1
|
Qin X, Li S, Huang X. The roles of STAT1, CASP8, and MYD88 in the care of ischemic stroke. Medicine (Baltimore) 2025; 104:e41396. [PMID: 39854740 PMCID: PMC11771608 DOI: 10.1097/md.0000000000041396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/31/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Ischemic stroke is caused by blockage of blood vessels in brain, affecting normal function. The roles of Signal Transformer and Activator of Transcription 1 (STAT1), CASP8, and MYD88 in ischemic stroke and its care are unclear. The ischemic stroke datasets GSE16561 and GSE180470 were found from the Gene Expression Omnibus database. Batch effect removal, finding differentially expressed genes (DEGs), weighted gene co-expression network analysis, protein-protein interaction analysis, functional enrichment analysis, immune infiltration analysis, comparative toxicogenomics database analysis were carried out. Gene expression heat maps were drawn, and miRNAs were found that regulate core DEGs. A total of 1183 DEGs were obtained, which were mainly concentrated in immune effector processes, cell activation, and protein serine/threonine kinase activity, the NOD-like receptor signaling pathway, NF-kappa B signaling pathway, C-type lectin receptor signaling pathway, and P53 signaling pathway. Four core genes were identified. Heatmap revealed high expression of (CASP8, MYD88, and STAT1) in whole blood samples of ischemic stroke. Comparative toxicogenomics database analysis demonstrated (CASP8, MYD88, and STAT1) are related to cerebral hemorrhage, reperfusion injury, hypertension, and inflammation. In ischemic stroke, expression of STAT1, CASP8, and MYD88 is higher and leads to poorer prognosis.
Collapse
Affiliation(s)
- Xiaolu Qin
- Nerve Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China
| | - Shuaimin Li
- Nerve Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China
| | - Xinyu Huang
- Nerve Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China
| |
Collapse
|
2
|
KURUSU S, TERASHIMA R, SUGIYAMA M, TANAKA M, KADOWAKI T, KIZAKI K, KAWAMINAMI M. Expression of lysophosphatidic acid receptors in the rat uterus: cellular distribution of protein and gestation-associated changes in gene expression. J Vet Med Sci 2023; 85:1165-1171. [PMID: 37779089 PMCID: PMC10686777 DOI: 10.1292/jvms.23-0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023] Open
Abstract
Though lysophosphatidic acid (LPA) shows a variety of regulatory roles in reproduction, its action mechanisms in the gestational organs are still largely unknown. We here characterized cellular distribution of its six kinds of specific receptors (LPA1-6) in rat uteri by immunohistochemistry and quantitatively analyzed changes in Lpar1-6 mRNAs expression throughout pregnancy. Among LPA1-6, evident expression of LPA3, LPA4, and LPA6 was immunologically detected and less expression of immunoreactive LPA1 and LPA2 was also found. Luminal and glandular epithelial cells, stromal cells, and myometrial cells are sites of positive immunoreactions, and they are all likely to express three or more subtypes. All of Lpar1-6 mRNAs were expressed, and their alterations were variable depending on subtypes and gestational age. The present information suggests that diverse actions of LPA in the uterus involve varied expression of LPA receptors dependent on tissue/cell types, receptor subtype(s), and organ reproductive states and helps to understand uterine biology of LPA.
