CDC20 mRNA through m5C modification. CDC20 depletion significantly counteracted NSUN4-driven cell phenotype alterations in vitro. Additionally, inhibition of NSUN4 impeded the growth of A549 NSCLC subcutaneous xenografts in vivo. CONCLUSION Our findings identify the pro-tumorigenic property of the NSUN4/CDC20 cascade in NSCLC. Targeting the novel cascade may be a promising way for combating this deadly disease.
Collapse
Affiliation(s)
- Zhilong Li
- Department of Thoracic SurgeryShanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuanShanxiChina
| | - Xianzhen Wu
- Department of Respiratory Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuanShanxiChina
| |
Collapse
|
10
|
Zhao T, Zhang Z, Chen Z, Xu G, Wang Y, Wang F. Biological functions of 5-methylcytosine RNA-binding proteins and their potential mechanisms in human cancers. Front Oncol 2025; 15:1534948. [PMID: 39990690 PMCID: PMC11842269 DOI: 10.3389/fonc.2025.1534948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025] Open
Abstract
The 5-methylcytosine (m5C) modification is a crucial epigenetic RNA modification, which is involved in the post-transcriptional regulation of genes. It plays an important role in various biological processes, including cell metabolism, growth, apoptosis, and tumorigenesis. By affecting the proliferation, migration, invasion, and drug sensitivity of tumor cells, m5C methylation modification plays a vital part in the initiation and progression of tumors and is closely associated with the poor tumor prognosis. m5C-related proteins are categorized into three functional groups: m5C methyltransferases (m5C writers), m5C demethylases (m5C erasers), and m5C methyl-binding proteins (m5C readers). This paper introduces several common methodologies for detecting m5C methylation; and reviews the molecular structure and biological functions of m5C readers, including ALYREF, YBX1, YBX2, RAD52, YTHDF2, FMRP, and SRSF2. It further summarizes their roles and regulatory mechanisms in tumors, offering novel targets and insights for tumor treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Fang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Xu F, Li Z, Guan H, Ma J. YAP/TAZ-Hippo pathway mediates the tumorigenesis of various cancers through post-translational modification represented by ubiquitination. Cell Death Discov 2025; 11:41. [PMID: 39900917 PMCID: PMC11790847 DOI: 10.1038/s41420-025-02319-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 01/06/2025] [Accepted: 01/22/2025] [Indexed: 02/05/2025] Open
Affiliation(s)
- Fangshi Xu
- Department of Vascular Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| | - Zongyu Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hao Guan
- Department of Vascular Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jiancang Ma
- Department of Vascular Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
12
|
Zou J, Shi X, Wu Z, Zuo S, Tang X, Zhou H, Huang Y. MRTX1133 attenuates KRAS G12D mutated-colorectal cancer progression through activating ferroptosis activity via METTL14/LINC02159/FOXC2 axis. Transl Oncol 2025; 52:102235. [PMID: 39657309 PMCID: PMC11683245 DOI: 10.1016/j.tranon.2024.102235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the third most commonly diagnosed cancer and the second leading cause of cancer-related deaths worldwide. Studies have shown that CRC patients with KRAS mutations, especially KRASG12D, have an increased risk of metastasis. Emerging evidence indicates that long non-coding RNAs (lncRNAs) are crucial in the carcinogenesis and progression of various cancers, regulating multiple biological processes but the link between KRASG12D mutations and lncRNAs in CRC remains unclear. Therefore, this study was designed to identify a novel lncRNA involved in KRASG12D-mutated CRC and to elucidate its molecular mechanisms. The analysis of differentially expressed lncRNAs in the GSE201412 dataset revealed that LINC02159 was significantly upregulated following treatment with the KRASG12D inhibitor MTRX1133 Data from the GTEx database indicated that LINC02159 is highly expressed in CRC tumour tissues and is associated with better patient outcomes. In vitro and in vivo experiments suggest that LINC02159 acts as a tumour suppressor in CRC progression. Specifically, LINC02159 knockdown negated the inhibitory effects of MRTX1133 on tumourigenesis and its promotive effect on ferroptosis in KRASG12D-mutated CRC cells. LINC02159 expression is regulated by METTL14, with METTL14 knockdown decreasing m6A methylation of LINC02159, leading to its increased expression in CRC cells. Additionally, LINC02159 stabilised FOXC2 expression through de-ubiquitination. Rescue experiments further clarified that the METTL14/LINC02159/FOXC2 signalling axis is crucial for the inhibitory effects of MRTX1133 in KRASG12D-mutated CRC. Our study provides novel insights into the therapeutic potential of MRTX1133 in treating KRASG12D-mutated CRC by identifying a METTL14/LINC02159/FOXC2 signalling axis that mediates drug response. Our findings highlight the importance of understanding the molecular mechanisms of lncRNAs in cancer to develop effective targeted therapies.
Collapse
Affiliation(s)
- Junwei Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Xiuhua Shi
- Department of Radiotherapy & Oncology, The No.2 People's Hospital of Wuhu City, Wuhu, Anhui, China
| | - Zhaoying Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Siyuan Zuo
- School of Clinical Medicine, Wannan Medical College, Wuhu, Anhui, China
| | - Xiaolei Tang
- Center for Translational Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Hailang Zhou
- Department of Gastroenterology, Lianshui People's Hospital of kangda college Affiliated to Nanjing Medical University, Huai'an, Jiangsu, China.
| | - Yong Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China.
| |
Collapse
|
13
|
Zhang Y, Lun H, Zhu N, Yang N, Ding K, Chen B, Chang C, Gu H, Liu Y. Deciphering the oncogenic network: how C1QTNF1-AS1 modulates osteosarcoma through miR-34a-5p and glycolytic pathways. Front Oncol 2025; 14:1485605. [PMID: 39850812 PMCID: PMC11754200 DOI: 10.3389/fonc.2024.1485605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/18/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction Osteosarcoma (OS), a prevalent metastatic cancer among young individuals, is associated with a grim prognosis. Long non-coding RNAs (lncRNAs), including C1QTNF1-AS1, are pivotal regulators of cancer cell proliferation and motility. As an oncogene, C1QTNF1-AS1 is implicated in various tumor types, such as colorectal, pancreatic, hepatocellular carcinomas, and OS. The aim of this study was to investigate the functions and underlying mechanisms of C1QTNF1-AS1 in the progression of osteosarcoma. Methods This investigation focused on elucidating the functional roles and mechanisms of C1QTNF1-AS1 in OS cells. Bioinformatics tools were utilized to identify the interaction between microRNA miR-34a-5p and C1QTNF1-AS1, as well as the targeting of LDHA and PDK3 by miR-34a-5p. Dual-luciferase reporter assays and RNA immunoprecipitation were employed to validate these interactions. Expression profiles of C1QTNF1-AS1, miR-34a-5p, LDHA, and PDK3 in osteosarcoma cells were analyzed using RT-PCR and western blot analyses, revealing their intricate relationships. The impact of these molecules on OS cell proliferation, invasion, and migration was assessed through CCK-8, Transwell, and Cell scratch assay. Moreover, the effects on aerobic glycolysis in OS cells were examined by quantifying ATP levels, lactate production, glucose uptake capacity, and the extracellular acidification rate. Results The findings indicated a significant decrease in C1QTNF1-AS1 expression levels in OS cells compared to normal osteoblasts. A parallel downregulation trend of miR-34a-5p was also observed in OS cells. Silencing C1QTNF1-AS1 led to a marked upregulation of LDHA and PDK3 in OS cells, which was partially attenuated by miR-34a-5p mimics. Functional evaluations demonstrated that suppression of C1QTNF1-AS1 accelerated OS cell growth, motility, invasiveness, and the Warburg effect. Conversely, the overexpression of miR-34a-5p mitigated these stimulatory effects, suggesting a regulatory role in modulating OS progression. Discussion Our research emphasizes the critical role of C1QTNF1-AS1 in the pathogenesis of osteosarcoma (OS). We discovered that the downregulation of C1QTNF1-AS1 indirectly upregulates the expression of LDHA and PDK3 by suppressing miR-34a-5p, which functions as a regulator of the Warburg effect. This cascade of events promotes OS progression by enhancing glycolytic metabolism and supplying energy for cancer cell growth, migration, and invasion. These findings suggest a potential therapeutic target and highlight the importance of understanding the regulatory network involving lncRNAs in cancer metabolism and progression.
