1
|
Zhao X, Zhong Q, Abudouaini N, Zhao Y, Zhang J, Tan G, Miao G, Wang X, Liu J, Pan Y, Wang X. Switchable Nanophotosensitizers as Pyroptosis Inducers for Targeted Boosting of Antitumor Photoimmunotherapy. Biomacromolecules 2025; 26:3065-3083. [PMID: 40200409 DOI: 10.1021/acs.biomac.5c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Photodynamic therapy (PDT) has emerged as a promising modality for cancer treatment, but its clinical application is constrained by unexpected phototoxicity arising from nonspecific photosensitizer activation and their "always-on" nature. Herein, we developed a switchable nanophotosensitizer, poly(cation-π) nanoparticles (NP), which achieves supramolecular assembly through cation-π interactions. By coupling choline cationic moieties with aromatic photosensitizers (ZnPc), the polymer facilitates self-assembly driven by cation-π interactions for NP engineering. Surprisingly, the photoactivity of ZnPc was completely quenched upon complexation via cation-π interactions, thereby significantly avoiding skin phototoxicity. Upon targeting tumor cells, NP undergoes a GSH-responsive degradation process that weakens cation-π interactions, leading to spontaneous restoration of photoactivity and amplifying tumor immunogenic pyroptosis. In vivo studies demonstrated that NP achieved a high tumor inhibition rate of 84% while effectively avoiding skin phototoxicity. This work provides a novel perspective for enhancing the safety and efficacy of PDT-based tumor treatment.
Collapse
Affiliation(s)
- Xiaoxi Zhao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qinjie Zhong
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Naibijiang Abudouaini
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yan Zhao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jibin Zhang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guozhu Tan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guifeng Miao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Jianqiang Liu
- Guangdong Provincial Key Laboratory of Natural Drugs Research and Development, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Ying Pan
- Guangdong Provincial Key Laboratory of Natural Drugs Research and Development, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Xiaorui Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| |
Collapse
|
2
|
Cai J, Xu Y, Liao F. Advances in multifunctional metal-organic framework (MOF)-based nanoplatforms for cancer starvation therapy. Expert Rev Mol Med 2024; 26:e27. [PMID: 39397711 PMCID: PMC11488333 DOI: 10.1017/erm.2024.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024]
Abstract
Cancer remains a significant threat to human health today. Even though starvation therapy and other treatment methods have recently advanced to a new level of rapid development in tumour treatment, their limited therapeutic effectiveness and unexpected side effects prevent them from becoming the first option in clinical treatment. With rapid advancement in nanotechnology, the utilization of nanomaterials in therapeutics offers the potential to address the shortcomings in cancer treatment. Notably, multifunctional metal-organic framework (MOF) has been widely employed in cancer therapy due to their customizable shape, adjustable diameter, high porosity, diverse compositions, large specific surface area, high degree of functionalization and strong biocompatibility. This paper reviews the current progress and success of MOF-based multifunctional nanoplatforms for cancer starvation therapy, as well as the prospects and potential barriers for the application of MOF nanoplatforms in cancer starvation therapy.
Collapse
Affiliation(s)
- Jinghan Cai
- Renmin Hospital of Wuhan University, Wuhan University, Wuhan, P. R. China
| | - Yan Xu
- University Hospital, Wuhan Institute of Technology, Wuhan, P. R. China
| | - Fei Liao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| |
Collapse
|
3
|
Qi G, Chen K, Guan W, Xie J, Chen X, Zhang G, Yan R, Yang G. One-Pot Synthesis of a pH-Sensitive MOF Integrated with Glucose Oxidase for Amplified Tumor Photodynamic/Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49083-49091. [PMID: 39228328 DOI: 10.1021/acsami.4c10006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Photothermal therapy (PTT) and photodynamic therapy (PDT) provide targeted approaches to cancer treatment, but each therapy has inherent limitations such as insufficient tissue penetration, uneven heat distribution, extreme hypoxia, and overexpressed HSP90 in tumor cells. To address these issues, herein, by encapsulating the IR780 dye and glucose oxidase (GOx) enzyme within ZIF-8 nanoparticles, we created a versatile system capable of combining photodynamic and enhanced photothermal therapy. The integration of the IR780 dye facilitated the generation of reactive oxygen species and hyperthermia upon light activation, enabling dual-mode cancer cell ablation. Moreover, GOx catalyzes the decomposition of glucose into gluconic acid and hydrogen peroxide, leading to the inhibition of ATP production and downregulation of heat shock protein 90 (HSP90) expression, sensitizing cancer cells to heat-induced cytotoxicity. This synergistic combination resulted in significantly improved therapeutic outcomes. Both in vitro and in vivo results validated that the nanoplatform demonstrated superior specificity and favorable therapeutic responses. Our innovative approach represents a promising strategy for overcoming current limitations in cancer treatments and offers the potential for clinical translation in the future.
