1
|
Chen Z, Qin Y. Role of miRNA‑145‑5p in cancer (Review). Oncol Rep 2025; 53:39. [PMID: 39886965 PMCID: PMC11800069 DOI: 10.3892/or.2025.8872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
MicroRNA‑145‑5p (miRNA‑145‑5p) is a short non‑coding RNA located at chromosome 5q33.1, which has gained significant attention in several aspects of cellular regulation and biological functions. In malignant tumours, miRNA‑145‑5p may function as either a tumour suppressor or an oncogene, affecting tumour progression by targeting downstream genes or modulating their expression through upstream regulators. However, the full extent of miRNA‑145‑5p's role in cancer has remained to be determined. This review provides an overview of the role of miRNA‑145‑5p in cancer, investigates its potential as a biomarker for diagnosis, prognosis and treatment response, and evaluates its influence on cancer chemotherapy and radiotherapy. Finally, current strategies for systemic delivery of miRNA‑145‑5p in cancer therapies are summarized.
Collapse
Affiliation(s)
- Zeshan Chen
- Department of Traditional Chinese Medicine, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, Guangxi 530016, P.R. China
| | - Yijue Qin
- Department of Traditional Chinese Medicine, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, Guangxi 530016, P.R. China
| |
Collapse
|
2
|
Ma Q, Yu W, Li Z, Zhang X, Zhang L. Circ_0081723 enhances cervical cancer progression and modulates CREBRF via sponging miR-545-3p. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8839-8852. [PMID: 38850307 DOI: 10.1007/s00210-024-03175-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
Circular RNAs (circRNAs) have been confirmed to be an important modulator and therapeutic target of cervical cancer (CC). The aim of this study is to explore the role and mechanism of circ_0081723 in CC progression. Circ_0081723, microRNA-545-3p (miR-545-3p), and CREB3 regulatory factor (CREBRF) levels were detected using quantitative real-time PCR (qRT-PCR) assay. CREBRF, ki-67, Bcl-2 related X protein (Bax), and E-cadherin expression levels were determined using western blot (WB) and immunohistochemistry (IHC) assays. Cell proliferation was assessed using Cell Counting Kit-8 (CCK-8), cell colony formation, and 5-ethynyl-2'-deoxyuridine (EdU) assays. Flow cytometry was used to measure cell apoptosis. Cell migration and invasion were examined using Transwell assay. Interaction between miR-545-3p and circ_0081723 or CREBRF was verified using dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assays. The biological role of circ_0081723 on CC growth was examined using the xenograft tumor model in vivo. Circ_0081723 and CREBRF were increased, and miR-545-3p was decreased in CC tissues and cells. Circ_0081723 silencing suppressed CC cell growth and motility whereas boosted CC cell apoptosis. Besides, circ_0081723 acted as a molecular sponge for miR-545-3p, and circ_0081723 knockdown-induced effects were largely reversed by miR-545-3p downregulation in CC cells. Moreover, miR-545-3p repressed CC progression by targeting CREBRF. Circ_0081723 absence blocked xenograft tumor growth in vivo. Circ_0081723 stimulated CC cell malignant behaviors by regulating the miR-545-3p/CREBRF pathway, providing a possible circRNA-targeted therapy for CC.
Collapse
Affiliation(s)
- Qiongyan Ma
- Department of Gynaecology and Obstetrics, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Weiwei Yu
- Department of Radiation Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhaobin Li
- Department of Radiation Oncology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University School of Medicine, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Xiulong Zhang
- Department of Radiation Oncology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University School of Medicine, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Lihua Zhang
- Department of Radiation Oncology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University School of Medicine, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China.
