1
|
Cui XY, Zhan JK. Capsaicin and TRPV1: A Novel Therapeutic Approach to Mitigate Vascular Aging. Aging Dis 2025:AD.2024.1292. [PMID: 39965247 DOI: 10.14336/ad.2024.1292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/08/2025] [Indexed: 02/20/2025] Open
Abstract
Vascular aging and its associated diseases represent a principal cause of mortality among the global elderly population, making the mitigation of vascular aging a significant aspiration for humanity. This article explores the intersection of nature and health, focusing on the role of the natural plant, pepper, and its principal bioactive compound, capsaicin, in combating vascular aging. By examining molecular and cellular mechanisms as well as phenotypic alterations in blood vessels, we offer a comprehensive review of the effects of capsaicin and its receptor, transient receptor potential vanilloid 1 (TRPV1), within vascular aging. We propose that capsaicin may serve as the medication with the potential to slow the progress of vascular aging and could constitute a new strategy to treat vascular aging related disease.
Collapse
Affiliation(s)
- Xing-Yu Cui
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - Jun-Kun Zhan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Hasan SR, Manolis D, Stephenson E, Ryskiewicz-Sokalska OA, Maraveyas A, Nikitenko LL. Calcitonin gene-related peptide and intermedin induce phosphorylation of p44/42 MAPK in primary human lymphatic endothelial cells in vitro. Cell Signal 2024; 121:111261. [PMID: 38878805 DOI: 10.1016/j.cellsig.2024.111261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/29/2024]
Abstract
Calcitonin gene-related peptide (CGRP) and adrenomedullin 2/intermedin (AM2/IMD) play important roles in several pathologies, including cardiovascular disease, migraine and cancer. The efficacy of drugs targeting CGRP signalling axis for the treatment of migraine patients is sometimes offset by side effects (e.g. inflammation and microvascular complications, including aberrant neovascularisation in the skin). Recent studies using animal models implicate CGRP in lymphangiogenesis and lymphatic vessel function. However, whether CGRP or AM2/IMD can act directly on lymphatic endothelial cells is unknown. Here, we found that CGRP and AM2/IMD induced p44/42 MAPK phosphorylation in a time- and dose-dependent manner in primary human dermal lymphatic endothelial cells (HDLEC) in vitro, and thus directly affected these cells. These new findings reveal CGRP and AM2/IMD as novel regulators of LEC biology and warrant further investigation of their roles in the context of pathologies associated with lymphatic function in the skin and other organs, and therapies targeting CGRP signalling axis.
Collapse
Affiliation(s)
- Shirin R Hasan
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | - Dimitrios Manolis
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | - Ewan Stephenson
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | | | - Anthony Maraveyas
- Hull University Teaching Hospitals NHS Teaching Trust, Queens Centre for Oncology and Haematology, Castle Hill Hospital, Hull, UK
| | - Leonid L Nikitenko
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| |
Collapse
|
3
|
Wang S, Zou Z, Tang Z, Deng J. AMPK/MTOR/TP53 Signaling Pathway Regulation by Calcitonin Gene-Related Peptide Reduces Oxygen-Induced Lung Damage in Neonatal Rats through Autophagy Promotion. Inflammation 2024; 47:1083-1108. [PMID: 38502251 DOI: 10.1007/s10753-023-01963-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/10/2023] [Accepted: 12/27/2023] [Indexed: 03/21/2024]
Abstract
Our previous studies indicated that calcitonin gene-related peptide (CGRP) alleviates hyperoxia-induced lung injury and suggested the possible involvement of autophagy in this process. Herein, we aimed to further explore the potential involvement of tumor protein p53 (TP53) and autophagy in the mode of action of CGRP against hyperoxia-induced lung injury in vitro and in vivo. The study conducted tests on type II alveolar epithelial cells (AECII) and rats that were subjected to hyperoxia treatment or combined treatment of hyperoxia with CGRP, CGRP inhibitor, rapamycin (an autophagy agonist), 3-methyladenine (3-MA, an autophagy inhibitor), TP53 silencing/inhibitor (pifithrin-α), or expression vector/activator (PRIMA-1 (2,2-bis(hydroxymethyl)-3-quinuclidinone)) and their corresponding controls. We found that oxidative stress, apoptosis, and autophagy were all increased by hyperoxia treatment in vitro. However, treating AECII cells with CGRP reversed hyperoxia-induced oxidative stress and apoptosis but further promoted autophagy. In addition, the combined treatment with rapamycin or TP53 silencing with CGRP promoted the effect of CGRP, while contrary results were obtained with combined therapy with 3-MA or TP53 overexpression. In vivo, the number of hyperoxia-induced autophagosomes was promoted in the lung tissue of neonatal rats. Furthermore, hyperoxia increased the expression levels of AMP-activated protein kinase (AMPK) alpha 1 (also known as protein kinase AMP-activated catalytic subunit alpha 1 (PRKAA1)) but inhibited TP53 and mechanistic target of rapamycin (MTOR); these expression trends were regulated by CGRP treatment. In conclusion, we showed that CGRP can attenuate hyperoxia-induced lung injury in neonatal rats by enhancing autophagy and regulating the TP53/AMPK/MTOR crosstalk axis.
