1
|
Hu Y, Xu L, Miao X, Xie Y, Zhang Z, Wang Y, Ren W, Jiang W, Wang X, Wu A, Lin J. SERS/Fluorescence Dual-Modal Imaging Bioprobe for Accurate Diagnosis of Breast Cancer. Anal Chem 2025; 97:5527-5537. [PMID: 40025760 DOI: 10.1021/acs.analchem.4c05800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Early diagnosis and precise identification of breast cancer subtypes are vital. However, current detection methods are often hindered by high costs and complexity. This study aims to develop an efficient and noninvasive method to realize efficient breast cancer detection. First, hexoctahedral gold nanoparticles (Au HNPs) are constructed, which detect molecules with concentrations as low as 10-12 M, and the EF value is ∼3.8 × 108. Then, two optical bioprobes with a surface-enhanced Raman scattering (SERS)-fluorescence (FL) dual-modal function for breast cancer cell detection and subtype identification are designed. These bioprobes exhibit excellent SERS stability since the spectral relative standard deviation (RSD) of the SERS-FL bioprobe achieves a good level of ∼10.4%. Additionally, the clear distinction between breast cancer cells and white blood cells (WBCs) under a fluorescence microscope showed that bioprobes have a good fluorescence imaging ability. More importantly, by creatively stitching the SERS spectra of the two bioprobes, a "symphonic SERS spectra" is constructed, and a linear discriminant analysis (LDA) machine learning algorithm is employed, enabling high-precision classification of breast cancer subtypes with an accuracy of 94%. This study proposes an innovative strategy combined with SERS and FL technology, which provides the possibility for rapid and accurate detection of breast cancer subtypes.
Collapse
Affiliation(s)
- Yue Hu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
| | - Lei Xu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xinyu Miao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
| | - Yujiao Xie
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Zhouxu Zhang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yuening Wang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Wenzhi Ren
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Wenting Jiang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
| | - Xiaotian Wang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Jie Lin
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| |
Collapse
|
2
|
Ostruszka R, Halili A, Pluháček T, Rárová L, Jirák D, Šišková K. Advanced protein-embedded bimetallic nanocomposite optimized for in vivo fluorescence and magnetic resonance bimodal imaging. J Colloid Interface Sci 2024; 663:467-477. [PMID: 38422973 DOI: 10.1016/j.jcis.2024.02.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
HYPOTHESIS The development of bimodal imaging probes represents a hot topic of current research. Herein, we deal with developing an innovative bimodal contrast agent enabling fluorescence imaging (FI)/magnetic resonance imaging (MRI) and, simultaneously, consisting of biocompatible nanostructures. Optimized synthesis of advanced protein-embedded bimetallic (APEBM) nanocomposite containing luminescent gold nanoclusters (AuNC) and superparamagnetic iron oxide nanoparticles (SPION), suitable for in vivo dual-modal FI/MR imaging is reported. EXPERIMENTS The APEBM nanocomposite was prepared by a specific sequential one-pot green synthetic approach that is optimized to increase metals (Au, Fe) content and, consequently, the imaging ability of the resulting nanostructures. The protein matrix, represented by serum albumin, was intentionally chosen, and used since it creates an efficient protein corona for both types of optically/magnetically-susceptible nanostructures (AuNC, SPION) and ensures biocompatibility of the resulting APEBM nanocomposite although it contains elevated metal concentrations (approx. 1 mg·mL-1 of Au, around 0.3 mg·mL-1 of Fe). In vitro and in vivo imaging was performed. FINDINGS Successful in vivo FI and MRI recorded in healthy mice corroborated the applicability of the APEBM nanocomposite and, simultaneously, served as a proof of concept concerning the potential future exploitation of this new FI/MRI bimodal contrast agent in preclinical and clinical practice.
