1
|
Wang T, Sun L, Li M, Zhang Y, Huang L. Transcriptomics reveals preterm birth risk: identification and validation of key genes in monocytes. BMC Pregnancy Childbirth 2025; 25:174. [PMID: 39962466 PMCID: PMC11834648 DOI: 10.1186/s12884-025-07293-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Preterm birth (PTB) is a leading cause of neonatal mortality and long-term disability worldwide. However, the molecular mechanisms underlying PTB remain incompletely understood, and the etiology of many PTB cases is still largely unexplained. Due to their close association with PTB, monocytes serve as an ideal matrix for identifying peripheral biomarkers predictive of preterm birth risk. OBJECTIVE This study aims to identify and validate biomarkers that could predict PTB, improving clinical diagnostic accuracy and enhancing preventive measures against PTB. METHODS This study conducted a comprehensive transcriptomic analysis of monocytes obtained from PTB patients (gestational age = 28-36 weeks) and age-matched healthy controls (HC, gestational age = 37+ 1-41+ 4 weeks). Blood samples were collected within 30 min of hospital admission and prior to labor initiation to ensure consistency. We further validated the findings after screening for potential biomarkers using quantitative real-time PCR (qPCR). While the sample size was relatively small, this study provides foundational evidence supporting the role of CXCL3 and IL-6 as biomarkers for PTB, laying a framework for future prospective research. RESULTS We identified 295 significantly differentially expressed genes compared to the control group, and Weighted Gene Co-expression Network Analysis (WGCNA) further revealed genes significantly associated with PTB. These genes are involved in immune pathways such as rheumatoid arthritis, influenza A, and the MAPK signaling pathway. Machine learning analysis and qPCR validation identified two essential genes-CXCL3 and IL-6. Based on these two genes, the diagnostic model achieved an AUC value of 1 in the discovery cohort, distinguishing PTB patients from healthy controls. CONCLUSION The immune responses observed in peripheral blood mononuclear cells (PBMCs) may be closely related to the mechanisms underlying PTB. Monocyte-derived genes CXCL3 and IL-6 are promising biomarkers for predicting PTB risk, offering new diagnostic tools for clinical practice. These findings have the potential to enhance PTB prevention and management strategies.
Collapse
Affiliation(s)
- TianQi Wang
- Department of Women Health Care, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu Province, PR China
| | - Lu Sun
- Wuxi Mental Health Center, The Affiliated Mental Health Center of Jiangnan University, Wuxi, 214151, Jiangsu, China
| | - Meng Li
- Department of Women Health Care, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu Province, PR China
| | - YaoZhong Zhang
- Department of Women Health Care, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu Province, PR China
| | - Lu Huang
- Department of Women Health Care, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu Province, PR China.
| |
Collapse
|
2
|
Sun G, Song Y, Li C, Sun B, Li C, Sun J, Xiao P, Zhang Z. MTCH2 promotes the malignant progression of ovarian cancer through the upregulation of AIMP2 expression levels, mitochondrial dysfunction and by mediating energy metabolism. Oncol Lett 2024; 28:492. [PMID: 39185493 PMCID: PMC11342418 DOI: 10.3892/ol.2024.14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/11/2024] [Indexed: 08/27/2024] Open
Abstract
Ovarian cancer (OC) is a gynecological malignancy that ranks among the most common female cancers worldwide and notably reduces a patient's quality of life. Mitochondrial carrier homology 2 (MTCH2) is a mitochondrial outer membrane protein that serves a regulatory role in mitochondrial metabolism and cell death. The precise contribution and underlying molecular pathways of MTCH2 in the context of OC development is currently unclear. The present study aimed to investigate the roles of MTCH2 in the energy metabolism, cell proliferation and metastatic potential of OC cells and evaluate the regulatory relationship between MTCH2, aminoacyl transfer RNA synthetase-interacting multifunctional protein 2 (AIMP2) and claudin-3. An analysis of 67 patients with high-grade serous OC demonstrated increased expression levels of MTCH2, AIMP2 and claudin-3 in OC tumor tissue samples compared with in corresponding normal tissues adjacent to OC tissue samples. MTCH2 overexpression was significantly associated with the International Federation of Gynecology and Obstetrics stage and tumor differentiation of the OC tumor samples. In vitro experiments using the SK-OV-3 OC cell line demonstrated that MTCH2 exerts a regulatory effect on the cell proliferation, invasion and migratory capabilities of these cells. Knockdown of MTCH2 reduced ATP production, induced mitochondrial dysfunction and promoted cytoskeleton remodeling and apoptosis in SK-OV-3 OC cells. In addition, MTCH2 knockdown downregulated the expression levels of both claudin-3 and AIMP2 proteins. Knockdown of AIMP2 inhibited the regulatory effect of MTCH2. Co-immunoprecipitation experiments demonstrated that MTCH2 interacts with AIMP2 and claudin-3. The present study provides novel insights into the treatment of OC metastasis, as MTCH2 was demonstrated to serve roles in the progression of OC cells through the regulation of claudin-3 via AIMP2, which could provide novel insights into the treatment of ovarian cancer metastasis.