Collapse
Affiliation(s)
- Shaohua Wang
- Neonatal Intensive Care Unit, Women and Children Health Institute of Futian, Jintian South Road No. 2002, Futian District, Shenzhen, 518045, China.
| | - Zhengzhuang Zou
- Neonatal Intensive Care Unit, Women and Children Health Institute of Futian, Jintian South Road No. 2002, Futian District, Shenzhen, 518045, China
| | - Zanmei Tang
- Neonatal Intensive Care Unit, Women and Children Health Institute of Futian, Jintian South Road No. 2002, Futian District, Shenzhen, 518045, China
| | - Jian Deng
- Neonatal Intensive Care Unit, Women and Children Health Institute of Futian, Jintian South Road No. 2002, Futian District, Shenzhen, 518045, China
| |
Collapse
|
4
|
Pervizaj-Oruqaj L, Selvakumar B, Ferrero MR, Heiner M, Malainou C, Glaser RD, Wilhelm J, Bartkuhn M, Weiss A, Alexopoulos I, Witte B, Gattenlöhner S, Vadász I, Morty RE, Seeger W, Schermuly RT, Vazquez-Armendariz AI, Herold S. Alveolar macrophage-expressed Plet1 is a driver of lung epithelial repair after viral pneumonia. Nat Commun 2024; 15:87. [PMID: 38167746 PMCID: PMC10761876 DOI: 10.1038/s41467-023-44421-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Influenza A virus (IAV) infection mobilizes bone marrow-derived macrophages (BMDM) that gradually undergo transition to tissue-resident alveolar macrophages (TR-AM) in the inflamed lung. Combining high-dimensional single-cell transcriptomics with complex lung organoid modeling, in vivo adoptive cell transfer, and BMDM-specific gene targeting, we found that transitioning ("regenerative") BMDM and TR-AM highly express Placenta-expressed transcript 1 (Plet1). We reveal that Plet1 is released from alveolar macrophages, and acts as important mediator of macrophage-epithelial cross-talk during lung repair by inducing proliferation of alveolar epithelial cells and re-sealing of the epithelial barrier. Intratracheal administration of recombinant Plet1 early in the disease course attenuated viral lung injury and rescued mice from otherwise fatal disease, highlighting its therapeutic potential.
Collapse
Affiliation(s)
- Learta Pervizaj-Oruqaj
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Balachandar Selvakumar
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), Buenos Aires, Argentina
| | - Maximiliano Ruben Ferrero
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), Buenos Aires, Argentina
| | - Monika Heiner
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Christina Malainou
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Rolf David Glaser
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Biomedical Informatics and Systems Medicine, Justus Liebig University, Giessen, Germany
| | - Jochen Wilhelm
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Marek Bartkuhn
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Biomedical Informatics and Systems Medicine, Justus Liebig University, Giessen, Germany
| | - Astrid Weiss
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ioannis Alexopoulos
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Biruta Witte
- Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen, Germany
| | | | - István Vadász
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Rory Edward Morty
- Department of Translational Pulmonology and the Translational Lung Research Center, University Hospital Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Werner Seeger
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), Buenos Aires, Argentina
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ralph Theo Schermuly
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ana Ivonne Vazquez-Armendariz
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- University of Bonn, Transdisciplinary Research Area Life and Health, Organoid Biology, Life & Medical Sciences Institute, Bonn, Germany
| | - Susanne Herold
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, University Hospital Giessen, Justus Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany.
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany.
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany.