Collapse
Affiliation(s)
- Radek Ostruszka
- Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, tř. 17. listopadu 12, 77900 Olomouc, Czech Republic
| | - Aminadav Halili
- Institute for Clinical and Experimental Medicine, Vídeňská 9, 140 21 Prague, Czech Republic
| | - Tomáš Pluháček
- Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, tř. 17. listopadu 12, 77900 Olomouc, Czech Republic
| | - Lucie Rárová
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| | - Daniel Jirák
- Institute for Clinical and Experimental Medicine, Vídeňská 9, 140 21 Prague, Czech Republic; Faculty of Health Studies, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic
| | - Karolína Šišková
- Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, tř. 17. listopadu 12, 77900 Olomouc, Czech Republic.
| |
Collapse
|
3
|
Recent applications of phase-change materials in tumor therapy and theranostics. BIOMATERIALS ADVANCES 2023; 147:213309. [PMID: 36739784 DOI: 10.1016/j.bioadv.2023.213309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Phase-change materials (PCMs) are a type of special material which can store and release a large amount of thermal energy without any significant temperature change. They are emerging in recent years as a promising functional material in tumor therapy and theranostics due to their accurate responses to the temperature variations, biocompatibility and low toxicity. In this review, we will introduce the main types of PCMs and their desirable physiochemical properties for biomedical applications, and highlight the recent progress of PCM's applications in the modulated release of antitumor drugs, with special attentions paid to various ways to initiate temperature-dependent phase change, the concomitant thermal therapy and its combination with or activation of other therapies, particularly unconventional therapies. We will also summarize PCM's recent applications in tumor theranostics, where both drugs and imaging probes are delivered by PCMs for controlled drug release and imaging-guided therapy. Finally, the future perspectives and potential limitations of harnessing PCMs in tumor therapy will be discussed.
Collapse
|
4
|
Fuloria S, Subramaniyan V, Gupta G, Sekar M, Meenakshi DU, Sathasivam K, Sudhakar K, Alharbi KS, Almutairi SS, Almalki WH, Fuloria NK. Detection of Circulating Tumor Cells and Epithelial Progenitor Cells: A Comprehensive Study. J Environ Pathol Toxicol Oncol 2023; 42:1-29. [PMID: 37017676 DOI: 10.1615/jenvironpatholtoxicoloncol.2022044456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Technological advancement to enhance tumor cells (TC) has allowed discovery of various cellular bio-markers: cancer stem cells (CSC), circulating tumor cells (CTC), and endothelial progenitor cells (EPC). These are responsible for resistance, metastasis, and premetastatic conditions of cancer. Detection of CSC, CTC, and EPC assists in early diagnosis, recurrence prediction, and treatment efficacy. This review describes various methods to detect TC subpopulations such as in vivo assays (sphere-forming, serial dilution, and serial transplantation), in vitro assays (colony-forming cells, microsphere, side-population, surface antigen staining, aldehyde dehydrogenase activity, and Paul Karl Horan label-retaining cells, surface markers, nonenriched and enriched detection), reporter systems, and other analytical methods (flow cytometry, fluorescence microscopy/spectroscopy, etc.). The detailed information on methods to detect CSC, CTC, and EPC in this review will assist investigators in successful prognosis, diagnosis, and cancer treatment with greater ease.
Collapse
Affiliation(s)
- Shivkanya Fuloria
- Faculty of Pharmacy /Centre of Excellence for Biomaterials Engineering, AIMST University, Kedah 08100, Malaysia
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom Selangor, Malaysia
| | - Gaurav Gupta
- Department of Pharmacology, Suresh GyanVihar University, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Perak, Malaysia
| | | | | | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences (LIT-Pharmacy), Lovely Professional University, Jalandhar 144411, India
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy/Centre of Excellence for Biomaterials Engineering, AIMST University, Kedah 08100, Malaysia
| |
Collapse
|
5
|
Xu W, Zhang J, Yang Z, Zhao M, Long H, Wu Q, Nian F. Tannin-Mn coordination polymer coated carbon quantum dots nanocomposite for fluorescence and magnetic resonance bimodal imaging. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:16. [PMID: 35072786 PMCID: PMC8786750 DOI: 10.1007/s10856-021-06629-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
The MR/FI bimodal imaging has attracted widely studied due to combining the advantages of MRI and FI can bridge gaps in sensitivity and depth between these two modalities. Herein, a novel MR/FI bimodal imaging probe is facile fabricated by coating the Mn-phenolic coordination polymer on the surface of the carbon quantum dots. The structure of the as-prepared nanocomposite probe is carefully validated via SEM, TEM, and XPS. The content of Mn2+ is calculated through the EDS and TGA. The quantum yield (QY) and emission wavelength of the probe are about 7.24% and 490 nm, respectively. The longitudinal r1 value (2.43 mM-1 s-1) with low r2/r1 (4.45) of the probe is obtained. Subsequently, fluorescence and MR imaging are performed. The metabolic pathways in vivo are inferred by studying the bio-distribution of the probe in major organs. Thus, these results indicate that probe would be an excellent dual-modal imaging probe for enhanced MR imaging and fluorescence imaging. MR/FI bimodal imaging probe is built via in-situ coated Mn-phenolic coordination polymer on the surface of the carbon quantum dots. The in vitro and vivo image property of the probe is evaluated.