Collapse
Affiliation(s)
- Guangyu Sun
- Department of Gynecology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Yanmin Song
- Department of Gynecology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Congxian Li
- Department of Gynecology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Bo Sun
- Department of Gynecology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Chengcheng Li
- Department of Gynecology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Jinbao Sun
- Department of Gynecology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Ping Xiao
- Department of Gynecology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Zhengmao Zhang
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Hebei Cancer Hospital, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
3
|
Zhang K, Zhang H, Wang B, Gao S, Sun C, Jia C, Cui J. NR2F1 overexpression alleviates trophoblast cell dysfunction by inhibiting GDF15/MAPK axis in preeclampsia. Hum Cell 2024; 37:1405-1420. [PMID: 39007956 DOI: 10.1007/s13577-024-01095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/15/2024] [Indexed: 07/16/2024]
Abstract
Abnormal functions of trophoblast cells are associated with the pathogenesis of preeclampsia (PE). Nuclear receptor subfamily 2 group F member 1 (NR2F1) acts as a transcriptionally regulator in many diseases, but its role in PE remains unknown. Hypoxia/reoxygenation (H/R)-stimulated HTR-8/SVneo cells were used to mimic PE injury in vitro. NR2F1 overexpression alleviated trophoblast apoptosis, as evidenced by the decreased number of TUNEL-positive cells and the downregulation of caspase 3 and caspase 9 expression in cells. NR2F1 overexpression increased the invasion and migration ability of HTR-8/SVneo cells, accompanied by increased protein levels of matrix metalloproteinase (MMP)-2 and MMP-9. mRNA-seq was applied to explore the underlying mechanism of NR2F1, identifying growth differentiation factor 15 (GDF15) as the possible downstream effector. Dual-luciferase reporter, ChIP-qPCR, and DNA pull-down assays confirmed that NR2F1 bound to the promoter of GDF15 and transcriptionally inhibited its expression. GDF15 overexpression increased apoptosis and decreased the ability of invasion and migration in HTR-8/SVneo cells expressing NR2F1. MAPK pathway was involved in the regulation of PE. Administration of p38 inhibitor, ERK inhibitor, and JNK inhibitor reversed the effect of simultaneous overexpression NR2F1 and GDF15 on trophoblast apoptosis, invasion, and migration. Our findings demonstrated that NR2F1 overexpression inhibited trophoblast apoptosis and promoted trophoblast invasion and migration. NR2F1 might negatively regulate GDF15 expression by binding to its promoter region, which further inhibited MAPK signaling pathway in PE. Our study highlights that NR2F1 might sever as a potential target in PE.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Hailing Zhang
- Department of Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Bing Wang
- Department of Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Shanshan Gao
- Department of Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Caiping Sun
- Department of Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Cong Jia
- Department of Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jinquan Cui
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, No. 2, Jingba Road, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
4
|
Liu H, Wang Z, Li Y, Chen Q, Jiang S, Gao Y, Wang J, Chi Y, Liu J, Wu X, Chen Q, Xiao C, Zhong M, Chen C, Yang X. Hierarchical lncRNA regulatory network in early-onset severe preeclampsia. BMC Biol 2024; 22:159. [PMID: 39075446 PMCID: PMC11287949 DOI: 10.1186/s12915-024-01959-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Recent studies have shown that several long non-coding RNAs (lncRNAs) in the placenta are associated with preeclampsia (PE). However, the extent to which lncRNAs may contribute to the pathological progression of PE is unclear. RESULTS Here, we report a hierarchical regulatory network involved in early-onset severe PE (EOSPE). We have carried out transcriptome sequencing on the placentae from patients and normal subjects to identify the differentially expressed genes (DEGs), including some lncRNAs (DElncRNAs). We then constructed a high-quality hierarchical regulatory network of lncRNAs, transcription factors (TFs), and target DEGs, containing 1851 lncRNA-TF interactions and 6901 TF-promoter interactions. The lncRNA-to-target regulatory interactions were further validated by the triplex structures between the DElncRNAs and the promoters of the target DEGs. The DElncRNAs in the regulatory network were clustered into 3 clusters, one containing DElncRNAs correlated with the blood pressure, including FLNB-AS1 with targeting 27.89% (869/3116) DEGs in EOSPE. We further demonstrated that FLNB-AS1 could bind the transcription factor JUNB to regulate a series members of the HIF-1 signaling pathway in trophoblast cells. CONCLUSIONS Our results suggest that the differential expression of lncRNAs may perturb the lncRNA-TF-DEG hierarchical regulatory network, leading to the dysregulation of many genes involved in EOSPE. Our study provides a new strategy and a valuable resource for studying the mechanism underlying gene dysregulation in EOSPE patients.
