1
|
Zhou Z, Ning X, Wei W, Lu H, Wen H, Zeng H, Chen Y, Liu J, Xie Y, Hu P. Dual-Network Hydrogel Loaded With ROS-activated Hydrogen Sulfide Donor to Accelerate Wound Healing and Inhibit Scar Production. Adv Healthc Mater 2025; 14:e2500264. [PMID: 40317706 DOI: 10.1002/adhm.202500264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/09/2025] [Indexed: 05/07/2025]
Abstract
The wound healing process consists of four continuous and overlapping stages-hemostasis, inflammation, proliferation, and remodeling-involving a variety of cells, growth factors, and the extracellular matrix. In recent years, growing evidence has shown that enhancing endogenous hydrogen sulfide (H2S) synthesis or providing exogenous H2S can promote angiogenesis, inhibit inflammation, reduce excessive oxidative stress, and support collagen deposition. However, the administration of exogenous H2S often presents challenges related to controlling its release duration and achieving targeted delivery. To achieve controlled and site-specific delivery of H2S to the wound area, a dual-network cross-linked injectable hydrogel formed by grafted ε-poly-L-lysine (designed as EG) and oxidized dextran (OD) (EGODF) loaded with a hydrogen sulfide donor (HSDF-NH2) to study its potential in wound healing is developed. The hydrogel exhibits excellent injectability, self-healing capability, and mechanical strength. Upon reactive oxygen species (ROS) stimulation, HSDF-NH2 releases both self-reporter fluorescence (HSDG-NH2) and H2S. Changes in the self-reporter fluorescence signal reflect H2S production and its entry into the body to exert therapeutic effects. Finally, using a wound model and a hypertrophic scar repair model, it is demonstrated that EGODF hydrogel is effective in promoting wound healing and inhibiting scar production.
Collapse
Affiliation(s)
- Ziqiang Zhou
- Department of Burns & Plastic Surgery, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou, 510006, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510006, China
- College of Pharmacy, Jinan University, Guangzhou, 510006, China
| | - Xuyang Ning
- Department of Burns & Plastic Surgery, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou, 510006, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510006, China
- College of Pharmacy, Jinan University, Guangzhou, 510006, China
| | - Wenlong Wei
- Department of Burns & Plastic Surgery, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou, 510006, China
| | - Huangjie Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510006, China
- College of Pharmacy, Jinan University, Guangzhou, 510006, China
| | - Haoyang Wen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510006, China
- College of Pharmacy, Jinan University, Guangzhou, 510006, China
| | - Huiying Zeng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510006, China
- College of Pharmacy, Jinan University, Guangzhou, 510006, China
| | - Yuan Chen
- Department of Burns & Plastic Surgery, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou, 510006, China
| | - Jie Liu
- Department of Pharmacy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Youfu Xie
- Department of Burns & Plastic Surgery, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou, 510006, China
| | - Ping Hu
- Department of Burns & Plastic Surgery, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou, 510006, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510006, China
- College of Pharmacy, Jinan University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Kou J, Li Y, Zhou C, Wang X, Ni J, Lin Y, Ge H, Zheng D, Chen G, Sun X, Tan Q. Electrospinning in promoting chronic wound healing: materials, process, and applications. Front Bioeng Biotechnol 2025; 13:1550553. [PMID: 40114848 PMCID: PMC11922904 DOI: 10.3389/fbioe.2025.1550553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
In the field of wound treatment, chronic wounds pose a significant burden on the medical system, affecting millions of patients annually. Current treatment methods often fall short in promoting effective wound healing, highlighting the need for innovative approaches. Electrospinning, a technique that has garnered increasing attention in recent years, shows promise in wound care due to its unique characteristics and advantages. Recent studies have explored the use of electrospun nanofibers in wound healing, demonstrating their efficacy in promoting cell growth and tissue regeneration. Researchers have investigated various materials for electrospinning, including polymers, ceramics, carbon nanotubes (CNTs), and metals. Hydrogel, as a biomaterial that has been widely studied in recent years, has the characteristics of a cell matrix. When combined with electrospinning, it can be used to develop wound dressings with multiple functions. This article is a review of the application of electrospinning technology in the field of wound treatment. It introduces the current research status in the areas of wound pathophysiology, electrospinning preparation technology, and dressing development, hoping to provide references and directions for future research.