Collapse
Affiliation(s)
- Weibing Xu
- College of Science, Gansu Agricultural University, Lanzhou, 730000, China.
| | - Jia Zhang
- College of Science, Gansu Agricultural University, Lanzhou, 730000, China
| | - Zhijie Yang
- College of Life Science, Gansu Agricultural University, Lanzhou, 730000, China
| | - Minzhi Zhao
- College of Science, Gansu Agricultural University, Lanzhou, 730000, China
| | - Haitao Long
- College of Science, Gansu Agricultural University, Lanzhou, 730000, China
| | - Qingfeng Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Fang Nian
- College of Science, Gansu Agricultural University, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Chowdhury S, Ghosh S. Nanoparticles and Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Han C, Xie T, Wang K, Jin S, Li K, Dou P, Yu N, Xu K. Development of fluorescence/MR dual-modal manganese-nitrogen-doped carbon nanosheets as an efficient contrast agent for targeted ovarian carcinoma imaging. J Nanobiotechnology 2020; 18:175. [PMID: 33256741 PMCID: PMC7708123 DOI: 10.1186/s12951-020-00736-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Background Development of sensitive and specific imaging approaches for the detection of ovarian cancer holds great promise for improving the therapeutic efficacy and the lifespan of the patients. Results In this study, manganese-nitrogen doped carbon nanosheets (Mn-N-CNSs) coupled with Anti-HE4 monoclonal antibody (Mn-N-CNSs@Anti-HE4) were synthesized for the specific and targeted fluorescence/MR dual-modal imaging of ovarian carcinoma. The prepared Mn-N-CNSs revealed excellent aqueous dispersity, good colloidal stability, great optical properties and high longtudinal relaxivity rate (r1 = 10.30 mM−1 s−1). Encouraged by the tunable photoluminiscence of the nanoprobe and Anti-HE4 targeting ligand, the ovarian carcinoma cells were specifically labeled by the Mn-N-CNSs@Anti-HE4 nanoprobe with multi-color fluorescences. Benefiting from the high r1 relaxivity, the nanoprobe exhibited targeted and enhanced MR contrast effect in the ovarian carcinoma cells and tumor bearing mice model. Besides, the high biocompatibility and easy excretion from the body of the nanoprobe were further confirmed in vivo. Conclusion The prepared Mn-N-CNSs@Anti-HE4 with excellent biocompatibility, high-performance and superior tumor-targeting ability provides a novel fluorescence/MR dual-modal nanoprobe for specific labeling and detection of ovarian carcinoma cells in vitro and in vivo. ![]()
Collapse
Affiliation(s)
- Cuiping Han
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China. .,Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
| | - Ting Xie
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Keying Wang
- Department of Medical Imaging, Jinshan Hospital Affiliated To Fudan University, Shnghai, 200540, China
| | - Shang Jin
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Ke Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Peipei Dou
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Nana Yu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Kai Xu
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
8
|
Kukkar D, Kukkar P, Kumar V, Hong J, Kim KH, Deep A. Recent advances in nanoscale materials for antibody-based cancer theranostics. Biosens Bioelectron 2020; 173:112787. [PMID: 33190049 DOI: 10.1016/j.bios.2020.112787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
The quest for advanced management tools or options of various cancers has been on the rise to efficiently reduce their risks of mortality without the demerits of conventional treatments (e.g., undesirable side effects of the medications on non-target tissues, non-targeted distribution, slow clearance of the administered drugs, and the development of drug resistance over the duration of therapy). In this context, nanomaterials-antibody conjugates can offer numerous advantages in the development of cancer theranostics over conventional delivery systems (e.g., highly specific and enhanced biodistribution of the drug in targeted tissues, prolonged systemic circulation, low toxicity, and minimally invasive molecular imaging). This review comprehensively discusses and evaluates recent advances in the application of nanomaterial-antibody bioconjugates for cancer theranostics for the further advancement in the control of diverse cancerous diseases. Further, discussion is expanded to cover the various challenges and limitations associated with the design and development of nanomaterial-antibody conjugates applicable towards better management of cancer.