Collapse
Affiliation(s)
- Haihua Liu
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhijian Wang
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yanjun Li
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qian Chen
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Sijia Jiang
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yue Gao
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jing Wang
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yali Chi
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jie Liu
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoli Wu
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiong Chen
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chaoqun Xiao
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mei Zhong
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chunlin Chen
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xinping Yang
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
5
|
Bao Y, Tong C, Xiong X. CXCL3: A key player in tumor microenvironment and inflammatory diseases. Life Sci 2024; 348:122691. [PMID: 38714265 DOI: 10.1016/j.lfs.2024.122691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
CXCL3 (C-X-C Motif Chemokine 3), a member of the C-X-C chemokine subfamily, operates as a potent chemoattractant for neutrophils, thereby orchestrating the recruitment and migration of leukocytes alongside eliciting an inflammatory response. Recent inquiries have shed light on the pivotal roles of CXCL3 in the context of carcinogenesis. In the tumor microenvironment, CXCL3 emanating from both tumor and stromal cells intricately modulates cellular behaviors through autocrine and paracrine actions, primarily via interaction with its receptor CXCR2. Activation of signaling cascades such as ERK/MAPK, AKT, and JAK2/STAT3 underscores CXCL3's propensity to favor tumorigenic processes. However, CXCL3 exhibits dualistic behaviors, as evidenced by its capacity to exert anti-tumor effects under specific conditions. Additionally, the involvement of CXCL3 extends to inflammatory disorders like eclampsia, obesity, and asthma. This review encapsulates the structural attributes, biological functionalities, and molecular underpinnings of CXCL3 across both tumorigenesis and inflammatory diseases.
Collapse
Affiliation(s)
- Yuxuan Bao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; Queen Mary School of Nanchang University, Nanchang 330006, China
| | - Chang Tong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
6
|
Ma Y, Hou B, Zong J, Liu S. Potential molecular mechanisms and clinical implications of piRNAs in preeclampsia: a review. Reprod Biol Endocrinol 2024; 22:73. [PMID: 38915084 PMCID: PMC11194991 DOI: 10.1186/s12958-024-01247-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Preeclampsia is a multisystem progressive condition and is one of the most serious complications of pregnancy. Owing to its unclear pathogenesis, there are no precise and effective therapeutic targets for preeclampsia, and the only available treatment strategy is to terminate the pregnancy and eliminate the clinical symptoms. In recent years, non-coding RNAs have become a hotspot in preeclampsia research and have shown promise as effective biomarkers for the early diagnosis of preeclampsia over conventional biochemical markers. PIWI-interacting RNAs, novel small non-coding RNA that interact with PIWI proteins, are involved in the pathogenesis of various diseases at the transcriptional or post-transcriptional level. However, the mechanisms underlying the role of PIWI-interacting RNAs in the pathogenesis of preeclampsia remain unclear. In this review, we discuss the findings of existing studies on PIWI-interacting RNA biogenesis, functions, and their possible roles in preeclampsia, providing novel insights into the potential application of PIWI-interacting RNAs in the early diagnosis and clinical treatment of preeclampsia.