Collapse
Affiliation(s)
- Guiqiang Qi
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Kang Chen
- Department of Gastroenterology of Southwest Hospital Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Wenhua Guan
- Linyi Hospital of Traditional Chinese Medicine, Linyi 276005, P. R. China
| | - Junyu Xie
- Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Xiangyan Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, P.R. China
| | - Guanhua Zhang
- Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Ran Yan
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, P.R. China
| | - Geng Yang
- Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| |
Collapse
|
4
|
Meng Y, Huang J, Ding J, Zhou H, Li Y, Zhou W. Mn-phenolic networks as synergistic carrier for STING agonists in tumor immunotherapy. Mater Today Bio 2024; 26:101018. [PMID: 38516172 PMCID: PMC10952078 DOI: 10.1016/j.mtbio.2024.101018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
The cGAS-STING pathway holds tremendous potential as a regulator of immune responses, offering a means to reshape the tumor microenvironment and enhance tumor immunotherapy. Despite the emergence of STING agonists, their clinical viability is hampered by stability and delivery challenges, as well as variations in STING expression within tumors. In this study, we present Mn-phenolic networks as a novel carrier for ADU-S100, a hydrophilic STING agonist, aimed at bolstering immunotherapy. These nanoparticles, termed TMA NMs, are synthesized through the coordination of tannic acid and manganese ions, with surface modification involving bovine serum albumin to enhance their colloidal stability. TMA NMs exhibit pH/GSH-responsive disintegration properties, enabling precise drug release. This effectively addresses drug stability issues and facilitates efficient intracellular drug delivery. Importantly, TMA NMs synergistically enhance the effects of ADU-S100 through the concurrent release of Mn2+, which serves as a sensitizer of the STING pathway, resulting in significant STING pathway activation. Upon systemic administration, these nanoparticles efficiently accumulate within tumors. The activation of STING pathways not only induces immunogenic cell death (ICD) in tumor cells but also orchestrates systemic remodeling of the immunosuppressive microenvironment. This includes the promotion of cytokine release, dendritic cell maturation, and T cell infiltration, leading to pronounced suppression of tumor growth. Combining with the excellent biocompatibility and biodegradability, this Mn-based nanocarrier represents a promising strategy for enhancing tumor immunotherapy through the cGAS-STING pathway.
Collapse
Affiliation(s)
- Yingcai Meng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
- Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jiaxin Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Haiyan Zhou
- Department of Pathology, School of Basic Medicine, Central South University, China
- Department of Pathology, Xiangya Hospital, Central South University, China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children's Hospital, Changsha 410004, Hunan, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| |
Collapse
|
5
|
Jiang Y, Zhao J, Zhang D. Manganese Dioxide-Based Nanomaterials for Medical Applications. ACS Biomater Sci Eng 2024; 10:2680-2702. [PMID: 38588342 DOI: 10.1021/acsbiomaterials.3c01852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Manganese dioxide (MnO2) nanomaterials can react with trace hydrogen peroxide (H2O2) to produce paramagnetic manganese (Mn2+) and oxygen (O2), which can be used for magnetic resonance imaging and alleviate the hypoxic environment of tumors, respectively. MnO2 nanomaterials also can oxidize glutathione (GSH) to produce oxidized glutathione (GSSG) to break the balance of intracellular redox reactions. As a consequence of the sensitivity of the tumor microenvironment to MnO2-based nanomaterials, these materials can be used as multifunctional diagnostic and therapeutic platforms for tumor imaging and treatment. Importantly, when MnO2 nanomaterials are implanted along with other therapeutics, synergetic tumor therapy can be achieved. In addition to tumor treatment, MnO2-based nanomaterials display promising prospects for tissue repair, organ protection, and the treatment of other diseases. Herein, we provide a thorough review of recent progress in the use of MnO2-based nanomaterials for biomedical applications, which may be helpful for the design and clinical translation of next-generation MnO2 nanomaterials.
Collapse
Affiliation(s)
- Yuting Jiang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jiayi Zhao
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
6
|
Peng J, Zhou J, Liu X, Zhang X, Zhou X, Gong Z, Chen Y, Shen X, Chen Y. A biomimetic nanocarrier facilitates glucose consumption and reactive oxide species accumulation in enzyme therapy for colorectal cancer. J Control Release 2024; 367:76-92. [PMID: 38262488 DOI: 10.1016/j.jconrel.2024.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Glucose oxidase (GOx)-based enzyme therapeutics are potential alternatives for colorectal cancer (CRC) treatment via glucose consumption and accumulation of hydrogen peroxide (H2O2). Given that H2O2 can be eliminated by cytoprotective autophagy, autophagy inhibitors that can interrupt autolysosome-induced H2O2 elimination are promising combination drugs of GOx. Here, we developed a multifunctional biomimetic nanocarrier for effective co-delivery of an autophagy inhibitor-chloroquine phosphate (CQP) and GOx to exert their synergistic effect by irreversibly upregulating intracellular reactive oxygen species (ROS) levels. Poly (D, l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) were used to encapsulate both GOx and CQP using a W/O/W multi-emulsion method. Calcium phosphate (CaP) was used to "fix" CQP to GOx in the internal water phase, where it served as a pH-sensitive unit to facilitate intracellular drug release. Folic acid-modified red blood cell membranes (FR) were used to camouflage the GOx/CQP/CaP encapsulated PLGA NPs (referred to as PLGA/GCC@FR). In an AOM/DSS-induced CRC mouse model, PLGA/GCC@FR exhibited improved antitumor effects, in which the number of tumor nodes were only a quarter of that in the free drug combination group. The enhanced therapeutic effects of PLGA/GCC@FR were attributed to the prolonged tumor retention which was verified by both dynamic in vivo imaging and drug biodistribution. This multifunctional biomimetic nanocarrier facilitated combined enzyme therapeutics by depleting glucose and augmenting intracellular ROS levels in tumor cells, which exerted a synergistic inhibitory effect on tumor growth. Therefore, this study proposed a novel strategy for the enhancement of combined enzyme therapeutics, which provided a promising method for effective CRC treatment.