| |
Collapse
|
3
|
Xiao L, Zhu Y, Xu H, Lin L, Li M, Zhou Y. Circ_0000395 promotes cell growth, metastasis and oxaliplatin resistance by regulating miR-153-5p/MYO6 in colorectal cancer. Pathol Res Pract 2024; 260:155476. [PMID: 39038387 DOI: 10.1016/j.prp.2024.155476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs) are involved in the regulation of colorectal cancer (CRC) progression and chemoresistence. Here, we attempted to reveal the function and mechanism of circ_0000395 in CRC chemoresistence. METHODS The expression levels of circ_0000395, microRNA (miR)-153-5p, and myosin VI (MYO6) were determined by quantitative real-time PCR. Cell growth, metastasis and oxaliplatin resistance were evaluated via EdU assay, colony formation assay, flow cytometry, transwell assay, and cell counting kit 8 assay. Xenograft tumor model was adopted to evaluate the role of circ_0000395 on CRC tumor growth and oxaliplatin sensitivity. Protein expression of drug-resistance markers and MYO6 was analyzed by western blot. The target relationship between miR-153-5p and circ_0000395 or MYO6 was validated via dual-luciferase reporter assay and RIP assay. RESULTS Circ_0000395 expression was enhanced in CRC tissues and cells. Silencing of circ_0000395 repressed CRC cell proliferation, migration and invasion, while promoted apoptosis and oxaliplatin sensitivity. Besides, circ_0000395 knockdown also reduced CRC tumor growth and enhanced the sensitivity of tumor to oxaliplatin. Additionally, circ_0000395 acted as a sponge for miR-153-5p, and miR-153-5p targeted MYO6. Functional experiments suggested that miR-153-5p inhibitor or MYO6 overexpression could reverse the suppressive effect of circ_0000395 knockdown on CRC cell growth, metastasis and oxaliplatin resistance. CONCLUSION Circ_0000395 promoted CRC cell growth, metastasis and oxaliplatin resistance via the miR-153-5p/MYO6 axis, which might provide new insights into the treatment of CRC.
Collapse
Affiliation(s)
- Liang Xiao
- Department of Surgery and Oncology, Shenzhen Second People's Hospital/ the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, China
| | - Yan Zhu
- Department of Surgery and Oncology, Shenzhen Second People's Hospital/ the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, China
| | - Haixia Xu
- Department of Surgery and Oncology, Shenzhen Second People's Hospital/ the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, China
| | - Lin Lin
- Department of Surgery and Oncology, Shenzhen Second People's Hospital/ the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, China
| | - Meixiang Li
- Department of Surgery and Oncology, Shenzhen Second People's Hospital/ the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, China
| | - Yayan Zhou
- The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen City, Guangdong 518020, China; Department of Radiation Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Southern University of Science and Technology), Shenzhen City, Guangdong 518020, China.
| |
Collapse
|
4
|
Shen J, Su X, Wang Q, Ke Y, Zheng T, Mao Y, Wang Z, Dong J, Duan S. Current and future perspectives on the regulation and functions of miR-545 in cancer development. CANCER PATHOGENESIS AND THERAPY 2024; 2:142-154. [PMID: 39027151 PMCID: PMC11252520 DOI: 10.1016/j.cpt.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 07/20/2024]
Abstract
Micro ribonucleic acids (miRNAs) are a highly conserved class of single-stranded non-coding RNAs. Within the miR-545/374a cluster, miR-545 resides in the intron of the long non-coding RNA (lncRNA) FTX on Xq13.2. The precursor form, pre-miR-545, is cleaved to generate two mature miRNAs, miR-545-3p and miR-545-5p. Remarkably, these two miRNAs exhibit distinct aberrant expression patterns in different cancers; however, their expression in colorectal cancer remains controversial. Notably, miR-545-3p is affected by 15 circular RNAs (circRNAs) and 10 long non-coding RNAs (lncRNAs), and it targets 27 protein-coding genes (PCGs) that participate in the regulation of four signaling pathways. In contrast, miR-545-5p is regulated by one circRNA and five lncRNAs, it targets six PCGs and contributes to the regulation of one signaling pathway. Both miR-545-3p and miR-545-5p affect crucial cellular behaviors, including cell cycle, proliferation, apoptosis, epithelial-mesenchymal transition, invasion, and migration. Although low miR-545-3p expression is associated with poor prognosis in three cancer types, studies on miR-545-5p are yet to be reported. miR-545-3p operates within a diverse range of regulatory networks, thereby augmenting the efficacy of cancer chemotherapy, radiotherapy, and immunotherapy. Conversely, miR-545-5p enhances immunotherapy efficacy by inhibiting T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) expression. In summary, miR-545 holds immense potential as a cancer biomarker and therapeutic target. The aberrant expression and regulatory mechanisms of miR-545 in cancer warrant further investigation.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Xinming Su
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Yufei Ke
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Tianyu Zheng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Yunan Mao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Zehua Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Jingyin Dong
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| |
Collapse
|
5
|