Collapse
Affiliation(s)
- Deepak Kukkar
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India
| | - Preeti Kukkar
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, Punjab, 140406, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763 Republic of Korea.
| | - Akash Deep
- Central Scientific Instruments Organization (CSIR-CSIO), Sector 30 C, Chandigarh, 160030, India.
| |
Collapse
|
9
|
Jariyal H, Gupta C, Bhat VS, Wagh JR, Srivastava A. Advancements in Cancer Stem Cell Isolation and Characterization. Stem Cell Rev Rep 2020; 15:755-773. [PMID: 31863337 DOI: 10.1007/s12015-019-09912-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Occurrence of stem cells (CSCs) in cancer is well established in last two decades. These rare cells share several properties including presence of common surface markers, stem cell markers, chemo- and radio- resistance and are highly metastatic in nature; thus, considered as valuable prognostic and therapeutic targets in cancer. However, the studies related to CSCs pave number of issues due to rare cell population and difficulties in their isolation ascribed to common stem cell marker. Various techniques including flow cytometry, laser micro-dissection, fluorescent nanodiamonds and microfluidics are used for the isolation of these rare cells. In this review, we have included the advance strategies adopted for the isolation of CSCs using above mentioned techniques. Furthermore, CSCs are primarily found in the core of the solid tumors and their microenvironment plays an important role in maintenance, self-renewal, division and tumor development. Therefore, in vivo tracking and model development become obligatory for functional studies of CSCs. Fluorescence and bioluminescence tagging has been widely used for transplantation assay and lineage tracking experiments to improve our understanding towards CSCs behaviour in their niche. Techniques such as Magnetic resonance imaging (MRI) and Positron emission tomography (PET) have proved useful for tracking of endogenous CSCs which could be helpful in their identification in clinical settings.
Collapse
Affiliation(s)
- Heena Jariyal
- Department of Biotechnology, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Chanchal Gupta
- Department of Biotechnology, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Vedika Sandeep Bhat
- Department of Biotechnology, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Jayant Ramakant Wagh
- Department of Biotechnology, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Akshay Srivastava
- Department of Medical Device, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India.
| |
Collapse
|
10
|
Mohammadpour Z, Majidzadeh-A K. Applications of Two-Dimensional Nanomaterials in Breast Cancer Theranostics. ACS Biomater Sci Eng 2020; 6:1852-1873. [PMID: 33455353 DOI: 10.1021/acsbiomaterials.9b01894] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Breast cancer is the leading cause of cancer-related mortality among women. Early stage diagnosis and treatment of this cancer are crucial to patients' survival. In addition, it is important to avoid severe side effects during the process of conventional treatments (surgery, chemotherapy, hormonal therapy, and targeted therapy) and increase the patients' quality of life. Over the past decade, nanomaterials of all kinds have shown excellent prospects in different aspects of oncology. Among them, two-dimensional (2D) nanomaterials are unique due to their physical and chemical properties. The functional variability of 2D nanomaterials stems from their large specific surface area as well as the diversity of composition, electronic configurations, interlayer forces, surface functionalities, and charges. In this review, the current status of 2D nanomaterials in breast cancer diagnosis and therapy is reviewed. In this respect, sensing of the tumor biomarkers, imaging, therapy, and theranostics are discussed. The ever-growing 2D nanomaterials are building blocks for the development of a myriad of nanotheranostics. Accordingly, there is the possibility to explore yet novel properties, biological effects, and oncological applications.
Collapse
Affiliation(s)
- Zahra Mohammadpour
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1315685981, Iran
| | - Keivan Majidzadeh-A
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1315685981, Iran
| |
Collapse
|
11
|
A literature review on multimodality molecular imaging nanoprobes for cancer detection. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2019. [DOI: 10.2478/pjmpe-2019-0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Molecular imaging techniques using nanoparticles have significant potential to be widely used for the detection of various types of cancers. Nowadays, there has been an increased focus on developing novel nanoprobes as molecular imaging contrast enhancement agents in nanobiomedicine. The purpose of this review article is to summarize the use of a variety of nanoprobes and their current achievements in accurate cancer imaging and effective treatment. Nanoprobes are rapidly becoming potential tools for cancer diagnosis by using novel molecular imaging modalities such as Ultrasound (US) imaging, Computerized Tomography (CT), Single Photon Emission Tomography (SPECT) and Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI), and Optical Imaging. These imaging modalities may facilitate earlier and more accurate diagnosis and staging the most of cancers.