| |
Collapse
|
5
|
Xiong J, Wang Z, Bai J, Cheng K, Liu Q, Ni J. Calcitonin gene-related peptide: a potential protective agent in cerebral ischemia-reperfusion injury. Front Neurosci 2023; 17:1184766. [PMID: 37529236 PMCID: PMC10387546 DOI: 10.3389/fnins.2023.1184766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/29/2023] [Indexed: 08/03/2023] Open
Abstract
Ischemic stroke is the most common type of cerebrovascular disease with high disability and mortality rates, which severely burdens patients, their families, and society. At present, thrombolytic therapy is mainly used for the treatment of ischemic strokes. Even though it can achieve a good effect, thrombolytic recanalization can cause reperfusion injury. Calcitonin gene-related peptide (CGRP) is a neuropeptide that plays a neuroprotective role in the process of ischemia-reperfusion injury. By combining with its specific receptors, CGRP can induce vasodilation of local cerebral ischemia by directly activating the cAMP-PKA pathway in vascular smooth muscle cells and by indirectly activating the NO-cGMP pathway in an endothelial cell-dependent manner,thus rapidly increasing ischemic local blood flow together with reperfusion. CGRP, as a key effector molecule of neurogenic inflammation, can reduce the activation of microglia, downregulates Th1 classical inflammation, and reduce the production of TNF-α, IL-2, and IFN-γ and the innate immune response of macrophages, leading to the reduction of inflammatory factors. CGRP can reduce the overexpression of the aquaporin-4 (AQP-4) protein and its mRNA in the cerebral ischemic junction, and play a role in reducing cerebral edema. CGRP can protect endothelial cells from angiotensin II by reducing the production of oxidants and protecting antioxidant defense. Furthermore, CGRP-upregulated eNOS can further induce VEGF expression, which then promotes the survival and angiogenesis of vascular endothelial cells. CGRP can also reduce apoptosis by promoting the expression of Bcl-2 and inhibiting the expression of caspase-3. These effects suggest that CGRP can reduce brain injury and repair damaged nerve function. In this review, we focused on the role of CGRP in cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Jie Xiong
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Zhiyong Wang
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Junhui Bai
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Keling Cheng
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Qicai Liu
- Department of Reproductive Medicine Centre, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun Ni
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Wang Q, Qin H, Deng J, Xu H, Liu S, Weng J, Zeng H. Research Progress in Calcitonin Gene-Related Peptide and Bone Repair. Biomolecules 2023; 13:biom13050838. [PMID: 37238709 DOI: 10.3390/biom13050838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Calcitonin gene-related peptide (CGRP) has 37 amino acids. Initially, CGRP had vasodilatory and nociceptive effects. As research progressed, evidence revealed that the peripheral nervous system is closely associated with bone metabolism, osteogenesis, and bone remodeling. Thus, CGRP is the bridge between the nervous system and the skeletal muscle system. CGRP can promote osteogenesis, inhibit bone resorption, promote vascular growth, and regulate the immune microenvironment. The G protein-coupled pathway is vital for its effects, while MAPK, Hippo, NF-κB, and other pathways have signal crosstalk, affecting cell proliferation and differentiation. The current review provides a detailed description of the bone repair effects of CGRP, subjected to several therapeutic studies, such as drug injection, gene editing, and novel bone repair materials.
Collapse
Affiliation(s)
- Qichang Wang
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- School of Clinical Medicine, Department of Medicine, Shenzhen University, Shenzhen 518061, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, China
| | - Haotian Qin
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jiapeng Deng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Huihui Xu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Su Liu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jian Weng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Zeng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, China
| |
Collapse
|
7
|
Fu X, Zhang Y. Research progress of p38 as a new therapeutic target against morphine tolerance and the current status of therapy of morphine tolerance. J Drug Target 2023; 31:152-165. [PMID: 36264036 DOI: 10.1080/1061186x.2022.2138895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
With the development of the medical industry, new painkillers continue to appear in people's field of vision, but so far no painkiller can replace morphine. While morphine has a strong analgesic effect, it is also easy to produce pain sensitivity and tolerance. Due to the great inter-individual differences in patient responses, there are few clear instructions on how to optimise morphine administration regimens, which complicates clinicians' treatment strategies and limits the effectiveness of morphine in long-term pain therapy. P38MAPK is a key member of the MAPK family. Across recent years, it has been discovered that p38MAPK rises dramatically in a wide range of morphine tolerance animal models. Morphine tolerance can be reduced or reversed by inhibiting p38MAPK. However, the role and specific mechanism of p38MAPK are not clear. In this review, we synthesise the relevant findings, highlight the function and potential mechanism of p38MAPK in morphine tolerance, as well as the present status and efficacy of morphine tolerance therapy, and underline the future promise of p38MAPK targeted morphine tolerance treatment.
Collapse
Affiliation(s)
- Xiao Fu
- Inner Mongolia Medical University, Hohhot, China
| | - Yanhong Zhang
- Department of Anesthesiology, People's Hospital Affiliated to Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
8
|
Mizuta H, Takakusaki A, Suzuki T, Otake K, Dohmae N, Simizu S. C-mannosylation regulates stabilization of RAMP1 protein and RAMP1-mediated cell migration. FEBS J 2023; 290:196-208. [PMID: 35942636 DOI: 10.1111/febs.16592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 01/14/2023]
Abstract
C-mannosylation is a unique type of protein glycosylation via C-C linkage between an α-mannose and a tryptophan residue. This modification has been identified in about 30 proteins and regulates several functions, such as protein secretion and intracellular localization, as well as protein stability. About half of C-mannosylated proteins are categorized as proteins containing thrombospondin type 1 repeat domain or type I cytokine receptors. To evaluate whether C-mannosylation broadly affects protein functions regardless of protein domain or family, we have sought to identify other types of C-mannosylated protein and analyse their functions. In this study, we focused on receptor activity modifying protein 1, which neither contains thrombospondin type 1 repeat domain nor belongs to the type I cytokine receptors. Our mass spectrometry analysis demonstrated that RAMP1 is C-mannosylated at Trp56 . It has been shown that RAMP1 transports to the plasma membrane after dimerization with calcitonin receptor-like receptor and is important for ligand-dependent downstream signalling activation. Our results showed that C-mannosylation has no effect on this transport activity. On the other hand, C-mannosylation did enhance protein stability and cell migration activity. Our data may provide new insight into both C-mannosylation research and novel RAMP1 analysis.