Collapse
Affiliation(s)
- Shiro KURUSU
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Ryota TERASHIMA
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Makoto SUGIYAMA
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Miho TANAKA
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Takuma KADOWAKI
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Keiichiro KIZAKI
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Iwate University, Iwate, Japan
| | - Mitsumori KAWAMINAMI
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| |
Collapse
|
3
|
Liu J, Wang C. Lysophosphatidic acid is associated with oocyte maturation by enhancing autophagy via PI3K-AKT-mTOR signaling pathway in granulosa cells. J Ovarian Res 2023; 16:137. [PMID: 37434211 DOI: 10.1186/s13048-023-01228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Folliculogenesis is a complex network of interacting cellular signals between somatic cells and oocytes. Many components in ovarian follicular fluid (FF) dynamically change during folliculogenesis and play a positive role in oocyte maturation. Previous studies have reported that lysophosphatidic acid (LPA) promotes cumulus cell expansion, oocyte nuclear maturation, and in vitro maturation of oocytes. RESULTS Initially, the expression of LPA was raised in matured FF significantly (P < 0.0001). Then, 10 μM LPA treated for 24 h in human granulosa cells (KGNs) aggravated cell proliferation, with increased autophagy, and reduced apoptosis. Meanwhile, we demonstrated that LPA mediated cell function through the PI3K-AKT-mTOR signaling pathway as PI3K inhibitor (LY294002) significantly prevented LPA-induced AKT, mTOR phosphorylation and autophagy activation. Such results were also verified by immunofluorescence staining and flow cytometry. In addition, an autophagy inhibitor 3 methyladenine (3MA) could also alleviate the effects of LPA, by activating apoptosis through PI3K-AKT-mTOR pathways. Finally, we found blockade with Ki16425 or knockdown LPAR1, alleviated LPA mediated autophagy activation in KGNs, suggesting that LPA enhances autophagy through activation of the LPAR1 and PI3K-AKT-mTOR signaling pathways. CONCLUSION This study demonstrates that increased LPA activated PI3K-Akt-mTOR pathway through LPAR1 in granulosa cells, suppressing apoptosis by enhancing autophagy, which might play a role in oocyte maturation in vivo.
Collapse
Affiliation(s)
- Jia Liu
- Department of Otolaryngology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310051, People's Republic of China
| | - Chong Wang
- Reproductive Medicine Center, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Shangcheng District, No. 369 Kunpeng Road, Hangzhou, 310008, People's Republic of China.
| |
Collapse
|
4
|
Meidan R, Basavaraja R. Interferon-Tau regulates a plethora of functions in the corpus luteum. Domest Anim Endocrinol 2022; 78:106671. [PMID: 34509740 DOI: 10.1016/j.domaniend.2021.106671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023]
Abstract
The corpus luteum (CL) plays a vital role in regulating the reproductive cycle, fertility, and in maintaining pregnancy. Interferon-tau (IFNT) is the maternal recognition of a pregnancy signal in domestic ruminants; its uterine, paracrine actions, which extend the CL lifespan, are widely established. However, considerable evidence also suggests a direct, endocrine role for IFNT. The purpose of this review is to highlight the importance of IFNT in CL maintenance, acting directly and in a cell-specific manner. A transcriptomic study revealed a distinct molecular profile of IFNT-exposed day 18, pregnant bovine CL, compared to the non-pregnant gland. A substantial fraction of the differentially expressed genes was downregulated, many of which are known to be elevated by prostaglandin F2A (PGF2A). In vitro, IFNT was found to mimic changes observed in the luteal transcriptome of early pregnancy. Key luteolytic genes such as endothelin-1 (EDN1), transforming growth factor-B1 (TGFB1), thrombospondins (THBSs) 1&2 and serpine-1 (SERPINE1) were downregulated in luteal endothelial cells. Luteal steroidogenic large cells (LGCs) were also found to be a target for the antilutelotytic actions of IFNT. IFNT-treated LGCs showed a significant reduction in the expression of the proapoptotic, antiangiogenic THBS1&2, as well as TGFBR1 and 2. Furthermore, IFNT was shown to be a potent survival factor for luteal cells in vivo and in vitro, activating diverse pathways to promote cell survival while suppressing cell death signals. Pentraxin 3 (PTX3), robustly upregulated by IFNT in various luteal cell types, mediated many of the prosurvival effects of IFNT in LGCs. A novel reciprocal inhibitory crosstalk between PTX3 and THBS1 lends further support to their respective survival and apoptotic actions in the CL. Even though IFNT did not directly regulate progesterone synthesis, it could maintain its concentrations, by increasing luteal cell survival and by supporting vascular stabilization. The direct effects of IFNT in the CL, enhancing cell survival and vasculature stabilization while curbing luteolytic activities, may constitute an important complementary branch leading to the extension of the luteal lifespan during early pregnancy.