Collapse
Affiliation(s)
- Yu Zhang
- Graduate School of Chengde Medical University, Chengde, Hebei, China
| | - Hailong Lun
- Tangshan Nanhu Hospital, Department of Orthopedic, Tangshan, Hebei, China
| | - Naiqiang Zhu
- Hebei Key Laboratory of Panvascular Diseases, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
- Department of Minimally Invasive Spine Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Ning Yang
- Hebei Key Laboratory of Panvascular Diseases, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Kaikai Ding
- Graduate School of Chengde Medical University, Chengde, Hebei, China
| | - Bin Chen
- Department of Minimally Invasive Spine Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Chengbing Chang
- Department of Minimally Invasive Spine Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Haipeng Gu
- Department of Minimally Invasive Spine Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Yanqi Liu
- Department of Minimally Invasive Spine Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
14
|
Chen Y, Zhao T, Chen H, Chen J, Han W. RNA binding protein ALYREF regulates ferroptosis to facilitate LUAD growth and metastasis via promoting SLC7A11 mRNA stability. Sci Rep 2025; 15:1351. [PMID: 39779775 PMCID: PMC11711305 DOI: 10.1038/s41598-024-83276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Ferroptosis is of great significance in carcinogenesis as it interconnects with a multiplicity of biological processes. Meanwhile, its function and regulatory role in lung cancer remains ambiguous. In this study, we discovered by WB and IHC that ALYREF has a higher expression in lung adenocarcinoma (LUAD) tissues compared with normal ones. By the direct observation of mitochondria with electron microscopy, we also identified that the knockdown of ALYREF limits the proliferation of LUAD in vitro as well as in vivo and prompts LUAD cells to go through ferroptosis. Mechanistically, our RNA-immunoprecipitation experiment combined with qRT-PCR analysis confirmed that ALYREF could interact with SLC7A11. ALYREF mainly binds to the 3'UTR region of SLC7A11 mRNA, increasing the mRNA stability of SLC7A11 and reducing intracellular Reactive Oxygen Species (ROS) and Methylene diphenyl diamine (MDA) thereby inhibiting ferroptosis and eventually promoting the proliferation and metastasis of LUAD cells. Importantly, our study reveals for the first time that ALYREF can regulate LUAD by inhibiting ferroptosis. Based on the evidences mentioned above, we have good reason to believe that the role of ALYREF as a new oncological factor could be proved and, acting along the ALYREF-SLC7A11-ferroptosis axis, utilized as a promising therapeutic target for LUAD.
Collapse
Affiliation(s)
- Yanni Chen
- Department of Lung transplantation and Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Ting Zhao
- Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hao Chen
- Department of Lung transplantation and Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Jun Chen
- Department of Lung transplantation and Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, China.
- Department of Lung Transplantation and Thoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Weili Han
- Department of Lung transplantation and Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
15
|
Xia S, Lu X, Wang W, Pan X, Cui J, Wang S, Wang Z. The regulatory role and therapeutic potential of long non-coding RNA in non-small cell lung cancer. J Cancer 2025; 16:1137-1148. [PMID: 39895777 PMCID: PMC11786035 DOI: 10.7150/jca.103182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/24/2024] [Indexed: 02/04/2025] Open
Abstract
Lung cancer remains the leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) being the predominant subtype. Recent advances in transcriptome sequencing have highlighted the critical role of long non-coding RNAs (lncRNAs) in NSCLC, with lncRNAs influencing gene expression through epigenetic, transcriptional, and post-transcriptional mechanisms. Despite the growing understanding of lncRNAs, challenges such as delayed diagnosis and drug resistance continue to complicate NSCLC management. This review explores novel findings in the role of lncRNAs (e.g., MALAT1, HOTAIR, and GAS5) in NSCLC, with a particular focus on their encoded small peptides and N6-methyladenosine (m6A) modifications. We further discuss how the interplay between lncRNAs, their encoded peptides, and m6A modifications can provide new strategies for improving NSCLC diagnosis, treatment, and overcoming drug resistance. This review also highlights emerging research avenues that could lead to innovative clinical interventions in NSCLC.
Collapse
Affiliation(s)
- Sunming Xia
- Donghai County People's Hospital affiliated to Kangda College of Nanjing Medical University, Lianyungang 222300, Jiangsu, China
- Department of General Surgery, Donghai County People's Hospital, Lianyungang 222300, Jiangsu, China
| | - Xuean Lu
- Donghai County People's Hospital affiliated to Kangda College of Nanjing Medical University, Lianyungang 222300, Jiangsu, China
- Department of General Surgery, Donghai County People's Hospital, Lianyungang 222300, Jiangsu, China
| | - Weier Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Xinyi Pan
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China
| | - Jiaqi Cui
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China
| | - Shengjie Wang
- Donghai County People's Hospital affiliated to Kangda College of Nanjing Medical University, Lianyungang 222300, Jiangsu, China
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China
| | - Zhao Wang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| |
Collapse
|
16
|
Lu Y, Yang L, Feng Q, Liu Y, Sun X, Liu D, Qiao L, Liu Z. RNA 5-Methylcytosine Modification: Regulatory Molecules, Biological Functions, and Human Diseases. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae063. [PMID: 39340806 PMCID: PMC11634542 DOI: 10.1093/gpbjnl/qzae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
RNA methylation modifications influence gene expression, and disruptions of these processes are often associated with various human diseases. The common RNA methylation modification 5-methylcytosine (m5C), which is dynamically regulated by writers, erasers, and readers, widely occurs in transfer RNAs (tRNAs), messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), enhancer RNAs (eRNAs), and other non-coding RNAs (ncRNAs). RNA m5C modification regulates metabolism, stability, nuclear export, and translation of RNA molecules. An increasing number of studies have revealed the critical roles of the m5C RNA modification and its regulators in the development, diagnosis, prognosis, and treatment of various human diseases. In this review, we summarized the recent studies on RNA m5C modification and discussed the advances in its detection methodologies, distribution, and regulators. Furthermore, we addressed the significance of RNAs modified with m5C marks in essential biological processes as well as in the development of various human disorders, from neurological diseases to cancers. This review provides a new perspective on the diagnosis, treatment, and monitoring of human diseases by elucidating the complex regulatory network of the epigenetic m5C modification.