Collapse
Affiliation(s)
- Jiaxi Kou
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yaodong Li
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Chen Zhou
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiyu Wang
- Department of Pancreatic and Metabolic Surgery, Medical School of Southeast University, Nanjing Drum Tower Hospital, Nanjing, China
| | - Jian Ni
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yue Lin
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Huaqiang Ge
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Dongfeng Zheng
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Guopu Chen
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Xitai Sun
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of Pancreatic and Metabolic Surgery, Medical School of Southeast University, Nanjing Drum Tower Hospital, Nanjing, China
| |
Collapse
|
3
|
Li Y, Wang X, Chen J, Sun L, Pu D, Lin L, Luo L, Gong X, Pu J, Wu M. Structural analysis and accelerating wound healing function of a novel galactosylated glycosaminoglycan from the snail Helix lucorum. Carbohydr Polym 2025; 348:122900. [PMID: 39567167 DOI: 10.1016/j.carbpol.2024.122900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Diabetic foot ulcers (DFUs) as a nonhealing wound remain a clinical challenge, and the development of pro-healing and cost-effective drugs is in urgent need. Herein, we reported a novel galactosylated glycosaminoglycan (GAG) from the snail Helix lucorum, as an effective pro-healing compound. The snail GAG is composed of a heparan sulfate-like main chain and galactose side chains at C-3 of GlcNAc residue. Its main chain has a repeating disaccharide structure of → 4)-α-D-GlcNAc-(1 → 4)-α-L-IdoA2S(1 →. This is the first example of glycosaminoglycan with galactose branches from mollusks. Pharmacological experiments showed that the H. lucorum GAG significantly promoted skin wound healing in both healthy and diabetic mice by accelerating granulation tissue regeneration, angiogenesis, and collagen deposition. The distinctive galactosylated substitution may play an important role on its pro-healing activity. Our discovery enriches the diversity of non-anticoagulant heparan sulfate-like glycosaminoglycans, and provides a potential candidate of pro-healing drug for treating diabetic wound.
Collapse
Affiliation(s)
- Ya Li
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Xingzi Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangyan Chen
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Luyun Sun
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Debing Pu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lisha Lin
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lan Luo
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xi Gong
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Junxue Pu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Mingyi Wu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Xiong G, Chen Q, Wang Q, Wang X, Xiao Y, Jin L, Yan K, Zhang X, Hu F. Multifaceted role of nanocomposite hydrogels in diabetic wound healing: enhanced biomedical applications and detailed molecular mechanisms. Biomater Sci 2024; 12:6196-6223. [PMID: 39494707 DOI: 10.1039/d4bm01088d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The complex microenvironment of diabetic wounds, which is characterized by persistent hyperglycemia, excessive inflammatory responses, and hypoxic conditions, significantly impedes the efficacy of traditional hydrogels. Nanocomposite hydrogels, which combine the high-water content and biocompatibility of hydrogels with the unique functionalities of nanomaterials, offer a promising solution. These hydrogels exhibit enhanced antibacterial, antioxidant, and drug-release properties. Incorporating nanomaterials increases the mechanical strength and bioactivity of hydrogels, allowing for dynamic regulation of the wound microenvironment and promoting cell migration, proliferation, and angiogenesis, thereby accelerating wound healing. This review provides a comprehensive overview of the latest advances in nanocomposite hydrogels for diabetic wound treatment and discusses their advantages and molecular mechanisms at various healing stages. The study aims to provide a theoretical foundation and practical guidance for future research and clinical applications. Furthermore, it highlights the challenges related to the mechanical durability, antimicrobial performance, resistance issues, and interactions with the cellular environments of these hydrogels. Future directions include optimizing smart drug delivery systems and personalized medical approaches to enhance the clinical applicability of nanocomposite hydrogels.
Collapse
Affiliation(s)
- Gege Xiong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
| | - Qiwei Chen
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Qiuyu Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
| | - Xiaoxue Wang
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan 528000, PR China.
| | - Yaomu Xiao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
| | - Liuli Jin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
| | - Kaichong Yan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
| | - Xueyang Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan 528000, PR China.