Collapse
Affiliation(s)
- Hayato Mizuta
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Ayane Takakusaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Keisuke Otake
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| |
Collapse
|
9
|
Zhu S, Zidan A, Pang K, Musayeva A, Kang Q, Yin J. Promotion of corneal angiogenesis by sensory neuron-derived calcitonin gene-related peptide. Exp Eye Res 2022; 220:109125. [PMID: 35618042 DOI: 10.1016/j.exer.2022.109125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/08/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022]
Abstract
The normal cornea has no blood vessels but has abundant innervation. There is emerging evidence that sensory nerves, originated from the trigeminal ganglion (TG) neurons, play a key role in corneal angiogenesis. In the current study, we examined the role of TG sensory neuron-derived calcitonin gene-related peptide (CGRP) in promoting corneal neovascularization (CNV). We found that CGRP was expressed in the TG and cultured TG neurons. In the cornea, minimal CGRP mRNA was detected and CGRP immunohistochemical staining was exclusively co-localized with corneal nerves, suggesting corneal nerves are likely the source of CGRP in the cornea. In response to intrastromal suture placement and neovascularization in the cornea, CGRP expression was increased in the TG. In addition, we showed that CGRP was potently pro-angiogenic, leading to vascular endothelial cell (VEC) proliferation, migration, and tube formation in vitro and corneal hemangiogenesis and lymphangiogenesis in vivo. In a co-culture system of TG neurons and VEC, blocking CGRP signaling in the conditioned media of TG neurons led to decreased VEC migration and tube formation. More importantly, subconjunctival injection of a CGRP antagonist CGRP8-37 reduced suture-induced corneal hemangiogenesis and lymphangiogenesis in vivo. Taken together, our data suggest that TG sensory neuron and corneal nerve-derived CGRP promotes corneal angiogenesis.
Collapse
Affiliation(s)
- Shuyan Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China; Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Asmaa Zidan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Kunpeng Pang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Aytan Musayeva
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Qianyan Kang
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Jia Yin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Lu L, Zhu J, Zhang H, Li X, Chen K. Advances in the Pharmacological Intervention of Endothelial Progenitor Cells in the Treatment of Ischemic Stroke. Cerebrovasc Dis 2022; 51:697-705. [PMID: 35512667 DOI: 10.1159/000524414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/17/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Ischemic stroke, a common central nervous system disease that seriously threatens human life and health, is characterized by rapid progress and a high disability fatality rate. Ischemic tissue can produce a large amount of vascular endothelial growth factor (VEGF) and stromal cell-derived factor 1 (SDF-1) to promote the mobilization of endothelial progenitor cells (EPCs). SUMMARY As newly discovered stem cells, EPCs can promote angiogenesis in ischemic tissue, repair the damaged vascular endothelium, and maintain vascular homeostasis. Thus, EPCs have become a new research hotspot in this field. This review focuses on the mechanism of EPCs and the intervention of various novel drugs, including small molecules and biomolecules, which will promote the capture, proliferation, and differentiation of EPCs. Then, we explore the promotion of vascular health and the prospect of its application in the treatment of cerebral ischemic stroke (CIS). KEY MESSAGE It is clinically significant to study the potential of new drug therapy to target EPCs. More effective cytokines, signal pathways, and other drugs should be explored in the future and their specific mechanisms determined. Research should reveal more biological functions of EPCs and achieve their efficient amplification to improve therapy against CIS stroke.