Collapse
Affiliation(s)
- Jianqing Peng
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China; State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China
| | - Jia Zhou
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China; State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China
| | - Xing Liu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China; State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China
| | - Xiaobo Zhang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China; State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China
| | - Xiang Zhou
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China; State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China
| | - Zipeng Gong
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China; Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China
| | - Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China.
| | - Xiangchun Shen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China; State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China.
| | - Yan Chen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China; State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China.
| |
Collapse
|
7
|
Zhu J, Peng L, Jehan S, Wang H, Chen X, Zhao S, Zhou W. Activable Photodynamic DNA Probe with an "AND" Logic Gate for Precision Skin Cancer Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0295. [PMID: 38269029 PMCID: PMC10807844 DOI: 10.34133/research.0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/10/2023] [Indexed: 01/26/2024]
Abstract
Photodynamic therapy (PDT) has emerged as a promising approach for squamous cell carcinoma treatment but hindered by tumor hypoxia, acquired resistance, phototoxicity, and so on. To address these issues, we developed a smart strategy utilizing activable photosensitizers delivered by an aptamer-functionalized DNA probe (ADP). The ADP incorporated an AS1411 aptamer for tumor targeting and a linear antisense oligonucleotide (ASO) for recognition of Survivin mRNA. In the absence of the target, PDT remained quenched, thereby avoiding phototoxicity during circulation and nonselective distribution. With the aid of the aptamer, ADP achieved selective targeting of tumors. Upon internalization, ADP targeted recognized Survivin mRNA, triggering PDT activation, and releasing ASO to down-regulate Survivin expression and reverse tumor resistance. Consequently, the activable photosensitizers exhibited an "AND" logic gate, combining tumor-targeting delivery and tumor-related gene activation, thus enhancing its specificity. Additionally, the incorporation of hemin into the ADP provided catalase activity, converting tumor-abundant H2O2 into O2, thereby ameliorating tumor hypoxia. The resulting functionalized G-quadruplex/hemin-DNA probe complex demonstrated targeted delivery and activation, minimized side effects, and enhanced PDT efficacy in both xenograft tumor-bearing mice and patient-derived xenograft models. This study offers a unique and promising platform for efficient and safe PDT, thus holding great potential for future clinical translation and improved cancer therapy.
Collapse
Affiliation(s)
- Jiaojiao Zhu
- Xiangya School of Pharmaceutical Sciences,
Central South University, Changsha, Hunan 410013, China
| | - Lanyuan Peng
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan 410008, China
| | - Shah Jehan
- Xiangya School of Pharmaceutical Sciences,
Central South University, Changsha, Hunan 410013, China
- Department of Vascular Surgery,
The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Haiyang Wang
- Department of Vascular Surgery,
The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan 410008, China
| | - Shuang Zhao
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan 410008, China
- Furong Laboratory, Changsha, Hunan, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences,
Central South University, Changsha, Hunan 410013, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha, Hunan 410008, China
| |
Collapse
|
8
|
Wu Y, Wang R, Shen P, Zhou W, Chen C, Yang K, Yang J, Song Y, Han X, Guan X. Boosting immunogenic cell death via hollow MnO2-based multiple stimuli-responsive drug delivery systems for improved cancer immunotherapy. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023] Open
Abstract
AbstractCancer treatment by inducing tumor cell immunogenic cell death (ICD) is critical for tumor therapy. However, ICD activation by single pathway is often limited in practical application due to its low efficiency. In addition, the low pH and anoxic microenvironments in solid tumors greatly limit the effective activation of ICD. Herein, hollow manganese dioxide (H-MnO2) nanomaterials were selected to load both Mitoxantrone (MTZ) and Chlorin e6 (Ce6) due to its hollow structure and ability to release drugs in the acidic environments. Thus, the synergy of photodynamic therapy (PDT), photothermal therapy (PTT) and chemotherapy can induce the process of immunogenic cell death, stimulate the maturation of dendritic cells (DCs), and activate the immune response to kill tumor cells dramatically. Efficient immunotherapeutic effects were obtained when MnO2-C/M-HA was given intravenously to 4T1 tumor-bearing BALB/c mice with 660 nm near-infrared laser irradiation. This study overcame the limitations of monotherapy and provided a multifunctional platform for tumor immunotherapy.
Collapse
|
9
|
Yu H, Si P, Lu W, Wang B, Gao J, Lin W, Hu Q. Construction of Core-Shell MOF CSMnP with Enzyme-Like Activity for Chemotherapy and Chemodynamic Therapy. Inorg Chem 2023; 62:18128-18135. [PMID: 37881839 DOI: 10.1021/acs.inorgchem.3c02579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Materials with enzyme-like activity have received a lot of attention in the field of tumor catalytic therapy. Here, biocompatible core-shell MOF CSMnP with two valence states of Mn ion, which could process chemodynamic therapy (CDT), was designed and synthesized. Besides, it could also promote a series of catalytic processes in the tumor microenvironment (TME). CSMnP catalyzed endogenous hydrogen peroxide (H2O2) to oxygen (O2) via catalase-like activity and then combined with the outer layer Mn(II)-PBC to convert O2 into superoxide radicals (•O2-), exhibiting oxidase-like activity. Besides, intracellular glutathione (GSH) could be effectively consumed through the glutathione oxidase-like activity of Mn3+. The occurrence of the cascade reactions effectively amplified the enzymatic production to enhance CDT. Furthermore, the therapeutic effect of CSMnP was improved through the loading of cationic drug DOX. The loading capacity was 11.10 wt %, which was 2.2 times that of Mn(III)-PBC (4.95 wt %), and the release of DOX showed a characteristic response. Therefore, the core-shell MOF with enzyme-like activity had a potential application for tumor combination therapy.
Collapse
Affiliation(s)
- Hongliu Yu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Panpan Si
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Wenwen Lu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Bing Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Junkuo Gao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Wenxin Lin
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Quan Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
10
|
Feng C, Chen B, Fan R, Zou B, Han B, Guo G. Polyphenol-Based Nanosystems for Next-Generation Cancer Therapy: Multifunctionality, Design, and Challenges. Macromol Biosci 2023; 23:e2300167. [PMID: 37266916 DOI: 10.1002/mabi.202300167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Indexed: 06/03/2023]
Abstract
With the continuous updating of cancer treatment methods and the rapid development of precision medicine in recent years, there are higher demands for advanced and versatile drug delivery systems. Scientists are committed to create greener and more effective nanomedicines where the carrier is no longer limited to a single function of drug delivery. Polyphenols, which can act as both active ingredients and fundamental building blocks, are being explored as potential multifunctional carriers that are efficient and safe for design purposes. Due to their intrinsic anticancer activity, phenolic compounds have shown surprising expressiveness in ablation of tumor cells, overcoming cancer multidrug resistance (MDR), and enhancing immunotherapeutic efficacy. This review provides an overview of recent advances in the design, synthesis, and application of versatile polyphenol-based nanosystems for cancer therapy in various modes. Moreover, the merits of polyphenols and the challenges for their clinical translation are also discussed, and it is pointed out that the novel polyphenol delivery system requires further optimization and validation.