Collapse
Affiliation(s)
- Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001 Israel.
| | - Raghavendra Basavaraja
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001 Israel
| |
Collapse
|
5
|
Uzbekova S, Bertevello PS, Dalbies-Tran R, Elis S, Labas V, Monget P, Teixeira-Gomes AP. Metabolic exchanges between the oocyte and its environment: focus on lipids. Reprod Fertil Dev 2021; 34:1-26. [PMID: 35231385 DOI: 10.1071/rd21249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Finely regulated fatty acid (FA) metabolism within ovarian follicles is crucial to follicular development and influences the quality of the enclosed oocyte, which relies on the surrounding intra-follicular environment for its growth and maturation. A growing number of studies have examined the association between the lipid composition of follicular compartments and oocyte quality. In this review, we focus on lipids, their possible exchanges between compartments within the ovarian follicle and their involvement in different pathways during oocyte final growth and maturation. Lipidomics provides a detailed snapshot of the global lipid profiles and identified lipids, clearly discriminating the cells or fluid from follicles at distinct physiological stages. Follicular fluid appears as a main mediator of lipid exchanges between follicular somatic cells and the oocyte, through vesicle-mediated and non-vesicular transport of esterified and free FA. A variety of expression data allowed the identification of common and cell-type-specific actors of lipid metabolism in theca cells, granulosa cells, cumulus cells and oocytes, including key regulators of FA uptake, FA transport, lipid transformation, lipoprotein synthesis and protein palmitoylation. They act in harmony to accompany follicular development, and maintain intra-follicular homeostasis to allow the oocyte to accumulate energy and membrane lipids for subsequent meiotic divisions and first embryo cleavages.
Collapse
Affiliation(s)
- Svetlana Uzbekova
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; and LK Ernst Federal Science Centre for Animal Husbandry, Podolsk, Russia
| | | | | | - Sebastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France
| | - Valerie Labas
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; and INRAE, Université de Tours, CHRU Tours, Plate-Forme PIXANIM, F-37380 Nouzilly, France
| | - Philippe Monget
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France
| | - Ana-Paula Teixeira-Gomes
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; and INRAE, Université de Tours, CHRU Tours, Plate-Forme PIXANIM, F-37380 Nouzilly, France
| |
Collapse
|
6
|
Sosa ASA, Ibrahim S, Mahmoud KGM, El-Baghdady YR, Nawito MF, Abdo MSS, Ayoub MM. Dynamic patterns of expressed genes in granulosa cells during follicular and luteal stages in Egyptian buffaloes. Trop Anim Health Prod 2021; 53:532. [PMID: 34738183 DOI: 10.1007/s11250-021-02977-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
A better understanding of the molecular mechanisms in granulosa cells (GC) is warranted, during different follicular and luteal developmental stages in buffalo cows. We aimed to (I) study the expression of selected genes in GC during follicular and luteal phases, (II) evaluate correlations between GC gene expression and steroid concentrations {17-beta estradiol (E2) and progesterone (P4)} in follicular fluid (FF), and (III) study effect of ovarian status on follicular population as well as follicular size frequency. Ovaries were collected in pairs from buffaloes (n = 178). Ovaries bearing corpus luteum (CL) were subdivided into hemorrhagic, developing, mature, and albicans. Follicles from luteal groups were classified only into small (< 4 mm) and large (9-20 mm), while follicles from follicular groups were classified into three subgroups: small (< 4 mm), medium (5-8 mm), and large (9-20 mm). The FF and GC were collected for steroid concentrations measurement and gene expression, respectively. In the follicular phase, luteinizing hormone/choriogonadotropin receptor (LHCGR) and cytochrome P450 aromatase (CYP19) in small follicles decreased compared to medium ones. Large follicle showed an increase in LHCGR and CYP19 compared to medium ones. Follicle-stimulating hormone receptor (FSHR) decreased in large compared to medium size follicles. Proliferating cell nuclear antigen (PCNA) increased in small and large follicles. Meanwhile, anti-Mullerian hormone (AMH) and phospholipase A2 group III (PLA2G3) decreased in small and large follicles. The different stages of luteal phase had a profound impact on GC gene expression. There were strong (positive and/or negative) correlations between gene expression and steroid hormones. The different scenarios between expressed genes in GC and steroid concentrations are required for the proper growth and development of follicles and CL.