| | - Fei Hu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
| |
Collapse
|
5
|
Zheng M, Song W, Huang P, Huang Y, Lin H, Zhang M, He H, Wu J. Drug conjugates crosslinked bioresponsive hydrogel for combination therapy of diabetic wound. J Control Release 2024; 376:701-716. [PMID: 39447843 DOI: 10.1016/j.jconrel.2024.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/23/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Basic fibroblast growth factor (bFGF) has proved to be effective for wound healing, yet its effectiveness is extremely retarded in diabetic wounds due to the severe oxidative stress in wound beds. To solve this issue, herein a novel combination therapy of bFGF and N-acetylcysteine (NAC, antioxidant) was devised for improved diabetic wound repair. To avoid rapid loss of both drugs in the wound beds, a bioresponsive hydrogel (bFGF-HSPP-NAC) was engineered by incorporating bFGF and NAC into polymer-drug conjugates (HSPP) via thiol-disulfide exchange reactions. In response to oxidative stress (e.g., reactive oxygen species), the disulfide bonds (SS) within the hydrogel are broken into thiol groups (-S-H), thereby promoting hydrogel degradation and enabling controlled drug release. Initially, NAC is released to scavenge free radicals and ameliorate oxidative damage. Subsequently, bFGF is released to expedite tissue regeneration. This combinatorial strategy is tailored to the specific characteristics of the wound microenvironment at various stages of diabetic wound healing, thereby achieving therapeutic efficacy. The results indicate that the bFGF-HSPP-NAC hydrogel markedly enhances re-epithelialization, collagen deposition, hair follicle regeneration, and neovascularization. In conclusion, the bioresponsive bFGF-HSPP-NAC hydrogel demonstrates significant potential for application in combinatorial therapeutic approaches for diabetic wound healing.
Collapse
Affiliation(s)
- Manhui Zheng
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, PR China
| | - Wenxiang Song
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, PR China
| | - Peipei Huang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, PR China
| | - Yueping Huang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Hanxuan Lin
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Miao Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Huacheng He
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, PR China; College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, PR China.
| | - Jiang Wu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, PR China.
| |
Collapse
|
6
|
Bashiri Z, Sharifi AM, Ghafari M, Hosseini SJ, Shahmahmoodi Z, Moeinzadeh A, Parsaei H, Khadivi F, Afzali A, Koruji M. In-vitro and in-vivo evaluation of angiogenic potential of a novel lithium chloride loaded silk fibroin / alginate 3D porous scaffold with antibacterial activity, for promoting diabetic wound healing. Int J Biol Macromol 2024; 277:134362. [PMID: 39089552 DOI: 10.1016/j.ijbiomac.2024.134362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Healing diabetic ulcers with chronic inflammation is a major challenge for researchers and professionals, necessitating new strategies. To rapidly treat diabetic wounds in rat models, we have fabricated a composite scaffold composed of alginate (Alg) and silk fibroin (SF) as a wound dressing that is laden with molecules of lithium chloride (LC). The physicochemical, bioactivity, and biocompatibility properties of Alg-SF-LC scaffolds were investigated in contrast to those of Alg, SF, and Alg-SF ones. Afterward, full-thickness wounds were ulcerated in diabetic rats in order to evaluate the capacity of LC-laden scaffolds to regenerate skin. The characterization findings demonstrated that the composite scaffolds possessed favorable antibacterial properties, cell compatibility, high swelling, controlled degradability, and good uniformity in the interconnected pore microstructure. Additionally, in terms of wound contraction, re-epithelialization, and angiogenesis improvement, LC-laden scaffolds revealed better performance in diabetic wound healing than the other groups. This research indicates that utilizing lithium chloride molecules loaded in biological materials supports the best diabetic ulcer regeneration in vivo, and produces a skin replacement with a cellular structure comparable to native skin.
Collapse
Affiliation(s)
- Zahra Bashiri
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Omid Fertility & Infertility Clinic, Hamedan, Iran.
| | - Ali Mohammad Sharifi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Tissue Engineering Group (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Mozhdeh Ghafari
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | - Seyed Jamal Hosseini
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Shahmahmoodi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alaa Moeinzadeh
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Houman Parsaei
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Farnaz Khadivi
- Department of Anatomy, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Azita Afzali
- Hajar hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Morteza Koruji
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Wang Z, Zheng B, Yu X, Shi Y, Zhou X, Gao B, He F, Tam MS, Wang H, Cheang LH, Zheng X, Wu T. Promoting neurovascularized bone regeneration with a novel 3D printed inorganic-organic magnesium silicate/PLA composite scaffold. Int J Biol Macromol 2024; 277:134185. [PMID: 39074694 DOI: 10.1016/j.ijbiomac.2024.134185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
Critical-size bone defect repair presents multiple challenges, such as osteogenesis, vascularization, and neurogenesis. Current biomaterials for bone repair need more consideration for the above functions. Organic-inorganic composites combined with bioactive ions offer significant advantages in bone regeneration. In our work, we prepared an organic-inorganic composite material by blending polylactic acid (PLA) with 3-aminopropyltriethoxysilane (APTES)-modified magnesium silicate (A-M2S) and fabricated it by 3D printing. With the increase of A-M2S proportion, the hydrophilicity and mineralization ability showed an enhanced trend, and the compressive strength and elastic modulus were increased from 15.29 MPa and 94.61 MPa to 44.30 MPa and 435.77 MPa, respectively. Furthermore, A-M2S/PLA scaffolds not only exhibited good cytocompatibility of bone marrow mesenchymal stem cells (BMSCs), human umbilical vein endothelial cells (HUVECs), and Schwann cells (SCs), but also effectively promoted osteogenesis, angiogenesis, and neurogenesis in vitro. After implanting 10% A-M2S/PLA scaffolds in vivo, the scaffolds showed the most effective repair of cranium defects compared to the blank and control group (PLA). Additionally, they promoted the secretion of proteins related to bone regeneration and neurovascular formation. These results provided the basis for expanding the application of A-M2S and PLA in bone tissue engineering and presented a novel concept for neurovascularized bone repair.