Collapse
Affiliation(s)
- Chenqian Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rangrang Fan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
11
|
Li S, Wang Q, Jia Z, Da M, Zhao J, Yang R, Chen D. Recent advances in glucose oxidase-based nanocarriers for tumor targeting therapy. Heliyon 2023; 9:e20407. [PMID: 37780773 PMCID: PMC10539972 DOI: 10.1016/j.heliyon.2023.e20407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023] Open
Abstract
Glucose oxidase (GOx) can specifically catalyze the conversion of β-d-glucose into gluconic acid and hydrogen peroxide (H2O2) in the presence of oxygen, making it promising for tumor starvation therapy and oxidative therapy. However, GOx's immunogenicity, poor in vivo stability, short half-life, and potential systemic toxicity, limit its application in cancer therapy. Nanocarriers are capable of improving the pharmacological properties of therapeutic drugs (e.g. stability, circulating half-life, and tumor accumulation) and lower toxicity, hence resolving GOx issues and enhancing its efficacy. Although the application of targeted nanocarriers based on GOx has recently flourished, this field has not yet been reviewed and evaluated. Herein, we initially examined the mechanism of GOx-based nanocarriers for enhanced tumor therapy. Also, we present a comprehensive and up-to-date review that highlights GOx-based nanocarriers for tumor targeting therapy. This review expands on GOx-based nano-targeted combination therapies from both passive and active targeting perspectives, meanwhile, active targeting is further classified into ligand-mediated targeting and physical-mediated targeting. Furthermore, this review also emphasizes the present challenges and promising advancements.
Collapse
Affiliation(s)
- Su Li
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Qinghua Wang
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, China
| | - Zhen Jia
- Department of Obstetrics and Gynecology, Haidong No. 2 People's Hospital, Haidong, 810699, China
| | - Mengting Da
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University, Xining, 810001, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University, Xining, 810001, China
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Daozhen Chen
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Hospital of Nanjing Medical University, Wuxi, 214002, China
- Department of Obstetrics and Gynecology, Haidong No. 2 People's Hospital, Haidong, 810699, China
| |
Collapse
|
12
|
Peng X, Xu L, Zeng M, Dang H. Application and Development Prospect of Nanoscale Iron Based Metal-Organic Frameworks in Biomedicine. Int J Nanomedicine 2023; 18:4907-4931. [PMID: 37675409 PMCID: PMC10479543 DOI: 10.2147/ijn.s417543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/19/2023] [Indexed: 09/08/2023] Open
Abstract
Metal-organic frameworks (MOFs) are coordination polymers that comprise metal ions/clusters and organic ligands. MOFs have been extensively employed in different fields (eg, gas adsorption, energy storage, chemical separation, catalysis, and sensing) for their versatility, high porosity, and adjustable geometry. To be specific, Fe2+/Fe3+ exhibits unique redox chemistry, photochemical and electrical properties, as well as catalytic activity. Fe-based MOFs have been widely investigated in numerous biomedical fields over the past few years. In this study, the key index requirements of Fe-MOF materials in the biomedical field are summarized, and a conclusion is drawn in terms of the latest application progress, development prospects, and future challenges of Fe-based MOFs as drug delivery systems, antibacterial therapeutics, biocatalysts, imaging agents, and biosensors in the biomedical field.
Collapse
Affiliation(s)
- Xiujuan Peng
- Department of Clinical Laboratory, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, 621000, People’s Republic of China
| | - Li Xu
- Department of Clinical Laboratory, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, 621000, People’s Republic of China
| | - Min Zeng
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People’s Republic of China
| | - Hao Dang
- Department of Clinical Laboratory, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, 621000, People’s Republic of China
| |
Collapse
|
13
|
Meng Y, Huang J, Ding J, Yan B, Li Y, Gao X, Zhou W. Poly-thymine DNA templated MnO 2 biomineralization as a high-affinity anchoring enabling tumor targeting delivery. J Colloid Interface Sci 2023; 637:441-452. [PMID: 36716668 DOI: 10.1016/j.jcis.2023.01.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Manganese oxide nanomaterials (MONs) are emerging as a type of highly promising nanomaterials for diseases diagnosis, and surface modification is the basis for colloidal stability and targeting delivery of the nanomaterials. Here, we report the in-situ functionalization of MnO2 with DNA through a biomineralization process. Using adsorption-oxidation method, DNA templated Mn2+ precursor to biomineralize into nano-cubic seed, followed by the growth of MnO2 to form cube/nanosheet hybrid nanostructure. Among four types of DNA homopolymers, poly-thymine (poly-T) was found to stably attach on MnO2 surface to resist various biological displacements (phosphate, serum, and complementary DNA). Capitalized on this finding, a di-block DNA was rationally designed, in which the poly-T block stably anchored on MnO2 surface, while the AS1411 aptamer block was not only an active ligand for tumor targeting delivery, but also a carrier for photosensitizer (Ce6) loading. Upon targeting delivery into tumor cells, the MnO2 acted as catalase-mimic nanozyme for oxygenation to sensitize photodynamic therapy, and the released Mn2+ triggered chemodynamic therapy via Fenton-like reaction, achieving synergistic anti-tumor effect with full biocompatibility. This work provides a simple yet robust strategy to functionalize metal oxides nanomaterials for biological applications via DNA-templated biomineralization.
Collapse
Affiliation(s)
- Yingcai Meng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jiaxin Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Bohua Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children's Hospital, Changsha 410004, Hunan, China.
