1
|
Fei F, Lu P, Ni J. Peripheral blood CD8 + CD28+ T cells as predictive biomarkers for treatment response in metastatic colorectal cancer. Biomarkers 2025; 30:10-22. [PMID: 39989261 DOI: 10.1080/1354750x.2024.2435867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/24/2024] [Indexed: 02/25/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) is a substantial global health burden, with treatment outcomes significantly influenced by the interaction between the immune system and the tumor microenvironment. OBJECTIVE This study aims to investigate the role of peripheral blood immune cell subpopulations, particularly CD8+ CD28+ T cells, in predicting treatment response in metastatic CRC patients receiving bevacizumab combined with chemotherapy. METHODS A cohort of 45 CRC patients was analyzed. Flow cytometry was utilized to assess immune cell subpopulations. RESULTS Higher CD8+ CD28+ T cell counts were associated with better treatment responses, including improved objective response rates. In a murine CRC model, the combination therapy significantly inhibited tumor growth and enhanced immune cell function. CONCLUSION These findings highlight the importance of CD8+ CD28+ T cells as potential biomarkers for predicting treatment outcomes in CRC. They also suggest that bevacizumab, when combined with chemotherapy, can modulate immune function and improve clinical efficacy.
Collapse
Affiliation(s)
- Fei Fei
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Peihua Lu
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Jingyi Ni
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| |
Collapse
|
2
|
Zhang W, Dang R, Liu H, Dai L, Liu H, Adegboro AA, Zhang Y, Li W, Peng K, Hong J, Li X. Machine learning-based investigation of regulated cell death for predicting prognosis and immunotherapy response in glioma patients. Sci Rep 2024; 14:4173. [PMID: 38378721 PMCID: PMC10879095 DOI: 10.1038/s41598-024-54643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/14/2024] [Indexed: 02/22/2024] Open
Abstract
Glioblastoma is a highly aggressive and malignant type of brain cancer that originates from glial cells in the brain, with a median survival time of 15 months and a 5-year survival rate of less than 5%. Regulated cell death (RCD) is the autonomous and orderly cell death under genetic control, controlled by precise signaling pathways and molecularly defined effector mechanisms, modulated by pharmacological or genetic interventions, and plays a key role in maintaining homeostasis of the internal environment. The comprehensive and systemic landscape of the RCD in glioma is not fully investigated and explored. After collecting 18 RCD-related signatures from the opening literature, we comprehensively explored the RCD landscape, integrating the multi-omics data, including large-scale bulk data, single-cell level data, glioma cell lines, and proteome level data. We also provided a machine learning framework for screening the potentially therapeutic candidates. Here, based on bulk and single-cell sequencing samples, we explored RCD-related phenotypes, investigated the profile of the RCD, and developed an RCD gene pair scoring system, named RCD.GP signature, showing a reliable and robust performance in predicting the prognosis of glioblastoma. Using the machine learning framework consisting of Lasso, RSF, XgBoost, Enet, CoxBoost and Boruta, we identified seven RCD genes as potential therapeutic targets in glioma and verified that the SLC43A3 highly expressed in glioma grades and glioma cell lines through qRT-PCR. Our study provided comprehensive insights into the RCD roles in glioma, developed a robust RCD gene pair signature for predicting the prognosis of glioma patients, constructed a machine learning framework for screening the core candidates and identified the SLC43A3 as an oncogenic role and a prediction biomarker in glioblastoma.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Ruiyue Dang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongyi Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Luohuan Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Abraham Ayodeji Adegboro
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Yihao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Wang Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Kang Peng
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jidong Hong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|