Matos AGDM, Silva GEB, Barbosa EDS, de Andrade MS, Santos Lages J, Corrêa RDGCF, Oliveira AGC, Teixeira EB, da Silva MGDOP, da Fonseca SSS, Teixeira-Júnior AAL, Alves MS, Alencar Junior AM, Khayat AS, Pinho JD. What is the role of circRNAs in the pathogenesis of cervical cancer? A systematic literature review. Front Genet 2024; 15:1287869. [PMID: 38859935 PMCID: PMC11163134 DOI: 10.3389/fgene.2024.1287869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 04/29/2024] [Indexed: 06/12/2024] Open
Abstract
Cervical Cancer (CC) is one of the most prevalent neoplasms among women, considered the leading cause of gynecological death worldwide, and the fourth most common type of cancer. Regional metastasis is closely related to the low effectiveness of treatment, and validating biomarkers can optimize accuracy in diagnosis and prognosis. Among the potential biomarkers associated with disease metastasis are circular RNAs (circRNAs), whose altered expression has been linked to CC progression. In this context, this systematic review aims to compile information on the clinical-pathological significance and describe the biological function of circRNAs. Inclusion and exclusion criteria were used to include relevant literature, followed by in silico analysis. Additionally, we employed the UALCAN tools to search for host genes of circRNAs and expression data, miRTargetLink 2.0 to predict interactions of microRNA target genes and the Cytoscape software to predict possible interactions of microRNA target genes. According to the research, most circRNAs were found to be overexpressed and described as regulators of processes such as invasion, cell proliferation, apoptosis and migration. They were also implicated in clinical significance, including metastasis, TNM staging and microRNA interactions. CircRNAs may participate in critical processes in tumorigenesis; therefore, understanding the underlying molecular mechanisms of gene regulation in CC can contribute to the accuracy of diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
| | - Gyl Eanes Barros Silva
- Postgraduate Program in Adult Health, Federal University of Maranhão, São Luís, Brazil
- Laboratory of Immunofluorescence and Electron Microscopy, University Hospital of the Federal University of Maranhão, São Luís, Brazil
- Molecular Pathology Study Group, University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | | | | | - Joyce Santos Lages
- University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - Rita da Graça Carvalhal Frazão Corrêa
- Laboratory of Immunofluorescence and Electron Microscopy, University Hospital of the Federal University of Maranhão, São Luís, Brazil
- University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | | | | | | | | | - Antonio Augusto Lima Teixeira-Júnior
- Laboratory of Immunofluorescence and Electron Microscopy, University Hospital of the Federal University of Maranhão, São Luís, Brazil
- Molecular Pathology Study Group, University Hospital of the Federal University of Maranhão, São Luís, Brazil
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Matheus Silva Alves
- State University of the Tocantina Region of Maranhão, Department of Health Sciences, Imperatriz, Maranhão, Brazil
| | - Antonio Machado Alencar Junior
- Molecular Pathology Study Group, University Hospital of the Federal University of Maranhão, São Luís, Brazil
- University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - André Salim Khayat
- Oncology Research Center, Federal University of Pará, Belém, Pará, Brazil
| | - Jaqueline Diniz Pinho
- Laboratory of Immunofluorescence and Electron Microscopy, University Hospital of the Federal University of Maranhão, São Luís, Brazil
- Molecular Pathology Study Group, University Hospital of the Federal University of Maranhão, São Luís, Brazil
- State University of Maranhão, Zé Doca, Maranhão, Brazil
- Oncology Research Center, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
6
|
Armstrong L, Willoughby CE, McKenna DJ. The Suppression of the Epithelial to Mesenchymal Transition in Prostate Cancer through the Targeting of MYO6 Using MiR-145-5p. Int J Mol Sci 2024; 25:4301. [PMID: 38673886 PMCID: PMC11050364 DOI: 10.3390/ijms25084301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Aberrant expression of miR-145-5p has been observed in prostate cancer where is has been suggested to play a tumor suppressor role. In other cancers, miR-145-5p acts as an inhibitor of epithelial-to-mesenchymal transition (EMT), a key molecular process for tumor progression. However, the interaction between miR-145-5p and EMT remains to be elucidated in prostate cancer. In this paper the link between miR-145-5p and EMT in prostate cancer was investigated using a combination of in silico and in vitro analyses. miR-145-5p expression was significantly lower in prostate cancer cell lines compared to normal prostate cells. Bioinformatic analysis of The Cancer Genome Atlas prostate adenocarcinoma (TCGA PRAD) data showed significant downregulation of miR-145-5p in prostate cancer, correlating with disease progression. Functional enrichment analysis significantly associated miR-145-5p and its target genes with EMT. MYO6, an EMT-associated gene, was identified and validated as a novel target of miR-145-5p in prostate cancer cells. In vitro manipulation of miR-145-5p levels significantly altered cell proliferation, clonogenicity, migration and expression of EMT-associated markers. Additional TCGA PRAD analysis suggested miR-145-5p tumor expression may be useful predictor of disease recurrence. In summary, this is the first study to report that miR-145-5p may inhibit EMT by targeting MYO6 in prostate cancer cells. The findings suggest miR-145-5p could be a useful diagnostic and prognostic biomarker for prostate cancer.