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China.
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
14
|
Wang H, Jing G, Niu J, Yang L, Li Y, Gao Y, Wang H, Xu X, Qian Y, Wang S. A mitochondria-anchored supramolecular photosensitizer as a pyroptosis inducer for potent photodynamic therapy and enhanced antitumor immunity. J Nanobiotechnology 2022; 20:513. [PMID: 36463229 PMCID: PMC9719646 DOI: 10.1186/s12951-022-01719-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The discovery of a potent photosensitizer with desirable immunogenic cell death (ICD) ability can prominently enhance antitumor immunity in photodynamic therapy (PDT). However, majority of commercially-available photosensitizers suffer from serious aggregation and fail to elicit sufficient ICD. Pyroptosis as a newly identified pattern for potent ICD generation is rarely disclosed in reported photosensitizers. In addition, the photosensitizer with excellent mitochondria-anchored ability evokes prominent mitochondria oxidative stress, and consequently induces ICD. RESULTS Herein, a novel supramolecular photosensitizer LDH@ZnPc is reported, without complicated preparation, but reveals desirable pyroptosis-triggered ability with mitochondria anchoring feature. LDH@ZnPc is obtained through isolation of ZnPc using positive charged layered double hydroxides (LDH), and excellent mitochondria-anchored ability is achieved. More importantly, LDH@ZnPc-mediated PDT can effectively initiate gasdermin D (GSDMD)-dependent pyroptosis of tumor cells. In vitro and in vivo results verify robust ICD ability and potent tumor inhibition efficacy, and antitumor immunity towards distant tumor inhibition. CONCLUSIONS This study reveals that LDH@ZnPc can act as an excellent pyroptosis inducer with simultaneous mitochondria anchoring ability for enhancing photodynamic therapy and boosting antitumor immunity.
Collapse
Affiliation(s)
- Hong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Guoxin Jing
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Jintong Niu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Li Yang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Youyuan Li
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yi Gao
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Huichao Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Xiaorong Xu
- Department of Gastroenterology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, People's Republic of China
| | - Yechang Qian
- Department of Respiratory Disease, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 201900, People's Republic of China.
| | - Shilong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
15
|
Wang C, Li F, Zhang T, Yu M, Sun Y. Recent advances in anti-multidrug resistance for nano-drug delivery system. Drug Deliv 2022; 29:1684-1697. [PMID: 35616278 PMCID: PMC9154776 DOI: 10.1080/10717544.2022.2079771] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy for tumors occasionally results in drug resistance, which is the major reason for the treatment failure. Higher drug doses could improve the therapeutic effect, but higher toxicity limits the further treatment. For overcoming drug resistance, functional nano-drug delivery system (NDDS) has been explored to sensitize the anticancer drugs and decrease its side effects, which are applied in combating multidrug resistance (MDR) via a variety of mechanisms including bypassing drug efflux, controlling drug release, and disturbing metabolism. This review starts with a brief report on the major MDR causes. Furthermore, we searched the papers from NDDS and introduced the recent advances in sensitizing the chemotherapeutic drugs against MDR tumors. Finally, we concluded that the NDDS was based on several mechanisms, and we looked forward to the future in this field.
Collapse
Affiliation(s)
- Changduo Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Fashun Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Tianao Zhang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Min Yu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Zhou Z, Chen J, Liu Y, Zheng C, Luo W, Chen L, Zhou S, Li Z, Shen J. Cascade two-stage tumor re-oxygenation and immune re-sensitization mediated by self-assembled albumin-sorafenib nanoparticles for enhanced photodynamic immunotherapy. Acta Pharm Sin B 2022; 12:4204-4223. [PMID: 36386474 PMCID: PMC9643273 DOI: 10.1016/j.apsb.2022.07.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/01/2022] Open
Abstract
As a promising modality for cancer therapy, photodynamic therapy (PDT) still acquired limited success in clinical nowadays due to the extremely serious hypoxia and immunosuppression tumor microenvironment. To ameliorate such a situation, we rationally designed and prepared cascade two-stage re-oxygenation and immune re-sensitization BSA-MHI148@SRF nanoparticles via hydrophilic and hydrophobic self-assembly strategy by using near-infrared photodynamic dye MHI148 chemically modified bovine serum albumin (BSA-MHI148) and multi-kinase inhibitor Sorafenib (SRF) as a novel tumor oxygen and immune microenvironment regulation drug. Benefiting from the accumulation of SRF in tumors, BSA-MHI148@SRF nanoparticles dramatically enhanced the PDT efficacy by promoting cascade two-stage tumor re-oxygenation mechanisms: (i) SRF decreased tumor oxygen consumption via inhibiting mitochondria respiratory. (ii) SRF increased the oxygen supply via inducing tumor vessel normalization. Meanwhile, the immunosuppression micro-environment was also obviously reversed by two-stage immune re-sensitization as follows: (i) Enhanced immunogenic cell death (ICD) production amplified by BSA-MHI148@SRF induced reactive oxygen species (ROS) generation enhanced T cell infiltration and improve its tumor cell killing ability. (ii) BSA-MHI148@SRF amplified tumor vessel normalization by VEGF inhibition also obviously reversed the tumor immune-suppression microenvironment. Finally, the growth of solid tumors was significantly depressed by such well-designed BSA-MHI148@SRF nanoparticles, which could be potential for clinical cancer therapy.