Collapse
Affiliation(s)
- Lu Lu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiajie Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Haiyan Zhang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoping Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
11
|
Tsuji K. Reply: Letter to the editor. J Orthop Res 2021; 39:2535-2536. [PMID: 33783018 DOI: 10.1002/jor.25028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/10/2021] [Indexed: 02/04/2023]
Affiliation(s)
- Kunikazu Tsuji
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
12
|
Mi J, Xu J, Yao H, Li X, Tong W, Li Y, Dai B, He X, Chow DHK, Li G, Lui KO, Zhao J, Qin L. Calcitonin Gene-Related Peptide Enhances Distraction Osteogenesis by Increasing Angiogenesis. Tissue Eng Part A 2020; 27:87-102. [PMID: 32375579 DOI: 10.1089/ten.tea.2020.0009] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Distraction osteogenesis (DO) is a well-established surgical technique for treating bone defect and limb lengthening. The major drawback of DO is the long treatment period as the external fixator has to be kept in place until consolidation is completed. Calcitonin gene-related peptide (CGRP) has been reported to promote angiogenesis by affecting endothelial progenitor cells (EPCs) in limb ischemia and wound healing. Thus, the goal of this study was to evaluate the angiogenic effect of exogenous CGRP on bone regeneration in a rat DO model. Exogenous CGRP was directly injected into the bone defect after each cycle of distraction in vivo. Microcomputed tomography, biomechanical test, and histological analysis were performed to assess the new bone formation. Angiography and immunofluorescence were performed to assess the formation of blood vessels. CD31+CD144+ EPCs in the bone defect were quantified with flow cytometry. In in vitro study, bone marrow stem cells (BMSCs) were used to investigate the effect of CGRP on EPCs production during endothelial differentiation. Our results showed that CGRP significantly promoted bone regeneration and vessel formation after consolidation. CGRP significantly increased the fraction of CD31+CD144+EPCs and the capillary density in the bone defect at the end of distraction phase. CGRP increased EPC population in the endothelial differentiation of BMSCs in vitro by activating PI3K/AKT signaling pathway. Furthermore, differentiated EPCs rapidly assembled into tube-like structures and promoted osteogenic differentiation of BMSCs. In conclusion, CGRP increased EPC population and promoted blood vessel formation and bone regeneration at the defect region in a DO model. Impact statement Distraction osteogenesis (DO) is a well-established surgical technique for limb lengthening and bone defect. The disadvantage of this technique is that external fixator is needed to be kept in place for about 12 months. This may result in increased risk of infection, financial burden, and negative psychological impacts. In this study, we have injected calcitonin gene-related peptide (CGRP) into the defect region after distraction and found that CGRP enhanced vessel formation and bone regeneration in a rat DO model. This suggests that a controlled delivery system for CGRP could be developed and applied clinically for accelerating bone regeneration in patients with DO.
Collapse
Affiliation(s)
- Jie Mi
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Yao
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xisheng Li
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Li
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xuan He
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Gang Li
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kathy O Lui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Leroux A, Paiva Dos Santos B, Leng J, Oliveira H, Amédée J. Sensory neurons from dorsal root ganglia regulate endothelial cell function in extracellular matrix remodelling. Cell Commun Signal 2020; 18:162. [PMID: 33076927 PMCID: PMC7574530 DOI: 10.1186/s12964-020-00656-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/06/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Recent physiological and experimental data highlight the role of the sensory nervous system in bone repair, but its precise role on angiogenesis in a bone regeneration context is still unknown. Our previous work demonstrated that sensory neurons (SNs) induce the osteoblastic differentiation of mesenchymal stem cells, but the influence of SNs on endothelial cells (ECs) was not studied. METHODS Here, in order to study in vitro the interplay between SNs and ECs, we used microfluidic devices as an indirect co-culture model. Gene expression analysis of angiogenic markers, as well as measurements of metalloproteinases protein levels and enzymatic activity, were performed. RESULTS We were able to demonstrate that two sensory neuropeptides, calcitonin gene-related peptide (CGRP) and substance P (SP), were involved in the transcriptional upregulation of angiogenic markers (vascular endothelial growth factor, angiopoietin 1, type 4 collagen, matrix metalloproteinase 2) in ECs. Co-cultures of ECs with SNs also increased the protein level and enzymatic activity of matrix metalloproteinases 2 and 9 (MMP2/MMP9) in ECs. CONCLUSIONS Our results suggest a role of sensory neurons, and more specifically of CGRP and SP, in the remodelling of endothelial cells extracellular matrix, thus supporting and enhancing the angiogenesis process. Video abstract.
Collapse
Affiliation(s)
- Alice Leroux
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000, Bordeaux, France.