Collapse
Affiliation(s)
| | | | - Declan J. McKenna
- Genomic Medicine Research Group, Ulster University, Cromore Road, Coleraine BT52 1SA, UK; (L.A.); (C.E.W.)
| |
Collapse
|
7
|
Wei W, Wang N, Lin L. Prognostic Value of hsa_circ_0007615 in Epithelial Ovarian Cancer and its Regulatory Effect on Tumor Progression. Horm Metab Res 2023; 55:801-808. [PMID: 37459866 DOI: 10.1055/a-2119-3229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
This study aimed to interrogate the functional and clinical significance of hsa_circ_0007615 in epithelial ovarian cancer (EOC). GSE192410 was screened for upregulated circRNAs in ovarian cancer. The expression levels of hsa_circ_0007615 were evaluated in a patient cohort comprising 113 EOC tissues and matched normal tissues. Subsequently, the prognostic value was confirmed by the relevance of hsa_circ_0007615 with clinical parameters, Kaplan-Meier analysis and Cox proportional risk model. Cell functional analyses were performed in EOC cell lines using a cell proliferation kit, transwell and cell death kit. Our data revealed that hsa_circ_0007615 was significantly upregulated in EOC tissues and cell lines, compared with normal ones. Multivariate survival analysis revealed that hsa_circ_0007615 emerged as an independent risk factor for overall survival and recurrence of EOC patients. Knockdown of hsa_circ_0007615 in EOC cells led to the blocking of cell proliferation, migration and invasion, but an increase of cell death presenting as ferroptosis. Tumor suppressive effects of hsa_circ_0007615 knockdown can be abolished by miR-874-3p inhibition. TUBB3 was a targeting gene of miR-874-3p. Hsa_circ_0007615 has the functional and clinical significance of EOC. Mechanistically, hsa_circ_0007615 may contribute to EOC by sponging miR-874-3p and moderating TUBB3.
Collapse
Affiliation(s)
- Wei Wei
- Second Department of Gynecology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Ning Wang
- Second Department of Gynecology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Lin Lin
- Second Department of Gynecology, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Zheng H, Liu X, Song B. Circular RNA circADAM9 Promotes Inflammation, Oxidative Stress, and Fibrosis of Human Mesangial Cells via the Keap1-Nrf2 Pathway in Diabetic Nephropathy. Exp Clin Endocrinol Diabetes 2023; 131:491-499. [PMID: 37463596 DOI: 10.1055/a-2105-4921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
OBJECTIVE Circular RNAs (circRNAs) have been discovered as potential biomarkers for diabetic nephropathy (DN). In this study, the potential roles of circADAM9 in high glucose (HG)-induced cell injury of human mesangial cells (HMCs) were investigated, and the underlying mechanism was elucidated. METHODS DN cell model in vitro was simulated by HG treatment of HMCs. Endogenous expressions of circADAM9, miR-545-3p, and ubiquitin-specific protease 15 (USP15) were determined by real-time polymerase chain reaction. Cell proliferation and migration were evaluated using Cell Counting Kit-8 and wound healing assays. The inflammatory response was assessed by enzyme-linked immunosorbent assay. Oxidative stress was examined using commercially available kits. Dual-luciferase reporter and RNA pull-down assays were conducted to confirm the interaction among circADAM9, miR-545-3p, and USP15. RESULTS CircADAM9 was upregulated in DN samples and HG-treated HMCs, while its downregulation inhibited cell proliferation, inflammation, fibrosis, and oxidative stress. Further investigation revealed that circADAM9 exerted this influence by targeting the miR-545-3p/USP15 axis, thereby regulating the KELCH-like ECh-associated protein 1/nuclear factor erythroid 2 related factor 2 (Keap1/Nrf2) pathway. MiR-545-3p knockdown or USP15 overexpression reversed the effect of circADAM9 silencing in HG-induced HMCs. CONCLUSION These results indicate that the circADAM9/miR-545-3p/USP15/Keap1/Nrf2 signaling axis is critical for HG-induced cell injury in HMCs and might represent a novel therapeutic target for DN treatment.