Collapse
Affiliation(s)
- Zaigang Zhou
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Jiashe Chen
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yu Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Chunjuan Zheng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Wenjuan Luo
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Lele Chen
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shen Zhou
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhiming Li
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325000, China
| |
Collapse
|
17
|
Wang H, Li S, Yang Y, Zhang L, Zhang Y, Wei T. Perspectives of metal-organic framework nanosystem to overcome tumor drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:954-970. [PMID: 36627891 PMCID: PMC9771744 DOI: 10.20517/cdr.2022.76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 08/09/2022] [Indexed: 12/23/2022]
Abstract
Cancer is one of the most harmful diseases in the world, which causes huge numbers of deaths every year. Many drugs have been developed to treat tumors. However, drug resistance usually develops after a period of time, which greatly weakens the therapeutic effect. Tumor drug resistance is characterized by blocking the action of anticancer drugs, resisting apoptosis and DNA repair, and evading immune recognition. To tackle tumor drug resistance, many engineered drug delivery systems (DDS) have been developed. Metal-organic frameworks (MOFs) are one kind of emerging and promising nanocarriers for DDS with high surface area and abundant active sites that make the functionalization simpler and more efficient. These features enable MOFs to achieve advantages easily towards other materials. In this review, we highlight the main mechanisms of tumor drug resistance and the characteristics of MOFs. The applications and opportunities of MOF-based DDS to overcome tumor drug resistance are also discussed, shedding light on the future development of MOFs to address tumor drug resistance.
Collapse
Affiliation(s)
- Huafeng Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China.,School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Shi Li
- School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Yiting Yang
- School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Lei Zhang
- School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Yinghao Zhang
- School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China.,Correspondence to: Dr. Tianxiang Wei, School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China. E-mail:
| |
Collapse
|
18
|
Zeng Y, Xu G, Kong X, Ye G, Guo J, Lu C, Nezamzadeh-Ejhieh A, Shahnawaz Khan M, Liu J, Peng Y. Recent advances of the core-shell MOFs in tumour therapy. Int J Pharm 2022; 627:122228. [PMID: 36162610 DOI: 10.1016/j.ijpharm.2022.122228] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 12/15/2022]
Abstract
Coordination chemistry has always been vital to explore the material prominence of metal-organic systems. The metal-organic chemistry plays a fundamental role in decisive structural features, which are accountable for tuning the properties of materials. Tumour therapy has become an important research field of medical treatment in the world. Metal-organic frameworks (MOFs) have attracted extensive interest in medical science research due to their large effective surface area, clear pore network, and critical catalytic performance. Compared with traditional MOF materials, MOF materials with core-shell structures have a higher loading rate and better stability, which can overcome a single function. They have been successfully used in tumour medical research and have excellent prospects for diagnosing and treating various tumours. The current review article thoroughly describes the various synthetic approaches for engineering core-shell MOF materials, the structural types, and the potential functional applications. We also discussed core-shell MOF materials for the various treatment of tumours, such as tumour chemotherapy, tumour phototherapy and tumour microenvironment anti-hypoxia therapy. In this paper, the synthesized procedures of core-shell MOFs and their applications for tumour treatment have been discussed, and their future research has prospected. The current improved strategies, challenges, and prospects are also presented because of the metal-organic chemistry governing the structural modification of core-shell MOFs for tumour therapy applications. Therefore, the present review article opens a new door for medicinal chemists to tune the structural features of the core-shell MOF materials to modulate tumour therapy with simple, low-cost materials for better human lives.
Collapse
Affiliation(s)
- Yana Zeng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Guihua Xu
- Department of Science and Education, The Dongguan Affiliated Hospital of Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan 523900, China
| | - Xiangyang Kong
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Gaomin Ye
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Jian Guo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| | - Chengyu Lu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | | | - M Shahnawaz Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China.
| | - Yanqiong Peng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
19
|
Wen Y, Huang H, Huang B, Liao X. HSA-miR-34a-5p regulates the SIRT1/TP53 axis in prostate cancer. Am J Transl Res 2022; 14:4493-4504. [PMID: 35958506 PMCID: PMC9360830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
SIRT1 is tightly associated with the progression of prostate cancer while the role of Hsa-miR-34a-5p in SIRT1-mediated prostate cancer is not fully understood. We have thoroughly mined the data from two databases, namely the Lipidemia and the cancer genome atlas (TCGA) and found that SIRT1 was highly expressed in human carcinoma tissues as compared to normal tissues, and patients with high SIRT1 expression level had a shorter survival time. The online tool "Gene-RADAR" was applied to investigate the interaction among SIRT1, the TP53 gene and miR-34a-5p. We found that SIRT1 was up-regulated in cancer tissues from patients diagnosed with prostate and castration-resistant prostate cancer when compared to healthy controls. Pearson analysis indicated a positive correlation between SIRT1 and miR-34a-5p, while data mining on the TargetScan database predicted the binding site between the two. An apoptosis assay of prostate cancer cells (PRAD) confirmed that the overexpression of miR-34a-5p inhibited paclitaxel-induced apoptosis and promoted cell proliferation. Cell cycle analysis verified that miR-34a-5p overexpression blocked PRAD cells in the G2/S phase of the cell cycle. Moreover, the Western blotting (WB) and quantitative PCR (qPCR) assays demonstrated that the overexpression of miR-34a-5p induced down-regulation of the SIRT-related proteins HIF2α and PGC1α, while on the contrary, it up-regulated the expression of two tumour suppressor genes, TP53 and VEGF. In conclusion, we have shown that miR-34a-5p is involved in the oncogenesis of PRAD cells via the SIRT1/TP53 axis.