Collapse
Affiliation(s)
- Yanfang Lu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Liu Yang
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Qi Feng
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Yong Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Xiaohui Sun
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Long Qiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| |
Collapse
|
17
|
Kuracha MR, Radhakrishna U, Kuracha SV, Vegi N, Gurung JL, McVicker BL. New Horizons in Cancer Progression and Metastasis: Hippo Signaling Pathway. Biomedicines 2024; 12:2552. [PMID: 39595118 PMCID: PMC11591698 DOI: 10.3390/biomedicines12112552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
The Hippo pathway is highly evolved to maintain tissue homeostasis in diverse species by regulating cell proliferation, differentiation, and apoptosis. In tumor biology, the Hippo pathway is a prime example of signaling molecules involved in cancer progression and metastasis. Hippo core elements LATS1, LATS2, MST1, YAP, and TAZ have critical roles in the maintenance of traditional tissue architecture and cell homeostasis. However, in cancer development, dysregulation of Hippo signaling results in tumor progression and the formation secondary cancers. Hippo components not only transmit biochemical signals but also act as mediators of mechanotransduction pathways during malignant neoplasm development and metastatic disease. This review confers knowledge of Hippo pathway core components and their role in cancer progression and metastasis and highlights the clinical role of Hippo pathway in cancer treatment. The Hippo signaling pathway and its unresolved mechanisms hold great promise as potential therapeutic targets in the emerging field of metastatic cancer research.
Collapse
Affiliation(s)
- Murali R. Kuracha
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Uppala Radhakrishna
- Department of Anesthesiology and Perioperative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Sreenaga V. Kuracha
- Comparative Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Navyasri Vegi
- Shri Vishnu College of Pharmacy, Andhra University, Bhimavaram 534202, Andhra Pradesh, India;
| | - Jhyama Lhamo Gurung
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Benita L. McVicker
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
18
|
Yang PY, Yang Z, Lv J, Jiang PY, Quan TQ, Huang ZH, Xu XD, Guo R, Wei D, Sun Y. The noncanonical RNA-binding protein RAN stabilizes the mRNA of intranuclear stress granule assembly factor G3BP1 in nasopharyngeal carcinoma. J Biol Chem 2024; 300:107964. [PMID: 39510185 PMCID: PMC11635782 DOI: 10.1016/j.jbc.2024.107964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/13/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024] Open
Abstract
RNA-binding proteins (RBPs) play critical roles in tumor progression by participating in the posttranscriptional regulation of RNA. However, the levels and function of RBPs in nasopharyngeal carcinoma (NPC) remain elusive. Here we identified a noncanonical RBP RAN that has the most significant role in NPC progression by a small siRNA pool screening. Functionally, RAN facilitates NPC proliferation and metastasis in vitro and in vivo. High levels of RAN are associated with poor prognosis of NPC patients and can be performed as a prognostic biomarker. Mechanistically, RAN increases the nucleus import of TDP43 and enhances TDP43 nuclear distribution. On the other hand, RAN is directly bound to the coding sequence of G3BP1 mRNA and serves as an adapter to facilitate TDP43 interacting with G3BP1 mRNA 3' UTR. These contribute to increasing G3BP1 mRNA stability in the nucleus and lead to upregulation of G3BP1, which further enhances AKT and ERK signaling and ultimately promotes NPC proliferation and metastasis. These findings reveal that RAN stabilizes intranuclear G3BP1 mRNA by dual mechanisms: recruiting TDP43 into the nucleus and enhancing its interaction with G3BP1 mRNA, suggesting a critical role of RAN in NPC progression and providing a new regulation framework of RBP-RNA.
Collapse
Affiliation(s)
- Pan-Yang Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Zhenyu Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Jiawei Lv
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Pei-Yi Jiang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Ting-Qiu Quan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Zhuo-Hui Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Xu-Dong Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Rui Guo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, PR China.
| | - Denghui Wei
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China.
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, PR China.
| |
Collapse
|
19
|
Li J, Wang X, Wang H. RNA modifications in long non-coding RNAs and their implications in cancer biology. Bioorg Med Chem 2024; 113:117922. [PMID: 39299080 DOI: 10.1016/j.bmc.2024.117922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Long non-coding RNAs (lncRNAs) represent the most diverse class of RNAs in cells and play crucial roles in maintaining cellular functions. RNA modifications, being a significant factor in regulating RNA biology, have been found to be extensively present in lncRNAs and exert regulatory effects on their behavior and biological functions. Most common types of RNA modifications in lncRNAs include N6-methyladenosine (m6A), 5-methylcytosine (m5C), and N1-methyladenosine (m1A). In this review, we summarize the major RNA modification types associated with lncRNAs, the regulatory roles of each modification, and the implications of modified lncRNAs in tumorigenesis and development. By examining these aspects, we aim to provide insights into the role of RNA modifications in lncRNAs and their potential impact on cancer biology.
Collapse
Affiliation(s)
- Jiexin Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiansong Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hongsheng Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
20
|
Zhang S, Liu Y, Liu K, Hu X, Gu X. A review of current developments in RNA modifications in lung cancer. Cancer Cell Int 2024; 24:347. [PMID: 39456034 PMCID: PMC11515118 DOI: 10.1186/s12935-024-03528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Lung cancer has the highest incidence and mortality rates worldwide and is the primary cause of cancer-related death. Despite the rapid development of diagnostic methods and targeted drugs in recent years, many lung cancer patients do not benefit from effective therapies. The emergence of drug resistance has led to a reduction in the therapeutic effectiveness of targeted drugs, highlighting a crucial need to explore novel therapeutic targets. Many studies have found that epigenetic plays an important role in the occurrence of lung cancer. This review describes the biological function of epigenetic RNA modifications, such as m6A, m5C, m7G, and m1A, and recent advancements in their role in the development, progression, and prognosis of lung cancer. This review aims to provide new guidance for the treatment of lung cancer.
Collapse
Affiliation(s)
- Shujun Zhang
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yafeng Liu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Kaijie Liu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Xinjun Hu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
- Henan Medical Key Laboratory of Gastrointestinal Microecology and Hepatology, Luoyang, 471000, China.
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Jianxi District, No. 24 Jinghua Road, Luoyang, 471000, Henan, China.
| |
Collapse
|
21
|
Yu L, Xu H, Xiong H, Yang C, Wu Y, Zhang Q. The role of m5C RNA modification in cancer development and therapy. Heliyon 2024; 10:e38660. [PMID: 39444404 PMCID: PMC11497397 DOI: 10.1016/j.heliyon.2024.e38660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/13/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
RNA modifications have been demonstrated to affect the function, stability, processing, and interactions of RNA, including pseudouridylation, acetylation and methylation. RNA methylation products, such as N6-methyladenosine (m6A), 5-methylcytidine (m5C), N7-methylguanosine (m7G), 2'-O-dimethyladenosine (m6Am), and N1-methyladenosine (m1A), have been reported to participate in tumorigenesis and tumor progression. The role of m6A in carcinogenesis has been well studied and summarized. In this review, we described the biological functions of m5C RNA modifications in tumorigenesis and tumor progression. Moreover, we highlighted the molecular mechanisms of m5C RNA modification in oncogenesis. Furthermore, we discussed whether targeting m5C regulator-associated genes could be a novel strategy for improving therapeutic outcomes in patients with cancer.