Collapse
Affiliation(s)
- Zhaozhen Wang
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China; Orthopedic and traumatology department, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Boyuan Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Xiaolu Yu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Yiwan Shi
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Xinting Zhou
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Botao Gao
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Fupo He
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | | | - Huajun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China.
| | - Lek Hang Cheang
- Department of Orthopedic Surgery, Centro Hospitalar Conde de Sao Januario, Macau.
| | - Xiaofei Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China.
| | - Tingting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
8
|
Jaberifard F, Almajidi YQ, Arsalani N, Ghorbani M. A self-healing crosslinked-xanthan gum/soy protein based film containing halloysite nanotube and propolis with antibacterial and antioxidant activity for wound healing. Int J Pharm 2024; 656:124073. [PMID: 38569977 DOI: 10.1016/j.ijpharm.2024.124073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/30/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Traumatic multidrug-resistant bacterial infections are the most threat to wound healing. Lower extremity wounds under diabetic conditions display a significant delay during the healing process. To overcome these challenges, the utilization of protein-based nanocomposite dressings is crucial in implementing a successful regenerative medicine approach. These dressings hold significant potential as polymer scaffolds, allowing them to mimic the properties of the extracellular matrix (ECM). So, the objective of this study was to develop a nanocomposite film using dialdehyde-xanthan gum/soy protein isolate incorporated with propolis (PP) and halloysite nanotubes (HNTs) (DXG-SPI/PP/HNTs). In this protein-polysaccharide hybrid system, the self-healing capability was demonstrated through Schiff bonds, providing a favorable environment for cell encapsulation in the field of tissue engineering. To improve the properties of the DXG-SPI film, the incorporation of polyphenols found in PP, particularly flavonoids, is proposed. The synthesized films were subjected to investigations regarding degradation, degree of swelling, and mechanical characteristics. Additionally, halloysite nanotubes (HNTs) were introduced into the DXG-SPI/PP nanocomposite films as a reinforcing filler with varying concentrations of 3 %, 5 %, and 7 % by weight. The scanning electron microscope (SEM) analysis confirmed the proper embedding and dispersion of HNTs onto the DXG-SPI/PP nanocomposite films, leading to functional interfacial interactions. The structure and crystallinity of the synthesized nanocomposite films were characterized using Fourier Transform Infrared Spectrometry (FTIR) and X-ray diffraction (XRD), respectively. Moreover, the developed DXG-SPI/PP/HNTs nanocomposite films significantly improved cell growth of NIH-3T3 fibroblast cells in the presence of PP and HNTs, indicating their cytocompatibility. The antibacterial activity of the nanocomposite was evaluated against Escherichia coli (E. Coli) and Staphylococcus aureus (S. Aureus), which are commonly associated with wound infections. Overall, our findings suggest that the synthesis of DXG-SPI/PP/HNTs nanocomposite scaffolds holds great promise as a clinically relevant biomaterial and exhibits strong potential for numerous challenging biomedical applications.
