1
|
Fardoost A, Karimi K, Singh J, Patel H, Javanmard M. Enhancing glaucoma care with smart contact lenses: An overview of recent developments. Biomed Microdevices 2025; 27:18. [PMID: 40257617 PMCID: PMC12011977 DOI: 10.1007/s10544-025-00740-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 04/22/2025]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide, affecting millions of individuals due to its progressive damage to the optic nerve, often caused by elevated intraocular pressure (IOP). Conventional methods of IOP monitoring, such as tonometry, provide sporadic and often inaccurate readings due to fluctuations throughout the day, leaving significant gaps in diagnosis and treatment. This review explores the transformative potential of smart contact lenses equipped with continuous IOP monitoring and therapeutic capabilities. These lenses integrate advanced materials such as graphene, nanogels, and magnetic oxide nanosheets alongside sophisticated biosensing and wireless communication systems. By offering continuous, real-time data, these lenses can detect subtle IOP fluctuations and provide immediate feedback to patients and clinicians. Moreover, drug-eluting capabilities embedded in these lenses present a groundbreaking approach to glaucoma therapy by improving medication adherence and providing controlled drug release directly to the eye. Beyond IOP management, these innovations also pave the way for monitoring biochemical markers and other ocular diseases. Challenges such as biocompatibility, long-term wearability, and affordability remain, but the integration of cutting-edge technologies in smart contact lenses signifies a paradigm shift in glaucoma care. These developments hold immense promise for advancing personalized medicine, improving patient outcomes, and mitigating the global burden of blindness.
Collapse
Affiliation(s)
- Ali Fardoost
- Department of Electrical Engineering, Rutgers University, 08854, Piscataway, NJ, USA
| | - Koosha Karimi
- Department of Electrical Engineering, Rutgers University, 08854, Piscataway, NJ, USA
| | - Jaydeep Singh
- Department of Electrical Engineering, Rutgers University, 08854, Piscataway, NJ, USA
| | - Heneil Patel
- Department of Electrical Engineering, Rutgers University, 08854, Piscataway, NJ, USA
| | - Mehdi Javanmard
- Department of Electrical Engineering, Rutgers University, 08854, Piscataway, NJ, USA.
| |
Collapse
|
2
|
Rajan A, Vishnu J, Shankar B. Tear-Based Ocular Wearable Biosensors for Human Health Monitoring. BIOSENSORS 2024; 14:483. [PMID: 39451696 PMCID: PMC11506517 DOI: 10.3390/bios14100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Wearable tear-based biosensors have garnered substantial interest for real time monitoring with an emphasis on personalized health care. These biosensors utilize major tear biomarkers such as proteins, lipids, metabolites, and electrolytes for the detection and recording of stable biological signals in a non-invasive manner. The present comprehensive review delves deep into the tear composition along with potential biomarkers that can identify, monitor, and predict certain ocular diseases such as dry eye disease, conjunctivitis, eye-related infections, as well as diabetes mellitus. Recent technologies in tear-based wearable point-of-care medical devices, specifically the state-of-the-art and prospects of glucose, pH, lactate, protein, lipid, and electrolyte sensing from tear are discussed. Finally, the review addresses the existing challenges associated with the widespread application of tear-based sensors, which will pave the way for advanced scientific research and development of such non-invasive health monitoring devices.
Collapse
Affiliation(s)
- Arunima Rajan
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
| | - Jithin Vishnu
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Balakrishnan Shankar
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| |
Collapse
|
3
|
Ghazizadeh E, Naseri Z, Deigner HP, Rahimi H, Altintas Z. Approaches of wearable and implantable biosensor towards of developing in precision medicine. Front Med (Lausanne) 2024; 11:1390634. [PMID: 39091290 PMCID: PMC11293309 DOI: 10.3389/fmed.2024.1390634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/30/2024] [Indexed: 08/04/2024] Open
Abstract
In the relentless pursuit of precision medicine, the intersection of cutting-edge technology and healthcare has given rise to a transformative era. At the forefront of this revolution stands the burgeoning field of wearable and implantable biosensors, promising a paradigm shift in how we monitor, analyze, and tailor medical interventions. As these miniature marvels seamlessly integrate with the human body, they weave a tapestry of real-time health data, offering unprecedented insights into individual physiological landscapes. This log embarks on a journey into the realm of wearable and implantable biosensors, where the convergence of biology and technology heralds a new dawn in personalized healthcare. Here, we explore the intricate web of innovations, challenges, and the immense potential these bioelectronics sentinels hold in sculpting the future of precision medicine.