Collapse
Affiliation(s)
- Li Yu
- Cancer Center, Department of Nursing, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hongen Xu
- Department of Oncology, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, Guizhou, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hanchu Xiong
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chunju Yang
- Cancer Center, Department of Nursing, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Wu
- Cancer Center, Department of Nursing, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiong Zhang
- Cancer Center, Department of Nursing, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Zhang Y, Wu Y, Liu Z, Yang K, Lin H, Xiong K. Non-coding RNAs as potential targets in metformin therapy for cancer. Cancer Cell Int 2024; 24:333. [PMID: 39354464 PMCID: PMC11445969 DOI: 10.1186/s12935-024-03516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
Metformin, a widely used oral hypoglycemic drug, has emerged as a potential therapeutic agent for cancer treatment. While initially known for its role in managing diabetes, accumulating evidence suggests that metformin exhibits anticancer properties through various mechanisms. Several cellular or animal experiments have attempted to elucidate the role of non-coding RNA molecules, including microRNAs and long non-coding RNAs, in mediating the anticancer effects of metformin. The present review summarized the current understanding of the mechanisms by which non-coding RNAs modulate the response to metformin in cancer cells. The regulatory roles of non-coding RNAs, particularly miRNAs, in key cellular processes such as cell proliferation, cell death, angiogenesis, metabolism and epigenetics, and how metformin affects these processes are discussed. This review also highlights the role of lncRNAs in cancer types such as lung adenocarcinoma, breast cancer, and renal cancer, and points out the need for further exploration of the mechanisms by which metformin regulates lncRNAs. In addition, the present review explores the potential advantages of metformin-based therapies over direct delivery of ncRNAs, and this review highlights the mechanisms of non-coding RNA regulation when metformin is combined with other therapies. Overall, the present review provides insights into the molecular mechanisms underlying the anticancer effects of metformin mediated by non-coding RNAs, offering novel opportunities for the development of personalized treatment strategies in cancer patients.
Collapse
Affiliation(s)
- Yihan Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang, China
| | - Yunhao Wu
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang, China
| | - Zixu Liu
- The First School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Kangping Yang
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang, China
| | - Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang, China
| | - Kai Xiong
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China.
| |
Collapse
|
23
|
Cheng Q, Chen G, Wu X, Fang H, Shi J, Zhong B. Detection of serum SNHG22 and its correlation with prognosis of non-small cell lung cancer. J Cardiothorac Surg 2024; 19:536. [PMID: 39300525 PMCID: PMC11414149 DOI: 10.1186/s13019-024-03048-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Lung cancer accounts for a significant proportion of cancer-related deaths in China, with the majority of the cases being classified as non-small cell lung cancer (NSCLC). The study aimed to investigate the expression of serum SNHG22 in patients with NSCLC, and its molecular mechanism and prognostic potential in NSCLC. METHODS Admitted 125 NSCLC patients were selected for the study, along with 125 healthy individuals in the same period. The levels of SNHG22 and miR-128-3p were quantified via RT-qPCR. Correlations between the SNHG22 level and the pathological characteristics of the NSCLC patients were investigated through the application of the chi-square test. The targeting relationship between SNHG22 and miR-128-3p was predicted by online database and confirmed by luciferase activity. The prognostic ability of SNHG22 in NSCLC was assessed by Kaplan-Meier curves and multivariate Cox analysis. RESULTS SNHG22 was upregulated in NSCLC and directly targeted miR-128-3p. The rate of overall survival is lower in patients with high-SNHG22 group compared to those with low-SNHG22 group. Silencing SNHG22 impaired the functionality of cells, which was restored by miR-128-3p inhibitor. SNHG22 stands as an independent predictor of poor prognosis in NSCLC patients. CONCLUSION The overexpression of SNHG22 in NSCLC is related to lymph node metastasis, TNM stage and patient survival, which is expected to be a prognostic predictor of NSCLC patients.
Collapse
Affiliation(s)
- Quan Cheng
- Department of Traditional Chinese Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Guoping Chen
- Department of Respiratory and Critical Care Medicine, Binhai County People's Hospital, Yancheng, 224500, China
| | - Xiaojiao Wu
- Department of Laboratory, The First People's Hospital of Yongkang, No. 52, Lizhou North Road, Yongkang, 321300, China.
| | - Hang Fang
- Department of Laboratory, The First People's Hospital of Yongkang, No. 52, Lizhou North Road, Yongkang, 321300, China
| | - Jingjing Shi
- Department of Laboratory, The First People's Hospital of Yongkang, No. 52, Lizhou North Road, Yongkang, 321300, China
| | - Bonian Zhong
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University, No.1, Guangming East Road, Guangzhou, 511300, China.
| |
Collapse
|
24
|
Wang J, Wang S, Yang H, Wang R, Shi K, Liu Y, Dou L, Yu H. Methyltransferase like-14 suppresses growth and metastasis of non-small-cell lung cancer by decreasing LINC02747. Cancer Sci 2024; 115:2931-2946. [PMID: 38888105 PMCID: PMC11462971 DOI: 10.1111/cas.16254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
Multiple epigenetic regulatory mechanisms exert critical roles in tumor development, and understanding the interactions and impact of diverse epigenetic modifications on gene expression in cancer is crucial for the development of precision medicine. We found that methyltransferase-like 14 (METTL14) was significantly downregulated in non-small-cell lung cancer (NSCLC) tissues. Functional experiments demonstrated that overexpression of METTL14 inhibited the proliferation and migration of NSCLC cells both in vivo and in vitro, and the colorimetric m6A quantification assay also showed that knockdown of METTL14 notably reduced global m6A modification levels in NSCLC cells. By using the methylated-RNA immunoprecipitation-qPCR and dual-luciferase reporter assays, we verified that long noncoding RNA LINC02747 was a target of METTL14 and was regulated by METTL14-mediated m6A modification, and silencing LINC02747 inhibited the malignant progression of NSCLC by modulating the PI3K/Akt and CDK4/Cyclin D1 signaling pathway. Further studies revealed that overexpression of METTL14 promoted m6A methylation and accelerated the decay of LINC02747 mRNA via increased recognition of the "GAACU" binding site by YTHDC2. Additionally, histone demethylase lysine-specific histone demethylase 5B (KDM5B) mediated the demethylation of histone H3 lysine 4 tri-methylation (H3K4me3) in the METTL14 promoter region and repressed its transcription. In summary, KDM5B downregulated METTL14 expression at the transcriptional level in a H3K4me3-dependent manner, while METTL14 modulated LINC02747 expression via m6A modification. Our results demonstrate a synergy of multiple mechanisms in regulating the malignant phenotype of NSCLC, revealing the complex regulation involved in the occurrence and development of cancer.