Collapse
Affiliation(s)
- Farnaz Jaberifard
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yasir Q Almajidi
- Baghdad College of Medical Sciences-Department of Pharmacy, Baghdad, Iraq
| | - Nasser Arsalani
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Marjan Ghorbani
- Iran Polymer and Petrochemical Institute, PO Box:14965/115, Tehran, Iran; Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Huang X, Hu B, Zhang X, Fan P, Chen Z, Wang S. Recent advances in the application of clay-containing hydrogels for hemostasis and wound healing. Expert Opin Drug Deliv 2024; 21:457-477. [PMID: 38467560 DOI: 10.1080/17425247.2024.2329641] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
INTRODUCTION Immediate control of bleeding and anti-infection play important roles in wound management. Multiple organ dysfunction syndrome and death may occur if persistent bleeding, hemodynamic instability, and hypoxemia are not addressed. The combination of clay and hydrogel provides a new outlet for wound hemostasis. In this review, the current research progress of hydrogel/clay composite hemostatic agents was reviewed. AREAS COVERED This paper summarizes the characteristics of several kinds of clay including kaolinite, montmorillonite, laponite, sepiolite, and palygorskite. The advantages and disadvantages of its application in hemostasis were also summarized. Future directions for the application of hydrogel/clay composite hemostatic agents are presented. EXPERT OPINION Clay can activate the endogenous hemostatic pathway by increasing blood cell concentration and promoting plasma absorption to accelerate the hemostasis. Clay is antimicrobial due to the slow release of metal ions and has a rich surface charge with a high affinity for proteins and cells to promote tissue repair. Hydrogels have some properties such as good biocompatibility, strong adhesion, high stretchability, and good self-healing. Despite promising advances, hydrogel/clay composite hemostasis remains a limitation. Therefore, more evidence is needed to further elucidate the risk factors and therapeutic effects of hydrogel/clay in hemostasis and wound healing.
Collapse
Affiliation(s)
- Xiaojuan Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Bin Hu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Xinyuan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Peng Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Zheng Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| |
Collapse
|
10
|
Zhu D, Wei W, Zhang J, Zhao B, Li Q, Jin P. Mechanism of damage of HIF-1 signaling in chronic diabetic foot ulcers and its related therapeutic perspectives. Heliyon 2024; 10:e24656. [PMID: 38318060 PMCID: PMC10839564 DOI: 10.1016/j.heliyon.2024.e24656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Diabetic foot ulcer (DFU) is a chronic complication of diabetes. Wound healing in patients with DFU is generally very slow, with a high recurrence rate even after the ulcer healed. The DFU remains a major clinical challenge due to a lack of understanding of its pathogenesis. Given the significant impact of DFU on patient health and medical costs, enhancing our understanding of pathophysiological alterations and wound healing in DFU is critical. A growing body of research has shown that impaired activation of the HIF-1 pathway in diabetics, which weakens HIF-1 mediated responses to hypoxia and leads to down-regulation of its downstream target genes, leading to incurable diabetic foot ulcers. By analyzing and summarizing the literature in recent years, this review summarizes the mechanism of HIF-1 signaling pathway damage in the development of DFU, analyzes and compares the application of PHD inhibitors, VHL inhibitors, biomaterials and stem cell therapy in chronic wounds of diabetes, and proposes a new treatment scheme mediated by participation in the HIF-1 signaling pathway, which provides new ideas for the treatment of DFU.
Collapse
Affiliation(s)
- Dong Zhu
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wuhan Wei
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jingyu Zhang
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bingkun Zhao
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qiang Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Peisheng Jin
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
11
|
Jiang X, Zeng YE, Li C, Wang K, Yu DG. Enhancing diabetic wound healing: advances in electrospun scaffolds from pathogenesis to therapeutic applications. Front Bioeng Biotechnol 2024; 12:1354286. [PMID: 38375451 PMCID: PMC10875055 DOI: 10.3389/fbioe.2024.1354286] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
Diabetic wounds are a significant subset of chronic wounds characterized by elevated levels of inflammatory cytokines, matrix metalloproteinases (MMPs), and reactive oxygen species (ROS). They are also associated with impaired angiogenesis, persistent infection, and a high likelihood of hospitalization, leading to a substantial economic burden for patients. In severe cases, amputation or even mortality may occur. Diabetic foot ulcers (DFUs) are a common complication of diabetes, with up to 25% of diabetic patients being at risk of developing foot ulcers over their lifetime, and more than 70% ultimately requiring amputation. Electrospun scaffolds exhibit a structural similarity to the extracellular matrix (ECM), promoting the adhesion, growth, and migration of fibroblasts, thereby facilitating the formation of new skin tissue at the wound site. The composition and size of electrospun scaffolds can be easily adjusted, enabling controlled drug release through fiber structure modifications. The porous nature of these scaffolds facilitates gas exchange and the absorption of wound exudate. Furthermore, the fiber surface can be readily modified to impart specific functionalities, making electrospinning nanofiber scaffolds highly promising for the treatment of diabetic wounds. This article provides a concise overview of the healing process in normal wounds and the pathological mechanisms underlying diabetic wounds, including complications such as diabetic foot ulcers. It also explores the advantages of electrospinning nanofiber scaffolds in diabetic wound treatment. Additionally, it summarizes findings from various studies on the use of different types of nanofiber scaffolds for diabetic wounds and reviews methods of drug loading onto nanofiber scaffolds. These advancements broaden the horizon for effectively treating diabetic wounds.