Collapse
Affiliation(s)
- Yongqin Wen
- Department of Pathology, Affiliated Dongguan Hospital, Southern Medical University Dongguan 523059, Guangdong, P. R. China
| | - Huijie Huang
- Department of Pathology, Affiliated Dongguan Hospital, Southern Medical University Dongguan 523059, Guangdong, P. R. China
| | - Bo Huang
- Department of Pathology, Affiliated Dongguan Hospital, Southern Medical University Dongguan 523059, Guangdong, P. R. China
| | - Xiaomin Liao
- Department of Pathology, Affiliated Dongguan Hospital, Southern Medical University Dongguan 523059, Guangdong, P. R. China
| |
Collapse
|
20
|
Guo L, Zhong S, Liu P, Guo M, Ding J, Zhou W. Radicals Scavenging MOFs Enabling Targeting Delivery of siRNA for Rheumatoid Arthritis Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202604. [PMID: 35661593 DOI: 10.1002/smll.202202604] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Macrophages play essential roles in the progression of rheumatoid arthritis (RA), which are polarized into the pro-inflammatory M1 phenotype with significant oxidative stress and cytokines excretion. Herein, an active targeting nanomedicine based on metal-organic frameworks (MOFs) to re-educate the diseased macrophages for RA therapy is reported. The MOFs are prepared via coordination between tannic acid (TA) and Fe3+ , and anti-TNF-α siRNA is loaded via a simple sonication process, achieving high loading capacity comparable to cationic vectors. The MOFs show excellent biocompatibility, and enable rapid endo/lysosome escape of siRNA via the proton-sponge effect for effective cytokines down-regulation. Importantly, such nanomedicine displays intrinsic radicals scavenging capability to eliminate a broad spectrum of reactive oxygen and nitrogen species (RONS), which in turn repolarizes the M1 macrophages into anti-inflammatory M2 phenotypes for enhanced RA therapy in combination with siRNA. The MOFs are further modified with bovine serum albumin (BSA) to allow cascade RA joint and diseased macrophages targeted delivery. As a result, an excellent anti-RA efficacy is achieved in a collagen-induced arthritis mice model. This work provides a robust gene vector with great translational potential, and offers a vivid example of rationally designing MOF structure with multifunctionalities to synergize with its payload for enhanced disease treatment.
Collapse
Affiliation(s)
- Lina Guo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Shenghui Zhong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
- School of Medicine, Yichun University, Yichun, Jiangxi, 336000, China
| | - Peng Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Man Guo
- Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
- Academician Workstation, Changsha Medical University, Changsha, 410219, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Changsha, Hunan, 410008, China
| |
Collapse
|
21
|
Li Z, Li X, Ai S, Liu S, Guan W. Glucose Metabolism Intervention-Facilitated Nanomedicine Therapy. Int J Nanomedicine 2022; 17:2707-2731. [PMID: 35747168 PMCID: PMC9213040 DOI: 10.2147/ijn.s364840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022] Open
Abstract
Ordinarily, cancer cells possess features of abnormally increased nutrient intake and metabolic pathways. The disorder of glucose metabolism is the most important among them. Therefore, starvation therapy targeting glucose metabolism specifically, which results in metabolic disorders, restricted synthesis, and inhibition of tumor growth, has been developed for cancer therapy. However, issues such as inadequate targeting effectiveness and drug tolerance impede their clinical transformation. In recent years, nanomaterial-assisted starvation treatment has made significant progress in addressing these challenges, whether as a monotherapy or in combination with other medications. Herein, representative researches on the construction of nanosystems conducting starvation therapy are introduced. Elaborate designs and interactions between different treatment mechanisms are meticulously mentioned. Not only are traditional treatments based on glucose oxidase involved, but also newly sprung small molecule agents targeting glucose metabolism. The obstacles and potential for advancing these anticancer therapies were also highlighted in this review.
Collapse
Affiliation(s)
- Zhiyan Li
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Xianghui Li
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Shichao Ai
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Song Liu
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Wenxian Guan
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| |
Collapse
|
22
|
Ye Y, Zhao Y, Sun Y, Cao J. Recent Progress of Metal-Organic Framework-Based Photodynamic Therapy for Cancer Treatment. Int J Nanomedicine 2022; 17:2367-2395. [PMID: 35637838 PMCID: PMC9144878 DOI: 10.2147/ijn.s362759] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Photodynamic therapy (PDT), combining photosensitizers (PSs) and excitation light at a specific wavelength to produce toxic reactive oxygen species, has been a novel and promising approach to cancer treatment with non-invasiveness, spatial specificity, and minimal systemic toxicity, compared with conventional cancer treatment. Recently, numerous basic research and clinical research have demonstrated the potential of PDT in the treatment of a variety of malignant tumors, such as esophageal cancer, bladder cancer, and so on. Metal-organic framework (MOF) has been developed as a new type of nanomaterial with the advantages of high porosity, large specific surface area, adjustable pore size, and easy functionalization, which could serve as carriers to load PSs or increase the accumulation of PSs in target cells during PDT. Moreover, active MOFs have the potential to construct multifunctional systems, which are conducive to refining the tumor microenvironment (TME) and implementing combination therapy to improve PDT efficacy. Hence, a comprehensive and in-depth depiction of the whole scene of the recent development of MOFs-based PDT in cancer treatment is desirable. This review summarized the recent research strategies of MOFs-based PDT in antitumor therapy from the perspective of MOFs functions, including active MOFs, inactive MOFs, and their further combination therapies in clinical antitumor treatment. In addition, the bottlenecks and obstacles in the application of MOFs in PDT are also described.
Collapse
Affiliation(s)
- Yuyun Ye
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, People’s Republic of China
| | - Yifan Zhao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, People’s Republic of China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, People’s Republic of China
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, People’s Republic of China
- Correspondence: Jie Cao; Yong Sun, Email ;
| |
Collapse
|
23
|
Chen F, Song T. AuPt Bimetallic Nanozymes for Enhanced Glucose Catalytic Oxidase. Front Chem 2022; 10:854516. [PMID: 35265588 PMCID: PMC8899206 DOI: 10.3389/fchem.2022.854516] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 12/07/2022] Open
Abstract
Au metal nanoparticles as artificial nanozymes have attracted wide interest in biotechnology due to high stability and easy synthesis. Unfortunately, its catalytic activity is limited by the uniform surface electron distribution, fundamentally affecting the oxidation efficiency of glucose. Here, we synthesized AuPt bimetallic nanoparticles with unique surface electron structure due to the coupling effect of the two metal components, achieving improved glucose catalytic oxidase. Because of the effective work function difference between the two metals in AuPt, the electrons will transfer from Au to accumulate on Pt, simultaneously contributing to the substantial enhancement of Au-induced glucose oxidase and Pt-induced catalase performance. We systematically studied the enzyme-catalytic efficiency of AuPt with varied two metal proportions, in which Au:Pt at 3:1 showed the highest catalytic efficiency of glucose oxidase in solution. The AuPt nanoparticles were further co-cultured with cells and also showed excellent biological activity for glucose oxidase. This work demonstrates that the physicochemical properties between different metals can be exploited for engineering high-performance metal nanoparticle-based nanozymes, which opens up a new way to rationally design and optimize artificial nanozymes to mimic natural enzymes.