Collapse
Affiliation(s)
- Jiemin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotInner MongoliaChina
| | - Shu Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotInner MongoliaChina
| | - Haopeng Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotInner MongoliaChina
| | - Ruixuan Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotInner MongoliaChina
| | - Kesong Shi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotInner MongoliaChina
| | - Yueshi Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotInner MongoliaChina
| | - Le Dou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotInner MongoliaChina
| | - Haiquan Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotInner MongoliaChina
| |
Collapse
|
25
|
Ma A, Shi W, Chen L, Huang Z, Zhang Y, Tang Z, Jiang W, Xu M, Zhou J, Zhang W, Tang S. GRASLND regulates melanoma cell progression by targeting the miR-218-5p/STAM2 axis. J Transl Med 2024; 22:684. [PMID: 39060946 PMCID: PMC11282654 DOI: 10.1186/s12967-024-05397-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Increasing evidence suggests that long noncoding RNAs (lncRNAs) play important regulatory roles in biological processes and are dysregulated in numerous tumors. The lncRNA GRASLND functions as an oncogene in many cancers, but its role in skin cutaneous melanoma (SKCM) requires further investigation. METHODS SiRNA transfection, wound - healing and transwell assays were performed to evaluate the effect of GRASLND on cellular function. RESULTS The present study demonstrated that GRASLND expression is increased in SKCM tissues and cell lines. The high expression of GRASLND was correlated with poor prognosis and immunotherapy outcomes. Knockdown of GRASLND significantly inhibited cell migration and invasion. In addition, we found that miR-218-5p directly binds to its binding site on GRASLND, and GRASLND and miR-218-5p demonstrate mutual inhibition. Furthermore, the miR-218-5p inhibitor partially eliminated the knockdown of GRASLND and inhibited its expression. We also demonstrated that GRASLND acts as a miR-218-5p sponge that positively regulates STAM2 expression in SKCM cells. CONCLUSION In summary, these data suggest that GRASLND functions by regulating miR-218-5p/STAM2 expression, suggesting an important role for the lncRNA‒miRNA-mRNA functional network and a new potential therapeutic target for SKCM.
Collapse
Affiliation(s)
- Aiwei Ma
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515051, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, 515051, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515051, China
| | - Wenqi Shi
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515051, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, 515051, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515051, China
| | - Liyun Chen
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, 515051, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515051, China
- Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515051, China
| | - Zijian Huang
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515051, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, 515051, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515051, China
| | - Yiwen Zhang
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515051, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, 515051, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515051, China
| | - Zixuan Tang
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515051, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, 515051, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515051, China
| | - Wenshi Jiang
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515051, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, 515051, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515051, China
| | - Mengjing Xu
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515051, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, 515051, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515051, China
| | - Jianda Zhou
- Department of Plastic and Reconstructive Surgery, Central South University Third Xiangya Hospital, Changsha, China
| | - Wancong Zhang
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515051, China.
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, 515051, China.
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515051, China.
| | - Shijie Tang
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515051, China.
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, 515051, China.
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515051, China.
| |
Collapse
|
26
|
Yang Y, Fan H, Liu H, Lou X, Xiao N, Zhang C, Chen H, Chen S, Gu H, Liu H, Wan J. NOP2 facilitates EZH2-mediated epithelial-mesenchymal transition by enhancing EZH2 mRNA stability via m5C methylation in lung cancer progression. Cell Death Dis 2024; 15:506. [PMID: 39013911 PMCID: PMC11252406 DOI: 10.1038/s41419-024-06899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
NOP2, a member of the NOL1/NOP2/SUN domain (NSUN) family, is responsible for catalyzing the posttranscriptional modification of RNA through 5-methylcytosine (m5C). Dysregulation of m5C modification has been linked to the pathogenesis of various malignant tumors. Herein, we investigated the expression of NOP2 in lung adenocarcinoma (LUAD) tissues and cells, and found that it was significantly upregulated. Moreover, lentivirus-mediated overexpression of NOP2 in vitro resulted in enhanced migration and invasion capabilities of lung cancer cells, while in vivo experiments demonstrated its ability to promote the growth and metastasis of xenograft tumors. In contrast, knockdown of NOP2 effectively inhibited the growth and metastasis of lung cancer cells. RNA-sequencing was conducted to ascertain the downstream targets of NOP2, and the findings revealed a significant upregulation in EZH2 mRNA expression upon overexpression of NOP2. Subsequent validation experiments demonstrated that NOP2 exerted an m5C-dependent influence on the stability of EZH2 mRNA. Additionally, our investigations revealed a co-regulatory relationship between NOP2 and the m5C reader protein ALYREF in modulating the stability of EZH2 mRNA. Notably, the NOP2/EZH2 axis facilitated the malignant phenotype of lung cancer cells by inducing epithelial-mesenchymal transition (EMT) both in vitro and in vivo. Mechanistically, ChIP analysis proved that EZH2 counteracted the impact of NOP2 on the occupancy capacity of EZH2 and H3K27me3 in the promoter regions of E-cadherin, a gene crucial for regulating EMT. In a word, our research highlights the significant role of NOP2 in LUAD and offers novel mechanistic insights into the NOP2/ALYREF/EZH2 axis, which holds promise as a potential target for lung cancer therapy.
Collapse
Affiliation(s)
- Ying Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongzhao Fan
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xueling Lou
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Nan Xiao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenxing Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huanxiang Chen
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuangshuang Chen
- The Second Clinical Medical College of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Huihui Gu
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China.
| | - Hongchun Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
27
|
Jang S, Lee H, Kim HW, Baek M, Jung S, Kim SJ. Human disease-related long noncoding RNAs: Impact of ginsenosides. J Ginseng Res 2024; 48:347-353. [PMID: 39036728 PMCID: PMC11258377 DOI: 10.1016/j.jgr.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/23/2024] [Accepted: 04/10/2024] [Indexed: 07/23/2024] Open
Abstract
Ginsenosides in ginseng are known for their potential health benefits, including antioxidant properties and their potential to exhibit anticancer effects. Besides a various range of coding genes, ginsenosides impose their efficacy by targeting noncoding RNAs. Long noncoding RNA ( lncRNA) has gained significant attention from both basic and clinical oncology fields due to its involvement in various cancer cell activities such as proliferation, apoptosis, metastasis, and autophagy. These events can be achieved either by lncRNA alone or in association with microRNAs or proteins. This review aims to summarize the diverse activities of lncRNAs that are regulated by ginsenosides, focusing on their role in regulating target genes through signaling pathways in human diseases. We highlight the results of studies on the expression profiles of lncRNAs induced by ginsenosides in efforts to inhibit cancer cell proliferation. Finally, we discuss the potential and challenges of utilizing lncRNAs as diagnostic markers for disease treatment.