Collapse
Affiliation(s)
- Elham Ghazizadeh
- Department of Bioinspired Materials and Biosensor Technologies, Faculty of Engineering, Institute of Materials Science, Kiel University, Kiel, Germany
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Naseri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Furtwangen University, Villingen-Schwenningen, Germany
- Fraunhofer Institute IZI (Leipzig), Rostock, Germany
- Faculty of Science, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Hossein Rahimi
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Zeynep Altintas
- Department of Bioinspired Materials and Biosensor Technologies, Faculty of Engineering, Institute of Materials Science, Kiel University, Kiel, Germany
| |
Collapse
|
4
|
Zhou Y, Li L, Tong J, Chen X, Deng W, Chen Z, Xiao X, Yin Y, Zhou Q, Gao Y, Hu X, Wang Y. Advanced nanomaterials for electrochemical sensors: application in wearable tear glucose sensing technology. J Mater Chem B 2024; 12:6774-6804. [PMID: 38920094 DOI: 10.1039/d4tb00790e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
In the last few decades, tear-based biosensors for continuous glucose monitoring (CGM) have provided new avenues for the diagnosis of diabetes. The tear CGMs constructed from nanomaterials have been extensively demonstrated by various research activities in this field and are gradually witnessing their most prosperous period. A timely and comprehensive review of the development of tear CGMs in a compartmentalized manner from a nanomaterials perspective would greatly broaden this area of research. However, to our knowledge, there is a lack of specialized reviews and comprehensive cohesive reports in this area. First, this paper describes the principles and development of electrochemical glucose sensors. Then, a comprehensive summary of various advanced nanomaterials recently reported for potential applications and construction strategies in tear CGMs is presented in a compartmentalized manner, focusing on sensing properties. Finally, the challenges, strategies, and perspectives used to design tear CGM materials are emphasized, providing valuable insights and guidance for the construction of tear CGMs from nanomaterials in the future.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Lei Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jiale Tong
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Xiaoli Chen
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Wei Deng
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Zhiyu Chen
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xuanyu Xiao
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yong Yin
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Qingsong Zhou
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Yongli Gao
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan, 610041, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
5
|
Abstract
Bioadhesives have emerged as transformative and versatile tools in healthcare, offering the ability to attach tissues with ease and minimal damage. These materials present numerous opportunities for tissue repair and biomedical device integration, creating a broad landscape of applications that have captivated clinical and scientific interest alike. However, fully unlocking their potential requires multifaceted design strategies involving optimal adhesion, suitable biological interactions, and efficient signal communication. In this Review, we delve into these pivotal aspects of bioadhesive design, highlight the latest advances in their biomedical applications, and identify potential opportunities that lie ahead for bioadhesives as multifunctional technology platforms.
Collapse
Affiliation(s)
- Sarah J Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Kazanskiy NL, Khonina SN, Butt MA. Smart Contact Lenses-A Step towards Non-Invasive Continuous Eye Health Monitoring. BIOSENSORS 2023; 13:933. [PMID: 37887126 PMCID: PMC10605521 DOI: 10.3390/bios13100933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
According to the age-old adage, while eyes are often considered the gateway to the soul, they might also provide insights into a more pragmatic aspect of our health: blood sugar levels. This potential breakthrough could be realized through the development of smart contact lenses (SCLs). Although contact lenses were first developed for eyesight correction, new uses have recently become available. In the near future, it might be possible to monitor a variety of ocular and systemic disorders using contact lens sensors. Within the realm of glaucoma, SCLs present a novel prospect, offering a potentially superior avenue compared to traditional management techniques. These lenses introduce the possibility of non-invasive and continuous monitoring of intraocular pressure (IOP) while also enabling the personalized administration of medication as and when needed. This convergence holds great promise for advancing glaucoma care. In this review, recent developments in SCLs, including their potential applications, such as IOP and glucose monitoring, are briefly discussed.
Collapse
Affiliation(s)
- Nikolay L. Kazanskiy
- Samara National Research University, 443086 Samara, Russia
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Svetlana N. Khonina
- Samara National Research University, 443086 Samara, Russia
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | | |
Collapse
|
7
|
Wang X, Luan F, Yue H, Song C, Wang S, Feng J, Zhang X, Yang W, Li Y, Wei W, Tao Y. Recent advances of smart materials for ocular drug delivery. Adv Drug Deliv Rev 2023; 200:115006. [PMID: 37451500 DOI: 10.1016/j.addr.2023.115006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Owing to the variety and complexity of ocular diseases and the natural ocular barriers, drug therapy for ocular diseases has significant limitations, such as poor drug targeting to the site of the disease, poor drug penetration, and short drug retention time in the vitreous body. With the development of biotechnology, biomedical materials have reached the "smart" stage. To date, despite their inability to overcome all the aforementioned drawbacks, a variety of smart materials have been widely tested to treat various ocular diseases. This review analyses the most recent developments in multiple smart materials (inorganic particles, polymeric particles, lipid-based particles, hydrogels, and devices) to treat common ocular diseases and discusses the future directions and perspectives regarding clinical translation issues. This review can help researchers rationally design more smart materials for specific ocular applications.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Fuxiao Luan
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Cui Song
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jing Feng
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Wei Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yuxin Li
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Yong Tao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China.
| |
Collapse
|
8
|
Sang M, Kim K, Shin J, Yu KJ. Ultra-Thin Flexible Encapsulating Materials for Soft Bio-Integrated Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202980. [PMID: 36031395 PMCID: PMC9596833 DOI: 10.1002/advs.202202980] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/22/2022] [Indexed: 05/11/2023]
Abstract
Recently, bioelectronic devices extensively researched and developed through the convergence of flexible biocompatible materials and electronics design that enables more precise diagnostics and therapeutics in human health care and opens up the potential to expand into various fields, such as clinical medicine and biomedical research. To establish an accurate and stable bidirectional bio-interface, protection against the external environment and high mechanical deformation is essential for wearable bioelectronic devices. In the case of implantable bioelectronics, special encapsulation materials and optimized mechanical designs and configurations that provide electronic stability and functionality are required for accommodating various organ properties, lifespans, and functions in the biofluid environment. Here, this study introduces recent developments of ultra-thin encapsulations with novel materials that can preserve or even improve the electrical performance of wearable and implantable bio-integrated electronics by supporting safety and stability for protection from destruction and contamination as well as optimizing the use of bioelectronic systems in physiological environments. In addition, a summary of the materials, methods, and characteristics of the most widely used encapsulation technologies is introduced, thereby providing a strategic selection of appropriate choices of recently developed flexible bioelectronics.
Collapse
Affiliation(s)
- Mingyu Sang
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Kyubeen Kim
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Jongwoon Shin
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Ki Jun Yu
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
- YU‐KIST InstituteYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| |
Collapse
|