Collapse
Affiliation(s)
- Feixiang Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- *Correspondence: Feixiang Chen,
| | - Tianlin Song
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Recent Advances in Strategies for Addressing Hypoxia in Tumor Photodynamic Therapy. Biomolecules 2022; 12:biom12010081. [PMID: 35053229 PMCID: PMC8774200 DOI: 10.3390/biom12010081] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) is a treatment modality that uses light to target tumors and minimize damage to normal tissues. It offers advantages including high spatiotemporal selectivity, low side effects, and maximal preservation of tissue functions. However, the PDT efficiency is severely impeded by the hypoxic feature of tumors. Moreover, hypoxia may promote tumor metastasis and tumor resistance to multiple therapies. Therefore, addressing tumor hypoxia to improve PDT efficacy has been the focus of antitumor treatment, and research on this theme is continuously emerging. In this review, we summarize state-of-the-art advances in strategies for overcoming hypoxia in tumor PDTs, categorizing them into oxygen-independent phototherapy, oxygen-economizing PDT, and oxygen-supplementing PDT. Moreover, we highlight strategies possessing intriguing advantages such as exceedingly high PDT efficiency and high novelty, analyze the strengths and shortcomings of different methods, and envision the opportunities and challenges for future research.
Collapse
|
25
|
Zhang X, Bu X, Jia W, Ying Y, Lv S, Jiang G. Near-Infrared Light-Activated Oxygen Generator a Multidynamic Photo-Nanoplatform for Effective Anti-Cutaneous Squamous Cell Carcinoma Treatment. Int J Nanomedicine 2022; 17:5761-5777. [PMID: 36466785 PMCID: PMC9717597 DOI: 10.2147/ijn.s378321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Nanophototherapy has emerged as a novel and promising therapeutic strategy for cancer treatment; however, its efficacy in dermatological tumors and precancerous lesions remains severely limited. This study aimed to use the gas-liquid injection technique to fully utilize the synergistic photodynamic therapy (PDT)/photothermal therapy (PTT) of nanomaterials to enhance the antitumor effect. Methods A novel oxygen-generating nanocomposite (TSL-IR820-CAT) was synthesized by encapsulating the photosensitizer IR820 and catalase (CAT) using a matrix encapsulation method based on thermosensitive liposomes (TSL).-The liquid injection technology enhances the treatment of cutaneous squamous cell carcinoma (cSCC). The combined PDT/PTT therapeutic effect of TSL-IR820-CAT on cSCC was investigated using in vivo and in vitro experiments. Results TSL-IR820-CAT, with good stability, efficient drug release, and photothermal conversion ability, was successfully developed. Nanoparticles injected through a needle-free syringe efficiently accumulate in the tumor tissue. As TSL-IR820-CAT was consumed by A431 cells, some of it localized to the mitochondria and produced oxygen to relieve hypoxia, thereby enhancing the efficacy of PDT. PDT/PTT combination therapy resulted in irreversible apoptosis and inhibited cSCC growth. TSL-IR820-CAT coupled with gas-liquid injection was free from apparent systemic side effects. Conclusion This article discusses new strategies and ideas for treating skin tumors and has significant application value.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Dermatology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China.,Department of Dermatology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Xiangbo Bu
- Department of Orthopaedics, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, 221009, People's Republic of China
| | - Wenyu Jia
- Department of Dermatology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Yu Ying
- Department of Dermatology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Shanrong Lv
- Department of Dermatology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Guan Jiang
- Department of Dermatology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| |
Collapse
|
26
|
Wang J, Hu Y, Wang X, Gao S, Zhong Y, Liu J, Bai F. Trace-Water-Induced Competitive Coordination Synthesis and Functionalization of Porphyrinic Metal-Organic Framework Nanoparticles for Treatment of Hypoxic Tumors. ACS APPLIED BIO MATERIALS 2021; 4:7322-7331. [PMID: 35006961 DOI: 10.1021/acsabm.1c00852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Controlling the size and morphology of metal-organic frameworks (MOF) has received increasing research interest but remains a great challenge. In this work, we demonstrate a trace-water-induced competitive coordination procedure to controllably synthesize porphyrinic MOFs including needle-shaped nanomaterials, hollow nanotubes, and nanocubes, using 5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin as organic linkers and Zr4+ as inorganic building blocks. These three MOFs exhibited shape-dependent singlet oxygen (1O2) production under 655 nm laser irradiation. The designed nanocubes were functionalized by coating a MnO2 shell, which can effectively generate 1O2 in the tumor microenvironment (TME) to improve photodynamic therapy (PDT). Moreover, they reacted with GSH, and the resulted Mn2+ions generated hydroxyl radicals (·OH) for chemodynamic therapy (CDT). Therefore, the designed MOFs@MnO2 nanoparticles were responsive to the hypoxic TME to improve the efficiency of PDT and incorporate CDT for tumor ablation.
Collapse
Affiliation(s)
- Jinghan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China.,Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario N2L 3G1, Canada
| | - Yaoqing Hu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xiao Wang
- Henan and Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shanqing Gao
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Yong Zhong
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario N2L 3G1, Canada
| | - Feng Bai
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| |
Collapse
|