Collapse
Affiliation(s)
| | | | - Hyeon Woo Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Minjae Baek
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sanghyun Jung
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
28
|
Wang J, Ye J, Dang Y, Xu S. LncRNA PGM5-AS1 inhibits non-small cell lung cancer progression by targeting miRNA-423-5p/SLIT2 axis. Cancer Cell Int 2024; 24:216. [PMID: 38902704 PMCID: PMC11191156 DOI: 10.1186/s12935-024-03402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/09/2024] [Indexed: 06/22/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a common and aggressive primary malignancy worldwide. Dysregulation of long non-coding RNAs (lncRNAs) has been shown to play an essential regulatory role in multiple cancers. However, the role of PGM5-AS1 in NSCLC remains unclear. Here, we found that PGM5-AS1 was down-regulated in NSCLC tissues and cells. Furthermore, reduced PGM5-AS1 expression levels were associated with larger tumor size, positive lymph node metastasis, advanced TNM stage and worse prognosis. We found that overexpression of PGM5-AS1 inhibited cell proliferation and metastasis, and induced apoptosis and G0/G1 cell cycle arrest in NSCLC cell lines. Using dual luciferase gene reporter and RNA immunoprecipitation assays, we confirmed that miR-423-5p interacted with PGM5-AS1, and that their expression levels were negatively correlated in NSCLC tissues. miR-423-5p was also found to reverse PGM5-AS1-induced malignant biological behavior. Moreover, we identified slit guidance ligand 2 (SLIT2) as a target gene of miR-423-5p. Using a dual luciferase gene reporter assay, we confirmed the regulatory relationship between SLIT2 and miR-423-5p and demonstrated that their expression levels were negatively correlated. Our rescue experiments showed that SLIT2 knockdown reversed miR-423-5p-mediated effects. Overall, this study identifies PGM5-AS1 as a potential prognostic biomarker for NSCLC and shows that PGM5-AS1 suppresses NSCLC development by regulating the miR-423-5p/SLIT2 axis.
Collapse
Affiliation(s)
- Jiajun Wang
- Department of Thoracic Surgery, The First Hospital of China Medical University, No. 155, North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Jun Ye
- Department of Thoracic Surgery, The First Hospital of China Medical University, No. 155, North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Yuxue Dang
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang, 110004, China
| | - Shun Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, No. 155, North Nanjing Street, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
29
|
Wang M, Ding X, Fang X, Xu J, Chen Y, Qian Y, Zhang J, Yu D, Zhang X, Ma X, Zhu T, Gu J, Zhang X. Circ6834 suppresses non-small cell lung cancer progression by destabilizing ANHAK and regulating miR-873-5p/TXNIP axis. Mol Cancer 2024; 23:128. [PMID: 38890620 PMCID: PMC11184876 DOI: 10.1186/s12943-024-02038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play important roles in cancer progression and metastasis. However, the expression profiles and biological roles of circRNAs in non-small cell lung cancer (NSCLC) remain unclear. METHODS In this study, we identified a novel circRNA, hsa_circ_0006834 (termed circ6834), in NSCLC by RNA-seq and investigated the biological role of circ6834 in NSCLC progression in vitro and in vivo. Finally, the molecular mechanism of circ6834 was revealed by tagged RNA affinity purification (TRAP), western blot, RNA immunoprecipitation, dual luciferase reporter gene assays and rescue experiments. RESULTS Our results showed that circ6834 was downregulated in NSCLC tumor tissues and cell lines. Circ6834 overexpression inhibited NSCLC cell growth and metastasis both in vitro and in vivo, while circ6834 knockdown had the opposite effect. We found that TGF-β treatment decreased circ6834 expression, which was associated with the QKI reduction in NSCLC cells and circ6834 antagonized TGF-β-induced EMT and metastasis in NSCLC cells. Mechanistically, circ6834 bound to AHNAK protein, a key regulator of TGF-β/Smad signaling, and inhibited its stability by enhancing TRIM25-mediated ubiquitination and degradation. In addition, circ6834 acted as a miRNA sponge for miR-873-5p and upregulated TXNIP gene expression, which together inactivated the TGF-β/Smad signaling pathway in NSCLC cells. CONCLUSION In conclusion, circ6834 is a tumor-suppressive circRNA that inhibits NSCLC progression by forming a negative regulatory feedback loop with the TGF-β/Smad signaling pathway and represents a novel therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Maoye Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoge Ding
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xinjian Fang
- Department of Oncology, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, 211300, China
| | - Jing Xu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Yanke Chen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Yu Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jiahui Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Dan Yu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoxin Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiuqin Ma
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital affiliated to Jiangsu University, Yixing, 214200, China
| | - Taofeng Zhu
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital affiliated to Jiangsu University, Yixing, 214200, China.
| | - Jianmei Gu
- Departmemt of Clinical Laboratory Medicine, Nantong Tumor Hospital/Affiliated Tumor Hospital of Nantong University, Nantong, 226300, China.
| | - Xu Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
30
|
Lv X, Yang L, Xie Y, Momeni MR. Non-coding RNAs and exosomal non-coding RNAs in lung cancer: insights into their functions. Front Cell Dev Biol 2024; 12:1397788. [PMID: 38859962 PMCID: PMC11163066 DOI: 10.3389/fcell.2024.1397788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/02/2024] [Indexed: 06/12/2024] Open
Abstract
Lung cancer is the second most common form of cancer worldwide Research points to the pivotal role of non-coding RNAs (ncRNAs) in controlling and managing the pathology by controlling essential pathways. ncRNAs have all been identified as being either up- or downregulated among individuals suffering from lung cancer thus hinting that they may play a role in either promoting or suppressing the spread of the disease. Several ncRNAs could be effective non-invasive biomarkers to diagnose or even serve as effective treatment options for those with lung cancer, and several molecules have emerged as potential targets of interest. Given that ncRNAs are contained in exosomes and are implicated in the development and progression of the malady. Herein, we have summarized the role of ncRNAs in lung cancer. Moreover, we highlight the role of exosomal ncRNAs in lung cancer.
Collapse
Affiliation(s)
- Xiaolong Lv
- Department of Cardiothoracic Surgery, The People’s Hospital of Changshou, Chongqing, China
| | - Lei Yang
- Department of Cardiothoracic Surgery, The People’s Hospital of Tongliang District, Chongqing, China
| | - Yunbo Xie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
31
|
Dong N, Qi W, Wu L, Li J, Zhang X, Wu H, Zhang W, Jiang J, Zhang S, Fu W, Liu Q, Qi G, Wang L, Lu Y, Luo J, Kong Y, Liu Y, Zhao RC, Wang J. LINC00606 promotes glioblastoma progression through sponge miR-486-3p and interaction with ATP11B. J Exp Clin Cancer Res 2024; 43:139. [PMID: 38725030 PMCID: PMC11080186 DOI: 10.1186/s13046-024-03058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND LncRNAs regulate tumorigenesis and development in a variety of cancers. We substantiate for the first time that LINC00606 is considerably expressed in glioblastoma (GBM) patient specimens and is linked with adverse prognosis. This suggests that LINC00606 may have the potential to regulate glioma genesis and progression, and that the biological functions and molecular mechanisms of LINC00606 in GBM remain largely unknown. METHODS The expression of LINC00606 and ATP11B in glioma and normal brain tissues was evaluated by qPCR, and the biological functions of the LINC00606/miR-486-3p/TCF12/ATP11B axis in GBM were verified through a series of in vitro and in vivo experiments. The molecular mechanism of LINC00606 was elucidated by immunoblotting, FISH, RNA pulldown, CHIP-qPCR, and a dual-luciferase reporter assay. RESULTS We demonstrated that LINC00606 promotes glioma cell proliferation, clonal expansion and migration, while reducing apoptosis levels. Mechanistically, on the one hand, LINC00606 can sponge miR-486-3p; the target gene TCF12 of miR-486-3p affects the transcriptional initiation of LINC00606, PTEN and KLLN. On the other hand, it can also regulate the PI3K/AKT signaling pathway to mediate glioma cell proliferation, migration and apoptosis by binding to ATP11B protein. CONCLUSIONS Overall, the LINC00606/miR-486-3p/TCF12/ATP11B axis is involved in the regulation of GBM progression and plays a role in tumor regulation at transcriptional and post-transcriptional levels primarily through LINC00606 sponging miR-486-3p and targeted binding to ATP11B. Therefore, our research on the regulatory network LINC00606 could be a novel therapeutic strategy for the treatment of GBM.