Collapse
Affiliation(s)
- Hongwei Zheng
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
- Emergency Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xuezheng Liu
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Bing Song
- Administration department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
9
|
Li Q, Li K, Guo Q, Yang T. CircRNA circSTIL inhibits ferroptosis in colorectal cancer via miR-431/SLC7A11 axis. ENVIRONMENTAL TOXICOLOGY 2023; 38:981-989. [PMID: 36840697 DOI: 10.1002/tox.23670] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/04/2022] [Accepted: 09/16/2022] [Indexed: 06/18/2023]
Abstract
Ferroptosis is an emerging programmed cell death and plays essential roles in tumorigenesis, including colorectal cancer (CRC). The present study intended to disclose the role of a novel oncogene circular RNA (circRNA) circSTIL in CRC phenotypes, especially ferroptosis. The expression of circSTIL was measured in CRC tissues and cells. Then, the impacts of circSTIL expression on the proliferation and ferroptosis of CRC cells were examined by loss-of-function assays in vitro. Bioinformatics, luciferase reporter assay and cell rescue assay were further performed to reveal the ceRNA-associated mechanism of circSTIL. CircSTIL was significantly upregulated in CRC. Cell proliferation was suppressed while ferroptosis was induced with the silencing of circSTIL in CRC cells. Interestingly, circSTIL competed with miR-431 for solute carrier family 7 member 11 (SLC7A11) binding. Additionally, miR-431 suppression or SLC7A11 overexpression overturned circSTIL silencing-mediated cell phenotypes in CRC cells. CircSTIL promotes CRC cell proliferation and suppresses ferroptosis in vitro via miR-431/SLC7A11 signaling, revealing the pathogenesis of CRC, and providing potential therapeutic targets of CRC.
Collapse
Affiliation(s)
- Qiang Li
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Kaimin Li
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Qinying Guo
- Operating Room, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Tao Yang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| |
Collapse
|
10
|
Mahmoudian RA, Akhlaghipour I, Lotfi M, Shahidsales S, Moghbeli M. Circular RNAs as the pivotal regulators of epithelial-mesenchymal transition in gastrointestinal tumor cells. Pathol Res Pract 2023; 245:154472. [PMID: 37087995 DOI: 10.1016/j.prp.2023.154472] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Gastrointestinal (GI) cancers, as the most common human malignancies are always considered one of the most important health challenges in the world. Late diagnosis in advanced tumor stages is one of the main reasons for the high mortality rate and treatment failure in these patients. Therefore, investigating the molecular pathways involved in GI tumor progression is required to introduce the efficient markers for the early tumor diagnosis. Epithelial-mesenchymal transition (EMT) is one of the main cellular mechanisms involved in the GI tumor metastasis. Non-coding RNAs (ncRNAs) are one of the main regulatory factors in EMT process. Circular RNAs (circRNAs) are a group of covalently closed loop ncRNAs that have higher stability in body fluids compared with other ncRNAs. Considering the importance of circRNAs in regulation of EMT process, in the present review we discussed the role of circRNAs in EMT process during GI tumor invasion. It has been reported that circRNAs mainly affect the EMT process through the regulation of EMT-specific transcription factors and signaling pathways such as WNT, PI3K/AKT, TGF-β, and MAPK. This review can be an effective step in introducing a circRNA/EMT based diagnostic panel marker for the early tumor detection among GI cancer patients.
Collapse
Affiliation(s)
- Reihaneh Alsadat Mahmoudian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Unraveling the function of epithelial-mesenchymal transition (EMT) in colorectal cancer: Metastasis, therapy response, and revisiting molecular pathways. Biomed Pharmacother 2023; 160:114395. [PMID: 36804124 DOI: 10.1016/j.biopha.2023.114395] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Colorectal cancer (CRC) is a dangerous form of cancer that affects the gastrointestinal tract. It is a major global health concern, and the aggressive behavior of tumor cells makes it difficult to treat, leading to poor survival rates for patients. One major challenge in treating CRC is the metastasis, or spread, of the cancer, which is a major cause of death. In order to improve the prognosis for patients with CRC, it is necessary to focus on ways to inhibit the cancer's ability to invade and spread. Epithelial-mesenchymal transition (EMT) is a process that is linked to the spread of cancer cells, also known as metastasis. The process transforms epithelial cells into mesenchymal ones, increasing their mobility and ability to invade other tissues. This has been shown to be a key mechanism in the progression of colorectal cancer (CRC), a particularly aggressive form of gastrointestinal cancer. The activation of EMT leads to increases in the spread of CRC cells, and during this process, levels of the protein E-cadherin decrease while levels of N-cadherin and vimentin increase. EMT also contributes to the development of resistance to chemotherapy and radiation therapy in CRC. Non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play a role in regulating EMT in CRC, often through their ability to "sponge" microRNAs. Anti-cancer agents have been shown to suppress EMT and reduce the progression and spread of CRC cells. These findings suggest that targeting EMT or related mechanisms may be a promising approach for treating CRC patients in the clinic.