| | | | - Jacques Leng
- Univ. Bordeaux, CNRS, Solvay, LOF, UMR 5258, F-33006, Pessac, France
| | - Hugo Oliveira
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000, Bordeaux, France
| | - Joëlle Amédée
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000, Bordeaux, France
| |
Collapse
|
14
|
Niedermair T, Schirner S, Lasheras MG, Straub RH, Grässel S. Absence of α-calcitonin gene-related peptide modulates bone remodeling properties of murine osteoblasts and osteoclasts in an age-dependent way. Mech Ageing Dev 2020; 189:111265. [PMID: 32446790 DOI: 10.1016/j.mad.2020.111265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 04/23/2020] [Accepted: 05/15/2020] [Indexed: 11/28/2022]
Abstract
Mice with an overall deletion of the sensory neuropeptide α-calcitonin gene-related peptide (α-CGRP) develop an age-dependent osteopenic bone phenotype. Underlying molecular mechanisms of how αCGRP affects bone cell metabolism are not well understood. This study aims to characterize differences in metabolic parameters of osteoblast-like cells (OB) and differentiated bone marrow-derived macrophages (BMM)/osteoclast (OC) cultures isolated from 3 month (3 m) and 9 month old (9 m) α-CGRP-deficient mice (-/-) and age-matched WT controls. All WT bone cell cultures endogenously produced and secreted α-CGRP. We found higher BMM but reduced OB numbers and reduced OB vitality after isolation from 9 m compared to 3 m mice, independent of genotype. Absence of α-CGRP reduced cell spreading, increased apoptosis rate throughout osteogenic differentiation, and reduced ALP activity during late osteogenic differentiation in 9 m OB-/- cultures, whereas minor effects were found in 3 m OB-/- cultures. Cathepsin K activity was reduced in 3 m OC-/- cultures. On the contrary, 9 m OC-/- cells demonstrated increased proliferation and caspase3/7 activity. The absence of α-CGRP influenced bone formation and resorption rate differently in bone cells from 3 and 9 m old mice. In summary we suggest, that an increase of dysfunctional mature osteoblasts might occur during aging and contribute to the development of the osteopenic bone phenotype in mature adult (9 m) α-CGRP-deficient mice.
Collapse
Affiliation(s)
- Tanja Niedermair
- Department of Orthopaedic Surgery, University of Regensburg, Germany; Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Germany.
| | - Stephan Schirner
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Germany.
| | - Mar Guaza Lasheras
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Germany.
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University of Regensburg, Germany.
| | - Susanne Grässel
- Department of Orthopaedic Surgery, University of Regensburg, Germany; Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Germany.
| |
Collapse
|
15
|
Sohn I, Sheykhzade M, Edvinsson L, Sams A. The effects of CGRP in vascular tissue - Classical vasodilation, shadowed effects and systemic dilemmas. Eur J Pharmacol 2020; 881:173205. [PMID: 32442540 DOI: 10.1016/j.ejphar.2020.173205] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/29/2020] [Accepted: 05/14/2020] [Indexed: 02/02/2023]
Abstract
Vascular tissue consists of endothelial cells, vasoactive smooth muscle cells and perivascular nerves. The perivascular sensory neuropeptide CGRP has demonstrated potent vasodilatory effects in any arterial vasculature examined so far, and a local protective CGRP-circuit of sensory nerve terminal CGRP release and smooth muscle cell CGRP action is evident. The significant vasodilatory effect has shadowed multiple other effects of CGRP in the vascular tissue and we therefore thoroughly review vascular actions of CGRP on endothelial cells, vascular smooth muscle cells and perivascular nerve terminals. The actions beyond vasodilation includes neuronal re-uptake and neuromodulation, angiogenic, proliferative and antiproliferative, pro- and anti-inflammatory actions which vary depending on the target cell and anatomical location. In addition to the classical perivascular nerve-smooth muscle CGRP circuit, we review existing evidence for a shadowed endothelial autocrine pathway for CGRP. Finally, we discuss the impact of local and systemic actions of CGRP in vascular regulation and protection from hypertensive and ischemic heart conditions with special focus on therapeutic CGRP agonists and antagonists.
Collapse
Affiliation(s)
- Iben Sohn
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Nordstjernevej 42, DK-2600, Glostrup, Denmark
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Oe, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Nordstjernevej 42, DK-2600, Glostrup, Denmark; Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden
| | - Anette Sams
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Nordstjernevej 42, DK-2600, Glostrup, Denmark.
| |
Collapse
|
16
|
Luo HM, Wu X, Liu WX, Wang LY, Sun HY, Zhu LY, Yang L. Calcitonin gene-related peptide attenuates angiotensin II-induced ROS-dependent apoptosis in vascular smooth muscle cells by inhibiting the CaMKII/CREB signalling pathway. Biochem Biophys Res Commun 2019; 521:285-289. [PMID: 31668374 DOI: 10.1016/j.bbrc.2019.10.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/05/2019] [Indexed: 01/31/2023]
Abstract
Apoptosis is associated with various cardiovascular diseases. CGRP exerts a variety of effects within the cardiovascular system, and protects against the onset and development of angiotensin (Ang) II-induced vascular dysfunction and remodelling. However, it is not known whether CGRP has a direct effect on Ang II-induced apoptosis in vascular smooth muscle cells (VSMCs), and the mechanism underlying the anti-apoptotic role remains unclear. In this study, CGRP significantly suppressed reactive oxygen species (ROS) and apoptosis in Ang II-induced VSMCs. In VSMCs pre-treated with a CGRP receptor antagonist (CGRP8-37), the CGRP-mediated inhibition of Ang II-induced ROS and apoptosis was completely abolished. Moreover, pre-treatment with N-acetyl-L cysteine (NAC), an ROS scavenger, blocked the effects of CGRP on Ang II-induced apoptosis. In addition, the activation of CaMKII and the downstream transcription factor CREB stimulated by Ang II was abrogated by CGRP. Importantly, in both CGRP and NAC-treated VSMCs, CGRP failed to further attenuate CaMKII and CREB activation. The results demonstrate that CGRP attenuated Ang II-induced ROS-dependent apoptosis in VSMCs by inhibiting the CaMKII/CREB signalling pathway.