Collapse
Affiliation(s)
- Naijun Dong
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, China
| | - Wenxin Qi
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, China
| | - Lingling Wu
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, China
| | - Jie Li
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xueqi Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Hao Wu
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Wen Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiawen Jiang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Shibo Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Wenjun Fu
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Qian Liu
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Guandong Qi
- Residential College, Shanghai University, Shanghai, China
| | - Lukai Wang
- Residential College, Shanghai University, Shanghai, China
| | - Yanyuan Lu
- Residential College, Shanghai University, Shanghai, China
| | - Jingyi Luo
- Residential College, Shanghai University, Shanghai, China
| | - Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihao Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.
- Centre of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China.
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
32
|
Li X, Li W, Wang J, Wang Q, Liang M, Chen S, Ba W, Fang J. Establishment of a novel microfluidic co-culture system for simultaneous analysis of multiple indicators of gefitinib sensitivity in colorectal cancer cells. Mikrochim Acta 2024; 191:279. [PMID: 38647729 DOI: 10.1007/s00604-024-06362-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
The therapeutic effect of gefitinib on colorectal cancer (CRC) is unclear, but it has been reported that stromal cells in the tumor microenvironment may have an impact on drug sensitivity. Herein, we established a microfluidic co-culture system and explored the sensitivity of CRC cells co-cultured with cancer-associated fibroblasts (CAFs) to gefitinib. The system consisted of a multichannel chip and a Petri dish. The chambers in the chip and dish were designed to continuously supply nutrients for long-term cell survival and create chemokine gradients for driving cell invasion without any external equipment. Using this system, the proliferation and invasiveness of cells were simultaneously evaluated by quantifying the area of cells and the migration distance of cells. In addition, the system combined with live cell workstation could evaluate the dynamic drug response of co-cultured cells and track individual cell trajectories in real-time. When CRC cells were co-cultured with CAFs, CAFs promoted CRC cell proliferation and invasion and reduced the sensitivity of cells to gefitinib through the exosomes secreted by CAFs. Furthermore, the cells that migrated out of the chip were collected, and EMT-related markers were determined by immunofluorescent and western blot assays. The results demonstrated that CAFs affected the response of CRC cells to gefitinib by inducing EMT, providing new ideas for further research on the resistance mechanism of gefitinib. This suggests that targeting CAFs or exosomes might be a new approach to enhance CRC sensitivity to gefitinib, and our system could be a novel platform for investigating the crosstalk between tumor cells and CAFs and understanding multiple biological changes of the tumor cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Xin Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, Ministry of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Wanming Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, Ministry of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Jie Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, Ministry of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Qun Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, Ministry of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Menghu Liang
- Department of Cell Biology, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, Ministry of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Shuo Chen
- Department of Cell Biology, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, Ministry of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Wei Ba
- Department of Cell Biology, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, Ministry of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Jin Fang
- Department of Cell Biology, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, Ministry of Public Health, China Medical University, Shenyang, 110122, PR China.
| |
Collapse
|
33
|
Yuan Y, Fan Y, Tang W, Sun H, Sun J, Su H, Fan H. Identification of ALYREF in pan cancer as a novel cancer prognostic biomarker and potential regulatory mechanism in gastric cancer. Sci Rep 2024; 14:6270. [PMID: 38491127 PMCID: PMC10942997 DOI: 10.1038/s41598-024-56895-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
ALYREF is considered as a specific mRNA m5C-binding protein which recognizes m5C sites in RNA and facilitates the export of RNA from the nucleus to the cytoplasm. Expressed in various tissues and highly involved in the transcriptional regulation, ALYREF has the potential to become a novel diagnostic marker and therapeutic target for cancer patients. However, few studies focused on its function during carcinogenesis and progress. In order to explore the role of ALYREF on tumorigenesis, TCGA and GTEx databases were used to investigate the relationship of ALYREF to pan-cancer. We found that ALYREF was highly expressed in majority of cancer types and that elevated expression level was positively associated with poor prognosis in many cancers. GO and KEGG analysis showed that ALYREF to be essential in regulating the cell cycle and gene mismatch repair in tumor progression. The correlation analysis of tumor heterogeneity indicated that ALYREF could be specially correlated to the tumor stemness in stomach adenocarcinoma (STAD). Furthermore, we investigate the potential function of ALYREF on gastric carcinogenesis. Prognostic analysis of different molecular subtypes of gastric cancer (GC) unfolded that high ALYREF expression leads to poor prognosis in certain subtypes of GC. Finally, enrichment analysis revealed that ALYREF-related genes possess the function of regulating cell cycle and apoptosis that cause further influences in GC tumor progression. For further verification, we knocked down the expression of ALYREF by siRNA in GC cell line AGS. Knockdown of ALYREF distinctly contributed to inhibition of GC cell proliferation. Moreover, it is observed that knocked-down of ALYREF induced AGS cells arrested in G1 phase and increased cell apoptosis. Our findings highlighted the essential function of ALYREF in tumorigenesis and revealed the specific contribution of ALYREF to gastric carcinogenesis through pan-cancer analysis and biological experiments.
Collapse
Affiliation(s)
- Yujie Yuan
- The Key Laboratory of Developmental Genes and Human Diseases, Department of Medical Genetics and Developmental Biology, School of Medicine, Ministry of Education, Southeast University, Nanjing, 210009, China
| | - Yiyang Fan
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Wenqing Tang
- School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Hui Sun
- School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Jinghan Sun
- School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Hongmeng Su
- The Key Laboratory of Developmental Genes and Human Diseases, Department of Medical Genetics and Developmental Biology, School of Medicine, Ministry of Education, Southeast University, Nanjing, 210009, China
| | - Hong Fan
- The Key Laboratory of Developmental Genes and Human Diseases, Department of Medical Genetics and Developmental Biology, School of Medicine, Ministry of Education, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
34
|
YE XING, TUO ZHOUTING, CHEN KAI, WU RUICHENG, WANG JIE, YU QINGXIN, YE LUXIA, MIYAMOTO AKIRA, YOO KOOHAN, ZHANG CHI, WEI WURAN, LI DENGXIONG, FENG DECHAO. Pan-cancer analysis of RNA 5-methylcytosine reader (ALYREF). Oncol Res 2024; 32:503-515. [PMID: 38361753 PMCID: PMC10865740 DOI: 10.32604/or.2024.045050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/01/2023] [Indexed: 02/17/2024] Open
Abstract
The increasing interest in RNA modifications has significantly advanced epigenomic and epitranscriptomic technologies. This study focuses on the immuno-oncological impact of ALYREF in human cancer through a pan-cancer analysis, enhancing understanding of this gene's role in cancer. We observed differential ALYREF expression between tumor and normal samples, correlating strongly with prognosis in various cancers, particularly kidney renal papillary cell carcinoma (KIRP) and liver hepatocellular carcinoma (LIHC). ALYREF showed a negative correlation with most tumor-infiltrating cells in lung squamous cell carcinoma (LUSC) and lymphoid neoplasm diffuse large B-cell lymphoma (DLBC), while positive correlations were noted in LIHC, kidney chromophobe (KICH), mesothelioma (MESO), KIRP, pheochromocytoma and paraganglioma (PARD), and glioma (GBMLGG). Additionally, ALYREF expression was closely associated with tumor heterogeneity, stemness indices, and a high mutation rate in TP53 across these cancers. In conclusion, ALYREF may serve as an oncogenic biomarker in numerous cancers, meriting further research attention.