Collapse
|
12
|
Deng Y, Xu A, Yu Y, Fu C, Liang G. Biomedical Applications of Fluorescent and Magnetic Resonance Imaging Dual‐Modality Probes. Chembiochem 2018; 20:499-510. [DOI: 10.1002/cbic.201800450] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Yun Deng
- Institute for Interdisciplinary & Research Key Laboratory of, Optoelectronic Chemical Materials and Devices of Ministry of EducationJianghan University Wuhan 430056 P.R. China
| | - Aifei Xu
- School of Tobacco Science and EngineeringZhengzhou University of Light Industry Zhengzhou 450002 P.R. China
| | - Yanhua Yu
- Institute for Interdisciplinary & Research Key Laboratory of, Optoelectronic Chemical Materials and Devices of Ministry of EducationJianghan University Wuhan 430056 P.R. China
| | - Cheng Fu
- Institute for Interdisciplinary & Research Key Laboratory of, Optoelectronic Chemical Materials and Devices of Ministry of EducationJianghan University Wuhan 430056 P.R. China
| | - Gaolin Liang
- CAS Key Laboratory of Soft Matter ChemistryDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 P.R. China
| |
Collapse
|
13
|
Avitabile E, Bedognetti D, Ciofani G, Bianco A, Delogu LG. How can nanotechnology help the fight against breast cancer? NANOSCALE 2018; 10:11719-11731. [PMID: 29917035 DOI: 10.1039/c8nr02796j] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this review we provide a broad overview on the use of nanotechnology for the fight against breast cancer (BC). Nowadays, detection, diagnosis, treatment, and prevention may be possible thanks to the application of nanotechnology to clinical practice. Taking into consideration the different forms of BC and the disease status, nanomaterials can be designed to meet the most forefront objectives of modern therapy and diagnosis. We have analyzed in detail three main groups of nanomaterial applications for BC treatment and diagnosis. We have identified several types of drugs successfully conjugated with nanomaterials. We have analyzed the main important imaging techniques and all nanomaterials used to help the non-invasive, early detection of the lesions. Moreover, we have examined theranostic nanomaterials as unique tools, combining imaging, detection, and therapy for BC. This state of the art review provides a useful guide depicting how nanotechnology can be used to overcome the current barriers in BC clinical practice, and how it will shape the future scenario of treatments, prevention, and diagnosis, revolutionizing the current approaches, e.g., reducing the suffering related to chemotherapy.
Collapse
Affiliation(s)
- Elisabetta Avitabile
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.
| | | | | | | | | |
Collapse
|
14
|
He L, Gu J, Lim LY, Yuan ZX, Mo J. Nanomedicine-Mediated Therapies to Target Breast Cancer Stem Cells. Front Pharmacol 2016; 7:313. [PMID: 27679576 PMCID: PMC5020043 DOI: 10.3389/fphar.2016.00313] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidences have suggested the existence of breast cancer stem cells (BCSCs), which possess the potential of both self-renewal and differentiation. The origin of BCSCs might have relationship to the development of normal mammary stem cells. BCSCs are believed to play a key role in the initiation, recurrence and chemo-/radiotherapy resistances of breast cancer. Therefore, elimination of BCSCs is crucial for breast cancer therapy. However, conventional chemo and radiation therapies cannot eradicate BCSCs effectively. Fortunately, nanotechnology holds great potential for specific and efficient anti-BCSCs treatment. “Smart” nanocarriers can distinguish BCSCs from the other breast cancer cells and selectively deliver therapeutic agents to the BCSCs. Emerging findings suggest that BCSCs in breast cancer could be successfully inhibited and even eradicated by functionalized nanomedicines. In this review, we focus on origin of BCSCs, strategies used to target BCSCs, and summarize the nanotechnology-based delivery systems that have been applied for eliminating BCSCs in breast cancer.
Collapse
Affiliation(s)
- Lili He
- College of Pharmacy, Southwest University for Nationalities Chengdu, China
| | - Jian Gu
- College of Pharmacy, Southwest University for Nationalities Chengdu, China
| | - Lee Y Lim
- Pharmacy, School of Medicine and Pharmacology, The University of Western Australia, Crawley WA, Australia
| | - Zhi-Xiang Yuan
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Jingxin Mo
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education Guangzhou, China
| |
Collapse
|