Collapse
|
12
|
Fang G, Xu D, Zhang T, Wang G, Qiu L, Gao X, Miao Y. Biological functions, mechanisms, and clinical significance of circular RNA in colorectal cancer. Front Oncol 2023; 13:1138481. [PMID: 36950552 PMCID: PMC10025547 DOI: 10.3389/fonc.2023.1138481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide due to the lack of effective diagnosis and prognosis biomarkers and therapeutic targets, resulting in poor patient survival rates. Circular RNA (circRNA) is a type of endogenous non-coding RNA (ncRNA) with a closed-loop structure that plays a crucial role in physiological processes and pathological diseases. Recent studies indicate that circRNAs are involved in the diagnosis, prognosis, drug resistance, and development of tumors, particularly in CRC. Therefore, circRNA could be a potential new target for improving CRC diagnosis, prognosis, and treatment. This review focuses on the origin and biological functions of circRNA, summarizes recent research on circRNA's role in CRC, and discusses the potential use of circRNAs as clinical biomarkers for cancer diagnosis and prognosis, as well as therapeutic targets for CRC treatment.
Collapse
Affiliation(s)
- Guida Fang
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People’s Hospital, Bengbu Medical College, Lianyungang, China
| | - Dalai Xu
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Tao Zhang
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People’s Hospital, Bengbu Medical College, Lianyungang, China
| | - Gang Wang
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Lei Qiu
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Xuzhu Gao
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People’s Hospital, Bengbu Medical College, Lianyungang, China
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, China
- Institute of Clinical Oncology, The Second People’s Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Yongchang Miao
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People’s Hospital, Bengbu Medical College, Lianyungang, China
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, China
| |
Collapse
|
13
|
Zhan XJ, Wang R, Kuang XR, Zhou JY, Hu XL. Elevated expression of myosin VI contributes to breast cancer progression via MAPK/ERK signaling pathway. Cell Signal 2023; 106:110633. [PMID: 36803774 DOI: 10.1016/j.cellsig.2023.110633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Breast cancer (BC) is one of the most common malignancies occurring in women worldwide, and its incidence is increasing each year. Accumulating evidence indicated that Myosin VI (MYO6) functions as a gene associated with tumor progression in several cancers. However, the potential role of MYO6 and its underlying mechanisms in the development and progression of BC remains unknown. Herein, we examined the expression levels of MYO6 in BC cells and tissues by western blot and immunohistochemistry. Loss- and gain-of-function investigations in vitro were performed to determine the biological functions of MYO6. And in vivo effects of MYO6 on tumorigenesis were investigated in nude mice. Our findings showed that the expression of MYO6 was up-regulated in breast cancer, and its high expression was correlated with poor prognosis. Further investigation exhibited that silencing the expression of MYO6 significantly inhibited cell proliferation, migration and invasion, whereas overexpression of MYO6 enhanced these abilities in vitro. Also, reduced expression of MYO6 significantly retarded the tumor growth in vivo. Mechanistically, Gene Set Enrichment Analysis (GSEA) revealed that MYO6 was involved in mitogen-activated protein kinase (MAPK) pathway. Moreover, we proved that MYO6 enhanced BC proliferation, migration and invasion via increasing the expression of phosphorylated ERK1/2. Taken together, our findings highlight the role of MYO6 in promoting BC cell progression through MAPK/ERK pathway, suggesting it may be a new potential therapeutic and prognostic target for BC patients.
Collapse
Affiliation(s)
- Xiao-Juan Zhan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Rui Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Xiong-Ri Kuang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Jue-Yu Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China.