Collapse
Affiliation(s)
- Ahmed S A Sosa
- Department of Animal Reproduction and A.I, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Sally Ibrahim
- Department of Animal Reproduction and A.I, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Karima Gh M Mahmoud
- Department of Animal Reproduction and A.I, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt.
| | - Yehia Rezk El-Baghdady
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - M F Nawito
- Department of Animal Reproduction and A.I, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - M S S Abdo
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - M M Ayoub
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Dehghan M, Shahbazi S, Salehnia M. Effect of Lysophosphatidic Acid on the Vascular Endothelial Growth Factor Expression in Autotransplanted Mouse Ovaries Encapsulated in Sodium Alginate. J Family Reprod Health 2021; 15:91-98. [PMID: 34721597 PMCID: PMC8520664 DOI: 10.18502/jfrh.v15i2.6449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective: The aim of this study was to evaluate the effect of lysophosphatidic acid (LPA) supplementation during in vitro culture and transplantation of mouse ovaries on the follicular development and expression of vascular endothelial growth factor (VEGF) as an angiogenesis factor at the mRNA and protein levels. Materials and methods: Three weeks old mice ovaries were cultured in the presence and absence of LPA for 24 hours, then they were capsulated in sodium alginate in the presence and absence of LPA as four experimental groups. After transplantation the vaginal smears were performed daily to evaluate the initiation of the estrous cycle. The morphology and follicular distribution were analyzed at the first and fourth estrous cycles using hematoxylin and eosin staining. Then in the groups that showed higher and lower follicular development the immunohistochemistry assay was conducted to identify VEGF protein expression, and the real time RT-PCR was done to analyze the expression of Vegf gene at the first estrus cycle. Results: The large size follicles and also the corpus luteum were prominent in all transplanted groups at fourth estrus cycle in comparison with intact control groups. The statistically lowest percentage of small size follicles and the highest percentages of large size follicles were seen in LPA+/LPA- group (p<0.05). The expression ratio of Vegf to β-actin was significantly higher in this group in comparison with non-LPA treated and intact control groups (p <0.05). Conclusion: LPA as an angiogenesis factor increases the follicular development in transplanted ovaries but it causes early discharge of ovarian reserve.
Collapse
Affiliation(s)
- Maryam Dehghan
- Anatomy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shirin Shahbazi
- Medical Genetic Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojdeh Salehnia
- Anatomy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Dehghan M, Shahbazi S, Salehnia M. Lysophosphatidic Acid Alters The Expression of Apoptosis Related Genes and miR-22 in Cultured and Autotransplanted Ovaries. CELL JOURNAL 2021; 23:584-592. [PMID: 34837687 PMCID: PMC8588818 DOI: 10.22074/cellj.2021.7303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/07/2020] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the effect of lysophosphatidic acid (LPA) on the follicular development, incidence of cell death, and expressions of apoptosis related genes and miR-22 in transplanted ovaries. MATERIALS AND METHODS In this experimental study, three-week-old mice ovaries were cultured for 24 hours in the presence and absence of LPA, and we assessed cell survival and normal follicular rates in some of the cultured ovaries. The remaining cultured ovaries were autotransplanted in the presence and absence of LPA as four experimental groups (LPA-/LPA-, LPA-/LPA+, LPA+/LPA-, LPA+/LPA+). The follicular development, immunohistochemistry for BAX, and expressions of genes related to apoptosis and miR-22 by real time reverse transcription polymerase chain reaction (RTPCR) were studied at the first oestrous cycles in the recovered ovaries. Sera 17-β-oestradiol (E2) and progesterone (P4) levels were also assessed. RESULTS Both cell survival and normal follicular rates were significantly higher in cultured ovaries in the presence of LPA after 24 hours (P<0.05). There was an increase in follicular development in comparison with the intact control group in the four transplanted groups (P<0.05). The LPA+/LPA- group had significantly higher follicular development, a decline in BAX positive cells, and a decrease in pro-apoptotic gene expressions in parallel with enhanced expression of anti-apoptotic and miR-22 genes and higher levels of hormones compared with the non-treated and intact control groups (P<0.05). CONCLUSION LPA, as a survival factor, improves follicular development in transplanted ovaries by providing a balance between the anti- and pro-apoptotic genes in association with an increase in miR-22 expression.