Collapse
Affiliation(s)
- Hong-Min Luo
- Department of Nephrology, Third Hospital, Hebei Medical University, Shijiazhuang, China
| | - Xia Wu
- The Third Hospital, Hebei Medical University, Shijiazhuang, China
| | - Wen-Xuan Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, China
| | - Lu-Yao Wang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, China
| | - Hong-Yu Sun
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, China
| | - Liang-Yu Zhu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, China
| | - Lei Yang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
17
|
Han M, Hu L, Chen Y. Rutaecarpine may improve neuronal injury, inhibits apoptosis, inflammation and oxidative stress by regulating the expression of ERK1/2 and Nrf2/HO-1 pathway in rats with cerebral ischemia-reperfusion injury. Drug Des Devel Ther 2019; 13:2923-2931. [PMID: 31692511 PMCID: PMC6708397 DOI: 10.2147/dddt.s216156] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cerebral ischemia-reperfusion (CI/R) injury is a more serious brain injury caused by the recovery of blood supply after cerebral ischemia for a certain period of time. Rutaecarpine (Rut) is an alkaloid isolated from Evodia officinalis with various biological activities. Previous studies have shown that Rut has a certain protective effect on ischemic brain injury, but the specific molecular mechanism is still unknown. METHODS In this study, a rat model of CI/R was established to explore the effects and potential molecular mechanisms of Rut on CI/R injury in rats. RESULTS The results showed that Rut alleviated neuronal injury induced by CI/R in a dose-dependent manner. Besides, Rut inhibited neuronal apoptosis by inhibiting the activation of caspase 3 and the expression of Bax. In addition, Rut alleviated the inflammatory response and oxidative stress caused by CI/R through inhibiting the production of pro-inflammatory factors (IL-6 and IL-1β), lactate dehydrogenase (LDH), malondialdehyde (MDA) and ROS, and increased the levels of anti-inflammatory factors (IL-4 and IL-10) and superoxide dismutase (SOD). Biochemically, Western blot analyses showed that Rut inhibited the phosphorylation of ERK1/2 and promoted the expression of nuclear factor-erythroid 2 related factor 2 (Nrf2) pathway-related proteins (Nrf2, heme oxygenase 1 (HO-1) and NAD (P) H-quinone oxidoreductase 1) in a dose-dependent manner. These results show that Rut may alleviate brain injury induced by CI/R by regulating the expression of ERK1/2 and the activation of Nrf2/HO-1 pathway. CONCLUSION In conclusion, these results suggest that Rut may be used as an effective therapeutic agent for damage caused by CI/R.
Collapse
Affiliation(s)
- Meiyu Han
- Department of Internal Medicine, The Second People’s Hospital of Dongying City, Dongying City, Shandong Province257335, People’s Republic of China
| | - Lin Hu
- Department of Critical Care Medicine ICU, Zoucheng People’s Hospital, Zoucheng, Shandong Province273500, People’s Republic of China
| | - Yang Chen
- Department of Internal Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai201399, People’s Republic of China
| |
Collapse
|
18
|
Jochheim LS, Odysseos G, Hidalgo-Sastre A, Zhong S, Staufer LM, Kroiss M, Kabacaoglu D, Lange S, Engleitner T, Hartmann D, Hüser N, Steiger K, Schmid RM, Holzmann B, von Figura G. The neuropeptide receptor subunit RAMP1 constrains the innate immune response during acute pancreatitis in mice. Pancreatology 2019; 19:541-547. [PMID: 31109903 DOI: 10.1016/j.pan.2019.05.455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/02/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The importance of the Calcitonin-gene-related-peptide-pathway (CGRP) as neuronal modulator of innate immune responses in mice has been previously demonstrated. The CGRP-receptor is composed of two subunits: the receptor-activity-modifying-protein-1 (RAMP1) and the calcitonin-receptor-like-receptor (CLR). CGRP can influence immune cells and their capacity of producing inflammatory cytokines. Using a RAMP1 knockout-mouse (RAMP1-/-) we examined the role of the CGRP-receptor in the acute-phase of cerulein-induced pancreatitis. METHODS Hourly cerulein-injections for a period of 8 h in RAMP1-/- and wild-type mice were performed. To compare severity and extent of inflammation in RAMP1-/- and wild-type mice, histological analyses were done and cytokine levels were assessed using qRT-PCR 8 h, 24 h, 2 days, and 7 days post-cerulein-treatment. Furthermore, serum activities of LDH and lipase were determined. RESULTS After 8 h RAMP1-/- mice showed a higher pancreas-to-body-weight-ratio, increased tissue edema and immune cell infiltration with higher amount of F4/80-positive cells as compared to wild-type mice. Overall infiltration of immune cells at 24 h was increased in RAMP1-/- mice and composed predominantly of MPO-positive neutrophils. In addition, after 24 h RAMP1-/- mice presented a higher pancreas-to-body-weight-ratio, higher expression of Ccl3, Il6, and Il1b and increased number of cleaved caspase 3 positive cells. Serum lipase correlated with the extent of tissue damage in RAMP1-/- compared to wild-type mice 24 h post-cerulein treatment. CONCLUSION Mice lacking RAMP1 showed increased inflammation, tissue edema, and pancreas injury particularly in the early phase of acute pancreatitis. This study highlights the essential role of CGRP for dampening the innate immune response in acute pancreatitis.