| | - Xiao-Lei Hu
- Breast Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| |
Collapse
|
14
|
Li C, Gao X, Zhao Y, Chen X. High Expression of circ_0001821 Promoted Colorectal Cancer Progression Through miR-600/ISOC1 Axis. Biochem Genet 2023; 61:410-427. [PMID: 35943670 PMCID: PMC9852123 DOI: 10.1007/s10528-022-10262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/03/2022] [Indexed: 01/24/2023]
Abstract
It has been reported that circRNAs play an important regulatory role in the progression of colorectal cancer (CRC). However, the molecular role of circ_0001821 in CRC development is unclear. In this study, we aimed to investigate the regulatory role and molecular mechanisms of circ_0001821 in CRC. Reverse transcription-quantitative PCR and western blot assays were used to detect the expression of circ_0001821, miR-600 and isochorismatase domain containing 1 (ISOC1) in CRC tissues as well as its cell lines. Colony formation assay and EDU assay were used to detect the proliferative capacity of cells. Transwell assay was used to assess cell migration and invasion ability. Flow cytometry was used to analyze cell apoptosis. ELISA was used to measure the glycolytic capacity of cells. Dual-luciferase reporter assay and RNA pull-down assay were used to analyze the relationships between circ_0001821, miR-600 and ISOC1. Animal experimentation was used to validate the functional study of circ_0001821 in vivo. Immunohistochemistry (IHC) of Ki67 staining analysis was conducted to assess tumor growth. Circ_0001821 and ISOC1 were significantly increased in CRC tissues and its cell lines, and miR-600 was significantly decreased in CRC tissues and its cell lines. Silencing circ_0001821 inhibited cell proliferation, migration, invasion and glycolytic capacity, while inducing apoptosis. And it could inhibit tumor growth in vivo. Circ_0001821 could act as a sponge for miR-600 to regulate CRC processes. ISOC1 was identified as a downstream regulator of miR-600, also miR-600 could regulate the expression of ISOC1. In addition, circ_0001821 could regulate ISOC1 expression changes through miR-600. Mechanistically, either miR-600 inhibitor or overexpression of ISOC1 could reverse the effects of knockdown of circ_0001821 on cell biological properties. Circ_0001821 regulated the developmental process of CRC through miR-600/ISOC1 axis.
Collapse
Affiliation(s)
- Cheng Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Xudong Gao
- Department of Otolaryngology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yi Zhao
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Xin Chen
- Department of Radiotherapy, Shaanxi Provincial People's Hospital, No. 256 Youyi West Rd, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
15
|
Tumor Cell-Derived Exosomal circ-PRKCI Promotes Proliferation of Renal Cell Carcinoma via Regulating miR-545-3p/CCND1 Axis. Cancers (Basel) 2022; 15:cancers15010123. [PMID: 36612120 PMCID: PMC9817713 DOI: 10.3390/cancers15010123] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Renal cell carcinoma (RCC) originates from the epithelial cells of the renal tubules and has a high degree of malignancy and heterogeneity. Recent studies have found that exosomes regulate intercellular communication via transferring various bioactive molecules, such as circular RNAs (circRNAs), which are critical for cancer progression. However, the role of tumor cell-derived exosomal circRNAs in RCC remains unclear. In this study, we reported the high expression of circ-PRKCI in RCC tissues and serum exosomes. We also found that circ-PRKCI could be transferred exosomally from highly malignant RCC cells to relatively less malignant RCC cells. Tumor cell-derived exosomal circ-PRKCI promoted the proliferation, migration, and invasion of RCC cells, while inhibiting their apoptosis. Mechanistically, we found that circ-PRKCI promoted the proliferation of RCC via the miR-545-3p/CCND1 signaling pathway. Our study is the first to report the potential mechanisms of tumor cell-derived exosomal circ-PRKCI in RCC. In conclusion, this study will provide a new understanding about the molecular mechanisms of RCC progression.
Collapse
|
16
|
Song Y, Wang J, Xu J, Gao Y, Xu Z. Circ_0018909 knockdown inhibits the development of pancreatic cancer via the miR‐545‐3p/FASN axis and reduces macrophage polarization to M2. J Biochem Mol Toxicol 2022; 37:e23293. [PMID: 36541402 DOI: 10.1002/jbt.23293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/06/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Multiple circular RNAs (circRNAs) were proven to regulate the development of pancreatic cancer. However, the action of circ_0018909 in pancreatic cancer was still unclear. The expression of circ_0018909, microRNA-545-3p (miR-545-3p), and fatty acid synthase (FASN) was measured using quantitative reverse-transcriptase PCR (qRT-PCR). Cell growth, cell cycle arrest, apoptotic cells, metastasis, and epithelial to mesenchymal transition (EMT) were determined using EdU assay, flow cytometry, wound-healing assay, transwell invasion, and western blotting, respectively. The expression of the macrophage markers, including CD80, MCP-1, iNOS, and IL-6 (M1 markers), as well as CD206 and CD163 (M2 markers), was analyzed using qRT-PCR. Circ_0018909 knockdown dramatically depressed cell growth, migration, invasion, EMT, and elevated the number of apoptotic cells in pancreatic cancer cells, and repressed tumor growth in mice. Moreover, we proved that the absence of miR-545-3p rescued the action of circ_0018909 downregulation on cell growth, metastasis, apoptosis, and EMT in pancreatic cancer cells. MiR-545-3p bound to FASN and FASN overexpression hindered the impacts of miR-545-3p on the progression of pancreatic cancer. Besides this, our data demonstrated that circ_0018909 induced polarization from M0 macrophages to M2 macrophages. Circ_0018909 knockdown retarded the development of pancreatic cancer by modulating miR-545-3p to regulate FASN expression.