Collapse
Affiliation(s)
- Xuewen Jiang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yu-E Zeng
- Department of Neurology, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaofei Li
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
12
|
Wang X, Li R, Zhao H. Enhancing angiogenesis: Innovative drug delivery systems to facilitate diabetic wound healing. Biomed Pharmacother 2024; 170:116035. [PMID: 38113622 DOI: 10.1016/j.biopha.2023.116035] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
Diabetic wounds (DW) constitute a substantial burden on global healthcare owing to their widespread occurrence as a complication of diabetes. Angiogenesis, a crucial process, plays a pivotal role in tissue recovery by supplying essential oxygen and nutrients to the injury site. Unfortunately, in diabetes mellitus, various factors disrupt angiogenesis, hindering wound healing. While biomaterials designed to enhance angiogenesis hold promise for the treatment of DWs, there is an urgent need for more in-depth investigations to fully unlock their potential in clinical management. In this review, we explore the intricate mechanisms of angiogenesis that are crucial for DW recovery. We introduce a rational design for angiogenesis-enhancing drug delivery systems (DDS) and provide a comprehensive summary and discussion of diverse biomaterials that enhance angiogenesis for facilitating DW healing. Lastly, we address emerging challenges and prospects in angiogenesis-enhancing DDS for facilitating DW healing, aiming to offer a comprehensive understanding of this critical healthcare issue and potential solutions.
Collapse
Affiliation(s)
- Xuan Wang
- Department of foot and ankle surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an 710054, China
| | - Runmin Li
- Department of foot and ankle surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an 710054, China
| | - Hongmou Zhao
- Department of foot and ankle surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an 710054, China.
| |
Collapse
|
13
|
Qi L, Huang Y, Sun D, Liu Z, Jiang Y, Liu J, Wang J, Liu L, Feng G, Li Y, Zhang L. Guiding the Path to Healing: CuO 2 -Laden Nanocomposite Membrane for Diabetic Wound Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305100. [PMID: 37688343 DOI: 10.1002/smll.202305100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/11/2023] [Indexed: 09/10/2023]
Abstract
Diabetic chronic wounds pose significant clinical challenges due to their characteristic features of impaired extracellular matrix (ECM) function, diminished angiogenesis, chronic inflammation, and increased susceptibility to infection. To tackle these challenges and provide a comprehensive therapeutic approach for diabetic wounds, the first coaxial electrospun nanocomposite membrane is developed that incorporates multifunctional copper peroxide nanoparticles (n-CuO2 ). The membrane's nanofiber possesses a unique "core/sheath" structure consisting of n-CuO2 +PVP (Polyvinylpyrrolidone)/PCL (Polycaprolactone) composite sheath and a PCL core. When exposed to the wound's moist environment, PVP within the sheath gradually disintegrates, releasing the embedded n-CuO2 . Under a weakly acidic microenvironment (typically diabetic and infected wounds), n-CuO2 decomposes to release H2 O2 and Cu2+ ions and subsequently produce ·OH through chemodynamic reactions. This enables the anti-bacterial activity mediated by reactive oxygen species (ROS), suppressing the inflammation while enhancing angiogenesis. At the same time, the dissolution of PVP unveils unique nano-grooved surface patterns on the nanofibers, providing desirable cell-guiding function required for accelerated skin regeneration. Through meticulous material selection and design, this study pioneers the development of functional nanocomposites for multi-modal wound therapy, which holds great promise in guiding the path to healing for diabetic wounds.