Collapse
Affiliation(s)
- Leonie S Jochheim
- Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Department of Internal Medicine II, Munich, Germany
| | - Georgios Odysseos
- Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Department of Internal Medicine II, Munich, Germany
| | - Ana Hidalgo-Sastre
- Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Department of Internal Medicine II, Munich, Germany
| | - Suyang Zhong
- Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Department of Internal Medicine II, Munich, Germany
| | - Lina M Staufer
- Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Department of Internal Medicine II, Munich, Germany
| | - Markus Kroiss
- Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Department of Internal Medicine II, Munich, Germany
| | - Derya Kabacaoglu
- Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Department of Internal Medicine II, Munich, Germany
| | - Sebastian Lange
- Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Department of Internal Medicine II, Munich, Germany; Technical University of Munich, School of Medicine, Institute of Molecular Oncology and Functional Genomics, Munich, Germany
| | - Thomas Engleitner
- Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Department of Internal Medicine II, Munich, Germany; Technical University of Munich, School of Medicine, Institute of Molecular Oncology and Functional Genomics, Munich, Germany
| | - Daniel Hartmann
- Technical University Munich, School of Medicine, Klinikum Rechts der Isar, Department of Surgery, Munich, Germany
| | - Norbert Hüser
- Technical University Munich, School of Medicine, Klinikum Rechts der Isar, Department of Surgery, Munich, Germany
| | - Katja Steiger
- Technical University Munich, School of Medicine, Department of Pathology, Munich, Germany
| | - Roland M Schmid
- Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Department of Internal Medicine II, Munich, Germany
| | - Bernhard Holzmann
- Technical University Munich, School of Medicine, Klinikum Rechts der Isar, Department of Surgery, Munich, Germany
| | - Guido von Figura
- Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Department of Internal Medicine II, Munich, Germany.
| |
Collapse
|
19
|
Li X, Liu D, Li J, Yang S, Xu J, Yokota H, Zhang P. Wnt3a involved in the mechanical loading on improvement of bone remodeling and angiogenesis in a postmenopausal osteoporosis mouse model. FASEB J 2019; 33:8913-8924. [PMID: 31017804 DOI: 10.1096/fj.201802711r] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoporosis is a major health problem, making bones fragile and susceptible to fracture. Previous works showed that mechanical loading stimulated bone formation and accelerated fracture healing. Focusing on the role of Wnt3a (wingless/integrated 3a), this study was aimed to assess effects of mechanical loading to the spine, using ovariectomized (OVX) mice as a model of osteoporosis. Two-week daily application of this novel loading (4 N, 10 Hz, 5 min/d) altered bone remodeling with an increase in Wnt3a. Spinal loading promoted osteoblast differentiation, endothelial progenitor cell migration, and tube formation and inhibited osteoclast formation, migration, and adhesion. A transient silencing of Wnt3a altered the observed loading effects. Spinal loading significantly increased bone mineral density, bone mineral content, and bone area per tissue area. The loaded OVX group showed a significant increase in the number of osteoblasts and reduction in osteoclast surface/bone surface. Though expression of osteoblastic genes was increased, the levels of osteoclastic genes were decreased by loading. Spinal loading elevated a microvascular volume as well as VEGF expression. Collectively, this study supports the notion that Wnt3a-mediated signaling involves in the effect of spinal loading on stimulating bone formation, inhibiting bone resorption, and promoting angiogenesis in OVX mice. It also suggests that Wnt3a might be a potential therapeutic target for osteoporosis treatment.-Li, X., Liu, D., Li, J., Yang, S., Xu, J., Yokota, H., Zhang, P. Wnt3a involved in the mechanical loading on improvement of bone remodeling and angiogenesis in a postmenopausal osteoporosis mouse model.
Collapse
Affiliation(s)
- Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China; and
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China; and
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shuang Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jinfeng Xu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indiana, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China; and.,Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indiana, USA
| |
Collapse
|