1
|
Boyuklieva R, Zahariev N, Simeonov P, Penkov D, Katsarov P. Next-Generation Drug Delivery for Neurotherapeutics: The Promise of Stimuli-Triggered Nanocarriers. Biomedicines 2025; 13:1464. [PMID: 40564183 DOI: 10.3390/biomedicines13061464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2025] [Revised: 06/10/2025] [Accepted: 06/11/2025] [Indexed: 06/28/2025] Open
Abstract
Nanotherapeutics have emerged as novel unparalleled drug delivery systems (DDSs) for the treatment of neurodegenerative disorders. By applying different technological approaches, nanoparticles can be engineered to possess different functionalities. In recent years, the developed, stimuli-responsive nanocarriers stand out as novel complex DDSs ensuring selective and specific drug delivery in response to different endogenous and exogenous stimuli. Due to the multifaceted pathophysiology of the nervous system, a major challenge in modern neuropharmacology is the development of effective therapies ensuring high efficacy and low toxicity. Functionalization of the nanocarriers to react to specific microenvironmental changes in the nervous system tissues or external stimulations significantly enhances the efficacy of drug delivery. This review discusses the microenvironmental characteristics of some common neurological diseases in-depth and provides a comprehensive overview on the progress of the development of exogenous and endogenous stimuli-sensitive nanocarriers for the treatment of Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Radka Boyuklieva
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv (RIMU), 4002 Plovdiv, Bulgaria
| | - Nikolay Zahariev
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv (RIMU), 4002 Plovdiv, Bulgaria
| | - Plamen Simeonov
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Dimitar Penkov
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Plamen Katsarov
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv (RIMU), 4002 Plovdiv, Bulgaria
| |
Collapse
|
2
|
Chavez-López LM, Silvestre-Martínez JH, Del Carmen Lugo-Ibarra K, Castro-Ceseña AB. A comprehensive approach to Alzheimer's Disease: Exploring Nanotechnology, treatment Innovations, and sex differences. Brain Res 2025; 1862:149718. [PMID: 40436233 DOI: 10.1016/j.brainres.2025.149718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/23/2025] [Accepted: 05/18/2025] [Indexed: 06/01/2025]
Abstract
In the world, over 50 million people are living with Alzheimer's disease (AD), and in thirty years, this number is expected to double or even exceed that. AD is a form of dementia characterized by memory loss, language difficulties, and impaired thinking skills. It involves the accumulation of beta-amyloid plaques and tau tangles in the brain, leading to neurodegeneration and disrupted neuron communication. After diagnosis, patients typically survive for four to eight years, though some may live up to 20 years. Currently, there is no cure, and the available treatment options are limited in improving the quality of patients' lives. However, a promising perspective for treatment based on nanotechnology narrows down the possibility of personalized treatment. In this review, we explore several topics related to Alzheimer's disease to provide a comprehensive understanding of how nanotechnology can enhance treatment approaches. We examine various types of nano treatments and delivery methods, as well as the challenges they face and their associated benefits. Additionally, we highlight current nano treatments in development and discuss improved cell and animal models that can effectively test these treatments for patient safety. We also address sex differences in the pathophysiology of Alzheimer's disease, which may allow for more targeted treatment strategies. By considering these factors in conjunction, we move closer to realizing personalized medicine, ultimately improving the quality of life for patients. Nano treatments offer the potential for more specific, safer, and effective solutions in managing Alzheimer's disease.
Collapse
Affiliation(s)
- Lucia M Chavez-López
- Facultad de Medicina, Centro de Estudios Universitarios Xochicalco Campus Ensenada, San Francisco 1139, Fraccionamiento Misión, C.P., 22830 Ensenada, Baja CA, México; Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P., 22860 Ensenada, Baja CA, México
| | - J Horacio Silvestre-Martínez
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P., 22860 Ensenada, Baja CA, México; Centro de Nanociencias y Nanotecnología, (CNYN,UNAM), Carretera Tijuana-Ensenada Km 107, C.P., 22860 Ensenada, Baja CA, México
| | | | - Ana B Castro-Ceseña
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P., 22860 Ensenada, Baja CA, México; SECIHTI- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P., 22860 Ensenada, Baja CA, México.