Collapse
Affiliation(s)
- Lin Qi
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yong Huang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Dan Sun
- Advanced Composite Research Group (ACRG), School of Mechanical and Aerospace Engineering, Queens University Belfast, Belfast, BT9 5AH, UK
| | - Zheng Liu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yulin Jiang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Jiangshan Liu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Jing Wang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Limin Liu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Ganjun Feng
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yubao Li
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Li Zhang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
14
|
Zarur M, Seijo-Rabina A, Goyanes A, Concheiro A, Alvarez-Lorenzo C. pH-responsive scaffolds for tissue regeneration: In vivo performance. Acta Biomater 2023; 168:22-41. [PMID: 37482146 DOI: 10.1016/j.actbio.2023.07.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
A myriad of pH-sensitive scaffolds has been reported in recent decades. Information on their behaviour in vitro under conditions that mimic the pH changes that occur during tissue regeneration is abundant. Differently, the in vivo demonstration of the advantages of pH-responsive systems in comparison with non-responders is more limited. The in vivo scenario is very complex and the intricate relationship between the host response, the overall pathological conditions of the patient, and the risk of colonization by microorganisms is very difficult to imitate in in vitro tests. This review aims to shed light on how the changes in pH between healthy and damaged states and also during the healing process have been exploited so far to develop polymer-based scaffolds that actively contribute in vivo to the healing process avoiding chronification. The main strategies so far tested to prepare pH-responsive scaffolds rely on (i) changes in ionization of natural polymers, ionizable monomers and clays, (ii) reversible cross-linkers, (iii) coatings, and (iv) production of CO2 gas. These strategies are analysed in detail in this review with the description of relevant examples of their performance on specific animal models. The versatility of the techniques used to prepare biocompatible and environment-friendly pH-responsive scaffolds that have been implemented in the last decade may pave the way for a successful translation to the clinic. STATEMENT OF SIGNIFICANCE: We report here on the most recent advances in pH-responsive polymer-based scaffolds that have been demonstrated in vivo to be suitable for wound and bone healing. pH is a critical variable in the tissue regeneration process, and small changes can speed up or completely stop the process. Although there is still a paucity of information on the performance in the complex in vivo environment, recently reported achievements using scaffolds endowed with pH-responsiveness through ionic natural polymers, ionizable monomers and clays, reversible cross-linkers, coatings, or formation of CO2 ensure a promising future towards clinical translation.
Collapse
Affiliation(s)
- Mariana Zarur
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Alejandro Seijo-Rabina
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| |
Collapse
|
15
|
Yu H, Sun J, She K, Lv M, Zhang Y, Xiao Y, Liu Y, Han C, Xu X, Yang S, Wang G, Zang G. Sprayed PAA-CaO 2 nanoparticles combined with calcium ions and reactive oxygen species for antibacterial and wound healing. Regen Biomater 2023; 10:rbad071. [PMID: 37719928 PMCID: PMC10503269 DOI: 10.1093/rb/rbad071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023] Open
Abstract
The most common socioeconomic healthcare issues in clinical are burns, surgical incisions and other skin injuries. Skin lesion healing can be achieved with nanomedicines and other drug application techniques. This study developed a nano-spray based on cross-linked amorphous calcium peroxide (CaO2) nanoparticles of polyacrylic acid (PAA) for treating skin wounds (PAA-CaO2 nanoparticles). CaO2 serves as a 'drug' precursor, steadily and continuously releasing calcium ions (Ca2+) and hydrogen peroxide (H2O2) under mildly acidic conditions, while PAA-CaO2 nanoparticles exhibited good spray behavior in aqueous form. Tests demonstrated that PAA-CaO2 nanoparticles exhibited low cytotoxicity and allowed L929 cells proliferation and migration in vitro. The effectiveness of PAA-CaO2 nanoparticles in promoting wound healing and inhibiting bacterial growth in vivo was assessed in SD rats using full-thickness skin defect and Staphylococcus aureus (S.aureus)-infected wound models based thereon. The results revealed that PAA-CaO2 nanoparticles demonstrated significant advantages in both aspects. Notably, the infected rats' skin defects healed in 12 days. The benefits are linked to the functional role of Ca2+ coalesces with H2O2 as known antibacterial and healing-promoted agents. Therefore, we developed nanoscale PAA-CaO2 sprays to prevent bacterial development and heal skin lesions.
Collapse
Affiliation(s)
- Hong Yu
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Jiale Sun
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Kepeng She
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Mingqi Lv
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Yiqiao Zhang
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Yawen Xiao
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Yangkun Liu
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Changhao Han
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Xinyue Xu
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Shuqing Yang
- Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Guangchao Zang
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
16
|
Pant B, Park M, Kim AA. MXene-Embedded Electrospun Polymeric Nanofibers for Biomedical Applications: Recent Advances. MICROMACHINES 2023; 14:1477. [PMID: 37512788 PMCID: PMC10384458 DOI: 10.3390/mi14071477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Recently MXenes has gained immense attention as a new and exciting class of two-dimensional material. Due to their unique layered microstructure, the presence of various functional groups at the surface, earth abundance, and attractive electrical, optical, and thermal properties, MXenes are considered promising candidates for various applications such as energy, environmental, and biomedical. The ease of dispersibility and metallic conductivity of MXene render them promising candidates for use as fillers in polymer nanocomposites. MXene-polymer nanocomposites simultaneously benefit from the attractive properties of MXenes and the flexibility and facile processability of polymers. However, the potentiality of MXene to modify the electrospun nanofibers has been less studied. Understanding the interactions between polymeric nanofibers and MXenes is important to widen their role in biomedical applications. This review explores diverse methods of MXene synthesis, discusses our current knowledge of the various biological characteristics of MXene, and the synthesis of MXene incorporated polymeric nanofibers and their utilization in biomedical applications. The information discussed in this review serves to guide the future development and application of MXene-polymer nanofibers in biomedical fields.