Collapse
Affiliation(s)
- Maryam Dehghan
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shirin Shahbazi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojdeh Salehnia
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran,P.O.Box: 14115-111Department of AnatomyFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
9
|
The Differential Metabolomes in Cumulus and Mural Granulosa Cells from Human Preovulatory Follicles. Reprod Sci 2021; 29:1343-1356. [PMID: 34374964 PMCID: PMC8907092 DOI: 10.1007/s43032-021-00691-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/04/2021] [Indexed: 01/11/2023]
Abstract
This study evaluated the differences in metabolites between cumulus cells (CCs) and mural granulosa cells (MGCs) from human preovulatory follicles to understand the mechanism of oocyte maturation involving CCs and MGCs. CCs and MGCs were collected from women who were undergoing in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) treatment. The differences in morphology were determined by immunofluorescence. The metabolomics of CCs and MGCs was measured by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) followed by quantitative polymerase chain reaction (qPCR) and western blot analysis to further confirm the genes and proteins involved in oocyte maturation. CCs and MGCs were cultured for 48 h in vitro, and the medium was collected for detection of hormone levels. There were minor morphological differences between CCs and MGCs. LC-MS/MS analysis showed that there were differences in 101 metabolites between CCs and MGCs: 7 metabolites were upregulated in CCs, and 94 metabolites were upregulated in MGCs. The metabolites related to cholesterol transport and estradiol production were enriched in CCs, while metabolites related to antiapoptosis were enriched in MGCs. The expression of genes and proteins involved in cholesterol transport (ABCA1, LDLR, and SCARB1) and estradiol production (SULT2B1 and CYP19A1) was significantly higher in CCs, and the expression of genes and proteins involved in antiapoptosis (CRLS1, LPCAT3, and PLA2G4A) was significantly higher in MGCs. The level of estrogen in CCs was significantly higher than that in MGCs, while the progesterone level showed no significant differences. There are differences between the metabolomes of CCs and MGCs. These differences may be involved in the regulation of oocyte maturation.
Collapse
|
10
|
Death Processes in Bovine Theca and Granulosa Cells Modelled and Analysed Using a Systems Biology Approach. Int J Mol Sci 2021; 22:ijms22094888. [PMID: 34063056 PMCID: PMC8125194 DOI: 10.3390/ijms22094888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
In this paper, newly discovered mechanisms of atresia and cell death processes in bovine ovarian follicles are investigated. For this purpose the mRNA expression of receptor interacting protein kinases 1 and 3 (RIPK1 and RIPK3) of the granulosa and theca cells derived from healthy and atretic follicles are studied. The follicles were assigned as either healthy or atretic based on the estradiol to progesterone ratio. A statistically significant difference was recorded for the mRNA expression of a RIPK1 and RIPK3 between granulosa cells from healthy and atretic follicles. To further investigate this result a systems biology approach was used. The genes playing roles in necroptosis, apoptosis and atresia were chosen and a network was created based on human genes annotated by the IMEx database in Cytoscape to identify hubs and bottle-necks. Moreover, correlation networks were built in the Cluepedia plug-in. The networks were created separately for terms describing apoptosis and programmed cell death. We demonstrate that necroptosis (RIPK—dependent cell death pathway) is an alternative mechanism responsible for death of bovine granulosa and theca cells. We conclude that both apoptosis and necroptosis occur in the granulosa cells of dominant follicles undergoing luteinisation and in the theca cells from newly selected follicles.
Collapse
|
11
|
Mohammadi Z, Hayati Roodbari N, Parivar K, Salehnia M. Supplementation of Culture Media with Lysophosphatidic Acid Improves The Follicular Development of Human Ovarian Tissue after Xenotransplantaion into The Back Muscle of γ-Irradiated Mice. CELL JOURNAL 2019; 22:358-366. [PMID: 31863662 PMCID: PMC6947004 DOI: 10.22074/cellj.2020.6752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/23/2019] [Indexed: 01/26/2023]
Abstract
Objective The aim of the present study was to evaluate the effects of lysophosphatidic acid (LPA) supplementation
of human ovarian tissue culture media on tissue survival, follicular development and expression of apoptotic genes
following xenotransplantation.