Collapse
Affiliation(s)
- XING YE
- Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - ZHOUTING TUO
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - KAI CHEN
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - RUICHENG WU
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - JIE WANG
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - QINGXIN YU
- Department of Pathology, Ningbo Diagnostic Pathology Center, Ningbo, 315021, China
| | - LUXIA YE
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - AKIRA MIYAMOTO
- Department of Rehabilitation, West Kyushu University, Kanzaki-shi, 842-8585, Japan
| | - KOO HAN YOO
- Department of Urology, Kyung Hee University, Seoul, 446 701, South Korea
| | - CHI ZHANG
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - WURAN WEI
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - DENGXIONG LI
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - DECHAO FENG
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
35
|
Zhao Y, Xing C, Peng H. ALYREF (Aly/REF export factor): A potential biomarker for predicting cancer occurrence and therapeutic efficacy. Life Sci 2024; 338:122372. [PMID: 38135116 DOI: 10.1016/j.lfs.2023.122372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
5-Methylcytosine (m5C) methylation is present in almost all types of RNA as an essential epigenetic modification. It is dynamically modulated by its associated enzymes, including m5C methyltransferases (NSUN, DNMT and TRDMT family members), demethylases (TET family and ALKBH1) and binding proteins (YTHDF2, ALYREF and YBX1). Among them, aberrant expression of the RNA-binding protein ALYREF can facilitate a variety of malignant phenotypes such as maintenance of proliferation, malignant heterogeneity, metastasis, and drug resistance to cell death through different regulatory mechanisms, including pre-mRNA processing, mRNA stability, and nuclear-cytoplasmic shuttling. The induction of these cellular processes by ALYREF results in treatment resistance and poor outcomes for patients. However, there are currently few reports of clinical applications or drug trials related to ALYREF. In addition, the looming observations on the role of ALYREF in the mechanisms of carcinogenesis and disease prognosis have triggered considerable interest, but critical evidence is not available. For example, animal experiments and ALYREF small molecule inhibitor trials. In this review, we, therefore, revisit the literature on ALYREF and highlight its importance as a prognostic biomarker for early prevention and as a therapeutic target.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, Hunan 410011, China; Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan 410011, China.
| |
Collapse
|
36
|
Fu J, Yu L, Yan H, Tang S, Wang Z, Dai T, Chen H, Zhang S, Hu H, Liu T, Tang S, He R, Zhou H. LncRNAs in non-small cell lung cancer: novel diagnostic and prognostic biomarkers. Front Mol Biosci 2023; 10:1297198. [PMID: 38152110 PMCID: PMC10751344 DOI: 10.3389/fmolb.2023.1297198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/21/2023] [Indexed: 12/29/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the main causes of cancer-related death worldwide, with a serious impact on human health and life. The identification of NSCLC at an early stage is a formidable task that frequently culminates in a belated diagnosis. LncRNA is a kind of noncoding RNA with limited protein-coding capacity, and its expression is out of balance in many cancers, especially NSCLC. A large number of studies have reported that lncRNA acts a vital role in regulating angiogenesis, invasion, metastasis, and the proliferation and apoptosis of tumor cells, affecting the occurrence and development of NSCLC. Abundant evidence demonstrates that lncRNAs may serve as potential biomarkers for NSCLC diagnosis and prognosis. In this review, we summarize the latest progress in characterizing the functional mechanism of lncRNAs involved in the development of NSCLC and further discuss the role of lncRNAs in NSCLC therapy and chemotherapy resistance. We also discuss the advantages, limitations, and challenges of using lncRNAs as diagnostic or prognostic biomarkers in the management of NSCLC.
Collapse
Affiliation(s)
- Jiang Fu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Yu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Department of Physical Examination, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Hang Yan
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
| | - Shengjie Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Zixu Wang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Dai
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
| | - Haoyu Chen
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, North Sichuan Medical College, Nanchong, China
| | - Song Zhang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, North Sichuan Medical College, Nanchong, China
| | - Haiyang Hu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
| | - Tao Liu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Shoujun Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Rong He
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Haining Zhou
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
- Institute of Surgery, Graduate School, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
37
|
Chen P, Yu J, Luo Q, Li J, Wang W. Construction of disulfidptosis-related lncRNA signature for predicting the prognosis and immune escape in colon adenocarcinoma. BMC Gastroenterol 2023; 23:382. [PMID: 37946148 PMCID: PMC10636996 DOI: 10.1186/s12876-023-03020-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Colon adenocarcinoma (COAD) is one of the most frequent types of cancer worldwide. Disulfidptosis has been identified as a new mode of cell death recently. The goal of this study was to explore the possibility of a connection between disulfidptosis and COAD. RNA sequencing data from COAD patients were retrieved from the The Cancer Genome Atlas (TCGA) database for this investigation. R software and various methods were used to identify disulfidptosis-related lncRNAs (DRLs) in COAD, and a prognostic model was created based on 6 DRLs (AP003555.1, AL683813.1, SNHG7, ZEB1-AS1, AC074212.1, RPL37A-DT). The prognostic model demonstrated a good accuracy in predicting the prognosis of COAD patients, according to receiver operating characteristic (ROC) curve and Concordance index (C-index) analyses. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed significant differences in biological functions and signaling pathways involved in differential genes in risk subgroups, including protein - DNA complex subunit organization, Hippo signaling pathway, Wnt signaling pathway. TIDE analysis was done on risk groupings in this study, and it found that patients in the high-risk group had more immune escape potential and were less probable to react to immunotherapy. Real-time quantitative pcr (qRT-PCR) was used to identify the relatively high expression of 6 DRLs in colon cancer cell lines. In summary, 6 DRLs were identified as possible novel molecular therapy targets for COAD in this investigation. This prognostic model has the potential to be a novel tool for forecasting COAD prognosis in clinical practice, as well as providing new insights on the potential function and mechanism of disulfidptosis in the COAD process.
Collapse
Affiliation(s)
- Pan Chen
- Department of General Surgery, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, 211102, China
| | - Jun Yu
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Taicang Hospital of Traditional Chinese Medicine, Taicang, 215400, China
| | - Qian Luo
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China
| | - Jie Li
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China.
| | - Wei Wang
- Department of Clinical Laboratory, Lianshui County People's Hospital, Huai'an, 223400, China.
| |
Collapse
|