Collapse
Affiliation(s)
- Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea
- Department of Automotive Engineering, Woosuk University, Wanju 55338, Republic of Korea
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea
- Department of Automotive Engineering, Woosuk University, Wanju 55338, Republic of Korea
| | - Allison A Kim
- Department of Healthcare Management, Woosong University, Daejon 34606, Republic of Korea
| |
Collapse
|
17
|
Therapeutic Efficacy of Polymeric Biomaterials in Treating Diabetic Wounds-An Upcoming Wound Healing Technology. Polymers (Basel) 2023; 15:polym15051205. [PMID: 36904445 PMCID: PMC10007618 DOI: 10.3390/polym15051205] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Diabetic wounds are one of the serious, non-healing, chronic health issues faced by individuals suffering from diabetic mellitus. The distinct phases of wound healing are either prolonged or obstructed, resulting in the improper healing of diabetic wounds. These injuries require persistent wound care and appropriate treatment to prevent deleterious effects such as lower limb amputation. Although there are several treatment strategies, diabetic wounds continue to be a major threat for healthcare professionals and patients. The different types of diabetic wound dressings that are currently used differ in their properties of absorbing wound exudates and may also cause maceration to surrounding tissues. Current research is focused on developing novel wound dressings incorporated with biological agents that aid in a faster rate of wound closure. An ideal wound dressing material must absorb wound exudates, aid in the appropriate exchange of gas, and protect from microbial infections. It must support the synthesis of biochemical mediators such as cytokines, and growth factors that are crucial for faster healing of wounds. This review highlights the recent advances in polymeric biomaterial-based wound dressings, novel therapeutic regimes, and their efficacy in treating diabetic wounds. The role of polymeric wound dressings loaded with bioactive compounds, and their in vitro and in vivo performance in diabetic wound treatment are also reviewed.
Collapse
|
18
|
Ren S, Guo S, Yang L, Wang C. Effect of composite biodegradable biomaterials on wound healing in diabetes. Front Bioeng Biotechnol 2022; 10:1060026. [PMID: 36507270 PMCID: PMC9732485 DOI: 10.3389/fbioe.2022.1060026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
The repair of diabetic wounds has always been a job that doctors could not tackle quickly in plastic surgery. To solve this problem, it has become an important direction to use biocompatible biodegradable biomaterials as scaffolds or dressing loaded with a variety of active substances or cells, to construct a wound repair system integrating materials, cells, and growth factors. In terms of wound healing, composite biodegradable biomaterials show strong biocompatibility and the ability to promote wound healing. This review describes the multifaceted integration of biomaterials with drugs, stem cells, and active agents. In wounds, stem cells and their secreted exosomes regulate immune responses and inflammation. They promote angiogenesis, accelerate skin cell proliferation and re-epithelialization, and regulate collagen remodeling that inhibits scar hyperplasia. In the process of continuous combination with new materials, a series of materials that can be well matched with active ingredients such as cells or drugs are derived for precise delivery and controlled release of drugs. The ultimate goal of material development is clinical transformation. At present, the types of materials for clinical application are still relatively single, and the bottleneck is that the functions of emerging materials have not yet reached a stable and effective degree. The development of biomaterials that can be further translated into clinical practice will become the focus of research.
Collapse
Affiliation(s)
- Sihang Ren
- NHC Key Laboratory of Reproductive Health and Medical Genetics (Liaoning Research Institute of Family Planning), The Affiliated Reproductive Hospital of China Medical University, Shenyang, China
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- The First Clinical College of China Medical UniversityChina Medical University, Shenyang, China
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Shuaichen Guo
- The First Clinical College of China Medical UniversityChina Medical University, Shenyang, China
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (Liaoning Research Institute of Family Planning), The Affiliated Reproductive Hospital of China Medical University, Shenyang, China
| | - Chenchao Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|