Materials and Methods In this experimental study, human ovarian tissue was collected from eight normal female
to male transsexual individuals and cut into small fragments. These fragments were vitrified-warmed and cultured
for 24 hours in the presence or absence of LPA, then xenografted into back muscles of γ-irradiated mice. Two weeks
post-transplantation the morphology of the recovered tissues were evaluated by hematoxylin and eosin staining. The
expression of genes related to apoptosis (BAX and BCL2) were analyzed by real time revers transcription polymerase
chain reaction (RT-PCR) and detection of BAX protein was done by immunohistochemical staining.
Results The percent of normal and growing follicles were significantly increased in both grafted groups in comparison to
the non-grafted groups, however, these rates were higher in the LPA-treated group than the non-treated group (P<0.05).
There was a higher expression of the anti-apoptotic gene, BCL2, but a lower expression of the pro-apoptotic gene, BAX,
and a significant lower BAX/ BCL2 ratio in the LPA-treated group in comparison with non-treated control group (P<0.05).
No immunostaining positive cells for BAX were observed in the follicles and oocytes in both transplanted ovarian groups.
Conclusion Supplementation of human ovarian tissue culture medium with LPA improves follicular survival and
development by promoting an anti-apoptotic balance in transcription of BCL2 and BAX genes.
Collapse
Affiliation(s)
- Zeynab Mohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mojdeh Salehnia
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Electronic Address:
| |
Collapse
|
12
|
Expression of genes for enzymes synthesizing lysophosphatidic acid, its receptors and follicle developmental factors derived from the cumulus-oocyte complex is dependent on the ovarian follicle type in cows. Anim Reprod Sci 2018; 192:242-250. [PMID: 29573844 DOI: 10.1016/j.anireprosci.2018.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/05/2018] [Accepted: 03/16/2018] [Indexed: 11/21/2022]
Abstract
Cumulus-oocyte complexes (COCs) release factors potentially involved in follicular growth and development, such as growth and differentiation factor 9 (GDF9), bone-morphogenetic protein 15 (BMP15), follistatin (FST) and cathepsins (CTSs). Moreover, the quality of the oocytes and follicles may be related to both the lipid composition of the follicle cells and follicular fluid. One of the lipids, locally regulating the reproductive functions in ovaries of cattle, is lysophosphatidic acid (LPA). In this study, the expression was investigated of the genes for LPA and other factors in COCs of follicles at different stages of development and regression. The relative abundances of mRNA were determined by real-time PCR for receptors for LPA (LPARs), enzymes synthesizing LPA (autotaxin (AX) and phospholipase A2 (PLA2)), BMP15, GDF9, CTSZ, CTSB and FST in COCs isolated from healthy, transitional and atretic follicles. The expression of genes for the LPARs, AX, PLA2 and the factors involved in follicular development in cattle COCs is follicle-type dependent. Greater expression of LPAR1-3 and AX genes were detected in the healthy follicles compared to the atretic and transitional follicles (P < 0.05). The relative abundance of GDF9, BMP15, CTSZ and CTSB was also greater in COCs from healthy follicles than from transitional and atretic follicles (P < 0.05). It is postulated that the greater expression of LPARs and AX genes in healthy follicles compared with atretic follicles indicates an enhanced role of LPA in follicular development. Results of the present study also suggest the regulatory role of factors derived from the COCs in the growth and development of follicles.
Collapse
|
13
|
Benesch MGK, MacIntyre ITK, McMullen TPW, Brindley DN. Coming of Age for Autotaxin and Lysophosphatidate Signaling: Clinical Applications for Preventing, Detecting and Targeting Tumor-Promoting Inflammation. Cancers (Basel) 2018; 10:cancers10030073. [PMID: 29543710 PMCID: PMC5876648 DOI: 10.3390/cancers10030073] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 12/13/2022] Open
Abstract
A quarter-century after the discovery of autotaxin in cell culture, the autotaxin-lysophosphatidate (LPA)-lipid phosphate phosphatase axis is now a promising clinical target for treating chronic inflammatory conditions, mitigating fibrosis progression, and improving the efficacy of existing cancer chemotherapies and radiotherapy. Nearly half of the literature on this axis has been published during the last five years. In cancer biology, LPA signaling is increasingly being recognized as a central mediator of the progression of chronic inflammation in the establishment of a tumor microenvironment which promotes cancer growth, immune evasion, metastasis, and treatment resistance. In this review, we will summarize recent advances made in understanding LPA signaling with respect to chronic inflammation and cancer. We will also provide perspectives on the applications of inhibitors of LPA signaling in preventing cancer initiation, as adjuncts extending the efficacy of current cancer treatments by blocking inflammation caused by either the cancer or the cancer therapy itself, and by disruption of the tumor microenvironment. Overall, LPA, a simple molecule that mediates a plethora of biological effects, can be targeted at its levels of production by autotaxin, LPA receptors or through LPA degradation by lipid phosphate phosphatases. Drugs for these applications will soon be entering clinical practice.