| |
Collapse
|
3
|
Guo R, Zhang R, Xin Y, Wang Z, Xu Z, Qiu J. Recent developments in photothermal therapy: a bibliometric and visual analysis. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:892-912. [PMID: 39645603 DOI: 10.1080/09205063.2024.2434308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
Photothermal therapy (PTT) has recently garnered significant attention as a prominent noninvasive treatment modality for a broad spectrum of diseases. Despite the increasing volume of scholarly output over the last 20 years, a holistic synthesis that delineates worldwide research trajectories remains elusive. We undertook a bibliometric analysis of the literature from 2004 to 2023, aiming to delineate the prevailing focal points and illuminate prospective research avenues. Research articles on PTT were retrieved from the Web of Science Core Collection. Using tools such as CiteSpace, VOSviewer, and Bibliometrix, we comprehensively analyzed and visualized 11,184 published academic PTT papers. China has the highest number of publications. Journals related to PTT are primarily comprised of interdisciplinary and comprehensive journals. Research associated with PTT has focused primarily on its antitumor properties. Current focal areas in this domain include the synergistic combination of PTT with photodynamic therapy, immunological mechanisms of PTT to enhance its therapeutic efficacy, integrated use of PTT with nanoenzyme catalysis, and the role of PTT in antimicrobial applications. This bibliometric analysis provides an initial comprehensive examination of the medical applications of PTT, offering insights into the global research landscape, key areas of interest, and emerging trends, thereby serving as a valuable reference for future studies in this field.
Collapse
Affiliation(s)
- Runying Guo
- Jiangxi Provincial Key Laboratory of Oral Diseases, Department of Stomatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Medical College, Nanchang University, Nanchang, China
| | - Rongrong Zhang
- Jiangxi Provincial Key Laboratory of Oral Diseases, Department of Stomatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Medical College, Nanchang University, Nanchang, China
| | - Yuqi Xin
- Jiangxi Provincial Key Laboratory of Oral Diseases, Department of Stomatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Medical College, Nanchang University, Nanchang, China
| | - Zhonghao Wang
- Jiangxi Provincial Key Laboratory of Oral Diseases, Department of Stomatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Medical College, Nanchang University, Nanchang, China
| | - Zichen Xu
- Jiangxi Provincial Key Laboratory of Oral Diseases, Department of Stomatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Medical College, Nanchang University, Nanchang, China
| | - Jiaxuan Qiu
- Jiangxi Provincial Key Laboratory of Oral Diseases, Department of Stomatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Song D, Zhang J, Hu X, Liu X. Progress in the treatment of Alzheimer's disease based on nanosized traditional Chinese medicines. J Mater Chem B 2025; 13:1548-1572. [PMID: 39711283 DOI: 10.1039/d4tb02062f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Traditional Chinese medicine (TCM) has been employed for centuries in treating and managing Alzheimer's disease (AD). However, their effective delivery to target sites can be a major challenge. This is due to their poor water solubility, low bioavailability, and potential toxicity. Furthermore, the blood-brain barrier (BBB) is a major obstacle to effective TCM delivery, significantly reducing efficacy. Advancements in nanotechnology and its applications in TCM (nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain area. This review summarizes the recent advances in nanocarrier-based delivery systems for different types of active constituents of TCM for AD, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones. Besides, the main challenges and opportunities for the future development of these advanced TCM nanocarriers are emphasized. In conclusion, this review provides valuable insights and guidance for utilizing nanocarriers to shape future TCM drug delivery.
Collapse
Affiliation(s)
- Dan Song
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610044, China.
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610044, China
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610044, China.
| | - Xiaoyan Liu
- West China Hospital of Sichuan University, 610041, China
| |
Collapse
|
5
|
Zhang Y, Wu Z, Wu J, Li T, Jiang F, Yang B. Current multi-scale biomaterials for tissue regeneration following spinal cord injury. Neurochem Int 2024; 178:105801. [PMID: 38971503 DOI: 10.1016/j.neuint.2024.105801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Spinal cord injury (SCI) may cause loss of motor and sensory function, autonomic dysfunction, and thus disrupt the quality of life of patients, leading to severe disability and significant psychological, social, and economic burden. At present, existing therapy for SCI have limited ability to promote neural function recovery, and there is an urgent need to develop innovative regenerative approaches to repair SCI. Biomaterials have become a promising strategy to promote the regeneration and repair of damaged nerve tissue after SCI. Biomaterials can provide support for nerve tissue by filling cavities, and improve local inflammatory responses and reshape extracellular matrix structures through unique biochemical properties to create the optimal microenvironment at the SCI site, thereby promoting neurogenesis and reconnecting damaged spinal cord tissue. Considering the importance of biomaterials in repairing SCI, this article reviews the latest progress of multi-scale biomaterials in SCI treatment and tissue regeneration, and evaluates the relevant technologies for manufacturing biomaterials.
Collapse
Affiliation(s)
- Yuang Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Zhonghuan Wu
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China
| | - Junfeng Wu
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China
| | - Tingdong Li
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China
| | - Fugui Jiang
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China
| | - Biao Yang
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China.
| |
Collapse
|