Collapse
Affiliation(s)
- Yinxue Song
- Emergency Department First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Jun Wang
- Emergency Department First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Jing Xu
- Emergency Department First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Ye Gao
- Emergency Department First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Zhichao Xu
- Emergency Department First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| |
Collapse
|
17
|
Xiao Y, Qiu M, Tan C, Huang W, Hu S, Jiang X, Guo M, Wang C, Liang J, Wu Y, Li M, Li Q, Qin C. Systematic analysis of circRNA biomarkers for diagnosis, prognosis and therapy in colorectal cancer. Front Genet 2022; 13:938672. [PMID: 36313458 PMCID: PMC9597305 DOI: 10.3389/fgene.2022.938672] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/23/2022] [Indexed: 08/13/2023] Open
Abstract
As the third most common cancer and the second leading cause of cancer death worldwide, colorectal cancer (CRC) poses a serious threat to people's health. In recent years, circRNA has been widely reported as a new biomarker in CRC, but a comprehensive summary and analysis is lacking. This study aims to evaluate the diagnostic, therapeutic and prognostic significance of circRNAs in CRC by systematically analysing their expression patterns, biological functions and clinical significance in CRC. The literature on circRNA in CRC was searched in the PubMed database and included for analysis after screening according to strict inclusion and exclusion criteria. The UALCAN online tool was used to obtain host gene expression data. The miRTargetLink 2.0 was used to predict target genes for miRNAs action in CRC patients. Cytoscape was used to construct circRNA-miRNA-mRNA interaction networks. From the 236 included papers, we identified 217 circRNAs and their associated 108 host genes and 145 miRNAs. Among the 145 miRNAs, 27 miRNAs had no corresponding target genes. After prediction of target genes and differential analysis, a total of 25 target genes were obtained and a circRNA-miRNA-mRNA interaction network was constructed. Among the 217 circRNAs, 74 were associated with diagnosis, 160 with treatment and 51 with prognosis. And 154 of them function as oncogenes while 58 as tumour suppressor genes. In addition, these circRNAs include 32 exosomal circRNAs, which have unique advantages as biomarkers. In total, we summarize and analyze the expression patterns, biological functions and clinical significance of circRNAs in CRC. In addition, we constructed some new circRNA-miRNA-mRNA regulatory axes based on the miRNAs sponged by circRNAs.
Collapse
Affiliation(s)
- Yafei Xiao
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Mengyuan Qiu
- Department of Neurology, Peking University People’s Hospital, Peking University School of Medicine, Beijing, China
| | - Cong Tan
- Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Wanting Huang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shaowen Hu
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Xiaowei Jiang
- Department of Pediatric Orthopaedics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingjie Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Congcong Wang
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Jingyu Liang
- Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yimei Wu
- Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Mengmeng Li
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Quanying Li
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Changjiang Qin
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
18
|
Wei S, Hu W, Feng J, Geng Y. Promotion or remission: a role of noncoding RNAs in colorectal cancer resistance to anti-EGFR therapy. Cell Commun Signal 2022; 20:150. [PMID: 36131281 PMCID: PMC9490904 DOI: 10.1186/s12964-022-00960-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
Anti-epidermal-growth-factor-receptor (EGFR) monoclonal antibodies (mAbs) are of great significance for RAS and BRAF wild-type metastatic colorectal cancer (mCRC) patients. However, the generation of primary and secondary resistance to anti-EGFR mAbs has become an important factor restricting its efficacy. Recent studies have revealed that non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are implicated in anti-EGFR antibodies resistance, affecting the sensitivity of CRC cells to Cetuximab and Panitumumab. This paper briefly reviewed the research advance of the expression, signaling network and functional mechanism of ncRNAs related to anti-EGFR mAbs resistance in CRC, as well as their relationship with clinical prognosis and the possibility of therapeutic targets. In addition, some ncRNAs that are involved in the regulation of signaling pathways or genes related to anti-EGFR resistance, but need to be further verified by resistance experiments were also included in this review, thereby providing more ideas and basis for ncRNAs as CRC prognostic markers and anti-EGFR therapy sensitizers. Video Abstract.
Collapse
Affiliation(s)
- Shanshan Wei
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Feng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|