Collapse
Affiliation(s)
- Matthew G K Benesch
- Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL AlB 3V6, Canada.
- Signal Transduction Research Group, Cancer Research Institute of Northern Alberta, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| | - Iain T K MacIntyre
- Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL AlB 3V6, Canada.
| | - Todd P W McMullen
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G7, Canada.
| | - David N Brindley
- Signal Transduction Research Group, Cancer Research Institute of Northern Alberta, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| |
Collapse
|
14
|
Sinderewicz E, Grycmacher K, Boruszewska D, Kowalczyk-Zięba I, Staszkiewicz J, Ślężak T, Woclawek-Potocka I. Correction to: Expression of factors involved in apoptosis and cell survival is correlated with enzymes synthesizing lysophosphatidic acid and its receptors in granulosa cells originating from different types of bovine ovarian follicles. Reprod Biol Endocrinol 2017; 15:82. [PMID: 28992815 PMCID: PMC5633892 DOI: 10.1186/s12958-017-0298-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Emilia Sinderewicz
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747, Olsztyn, Poland
| | - Katarzyna Grycmacher
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747, Olsztyn, Poland
| | - Dorota Boruszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747, Olsztyn, Poland
| | - Ilona Kowalczyk-Zięba
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747, Olsztyn, Poland
| | - Joanna Staszkiewicz
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747, Olsztyn, Poland
| | - Tomasz Ślężak
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747, Olsztyn, Poland
| | - Izabela Woclawek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747, Olsztyn, Poland.
| |
Collapse
|
15
|
Bovine ovarian follicular growth and development correlate with lysophosphatidic acid expression. Theriogenology 2017; 106:1-14. [PMID: 29028570 DOI: 10.1016/j.theriogenology.2017.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/11/2017] [Accepted: 09/19/2017] [Indexed: 01/19/2023]
Abstract
The basis of successful reproduction is proper ovarian follicular growth and development. In addition to prostaglandins and vascular endothelial growth factor, a number of novel factors are suggested as important regulators of follicular growth and development: PGES, TFG, CD36, RABGAP1, DBI and BTC. This study focuses on examining the expression of these factors in granulosa and thecal cells that originate from different ovarian follicle types and their link with the expression of lysophosphatidic acid (LPA), known local regulator of reproductive functions in the cow. Ovarian follicles were divided into healthy, transitional, and atretic categories. The mRNA expression levels for PGES, TFG, CD36, RABGAP1, DBI and BTC in granulosa and thecal cells in different follicle types were measured by real-time PCR. The correlations among expression of enzymes synthesizing LPA (autotaxin, phospholipase A2), receptors for LPA and examined factors were measured. Immunolocalization of PGES, TFG, CD36, RABGAP1, DBI and BTC was examined by immunohistochemistry. We investigated follicle-type dependent mRNA expression of factors potentially involved in ovarian follicular growth and development, both in granulosa and thecal cells of bovine ovarian follicles. Strong correlations among receptors for LPA, enzymes synthesizing LPA, and the examined factors in healthy and transitional follicles were observed, with its strongest interconnection with TFG, DBI and RABGAP1 in granulosa cells, and TFG in thecal cells; whereas no correlations in atretic follicles were detected. A greater number of correlations were found in thecal cells than in granulosa cells as well as in healthy follicles than in transitional follicles. These data indicate the role of LPA in the growth, development and physiology of the bovine ovarian follicle.
Collapse
|