Collapse
Affiliation(s)
- Yuanxuan Ma
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, Shandong, China
- Department of Medical Genetics, the Affiliated Hospital of Qingdao University, Qingdao , Shandong, 266003, China
| | - Bo Hou
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao , Shandong, 266003, China
| | - Jinbao Zong
- Department of Laboratory, Qingdao Hiser Hospital Affliated of Qingdao University (Oingdao Traditional Chinese Medicine Hospital), 4 Renmin Road, Qingdao, 266033, China.
| | - Shiguo Liu
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, Shandong, China.
- Department of Medical Genetics, the Affiliated Hospital of Qingdao University, Qingdao , Shandong, 266003, China.
- Medical Genetic Department, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| |
Collapse
|
7
|
Adu-Gyamfi EA, Cheeran EA, Salamah J, Enabulele DB, Tahir A, Lee BK. Long non-coding RNAs: a summary of their roles in placenta development and pathology†. Biol Reprod 2024; 110:431-449. [PMID: 38134961 DOI: 10.1093/biolre/ioad179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Long non-coding RNAs are cellular transcripts that have ˃200 nucleotides in length and do not code for proteins. Due to their low expression levels, long non-coding RNAs were previously considered as mere transcriptional noise. However, current evidence indicates that they regulate a myriad of biological processes such as cell proliferation, invasion, and apoptosis. Hence, their expression patterns are crucial indicators of the physiological or pathological states of cells, tissues, and organs. The utilization of long non-coding RNAs as biomarkers and therapeutic targets for the clinical management of several diseases have been suggested. Gradually, long non-coding RNAs are gaining a substantial attention in the field of feto-maternal medicine. After embryo implantation, the interactions between the trophoblast cells from the embryo and the uterus of the mother facilitate placenta development and pregnancy progression. These processes are tightly regulated, and their impairments result in pregnancy pathologies such as miscarriage and preeclampsia. Accumulating evidence implicates long non-coding RNAs in these processes. Herein, we have summarized the roles of several long non-coding RNAs in human placenta development, have proposed some mechanisms by which they participate in physiological and pathological placentation, have revealed some knowledge deficits, and have recommended ideal experimental approaches that will facilitate the clarification of the mechanistic actions of each long non-coding RNA at the feto-maternal interface during healthy and pathological pregnancies.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Biomedical Sciences, Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY 12144, United States
| | - Elisha Ann Cheeran
- Department of Biomedical Sciences, Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY 12144, United States
| | - Joudi Salamah
- Department of Biomedical Sciences, Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY 12144, United States
| | - Divine Blessing Enabulele
- Department of Biomedical Sciences, Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY 12144, United States
| | - Ayesha Tahir
- Department of Biomedical Sciences, Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY 12144, United States
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY 12144, United States
| |
Collapse
|
8
|
Ullah A, Zhao J, Singla RK, Shen B. Pathophysiological impact of CXC and CX3CL1 chemokines in preeclampsia and gestational diabetes mellitus. Front Cell Dev Biol 2023; 11:1272536. [PMID: 37928902 PMCID: PMC10620730 DOI: 10.3389/fcell.2023.1272536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Diabetes-related pathophysiological alterations and various female reproductive difficulties were common in pregnant women with gestational diabetes mellitus (GDM), who had 21.1 million live births. Preeclampsia (PE), which increases maternal and fetal morbidity and mortality, affects approximately 3%-5% of pregnancies worldwide. Nevertheless, it is unclear what triggers PE and GDM to develop. Therefore, the development of novel moderator therapy approaches is a crucial advancement. Chemokines regulate physiological defenses and maternal-fetal interaction during healthy and disturbed pregnancies. Chemokines regulate immunity, stem cell trafficking, anti-angiogenesis, and cell attraction. CXC chemokines are usually inflammatory and contribute to numerous reproductive disorders. Fractalkine (CX3CL1) may be membrane-bound or soluble. CX3CL1 aids cell survival during homeostasis and inflammation. Evidence reveals that CXC and CX3CL1 chemokines and their receptors have been the focus of therapeutic discoveries for clinical intervention due to their considerable participation in numerous biological processes. This review aims to give an overview of the functions of CXC and CX3CL1 chemokines and their receptors in the pathophysiology of PE and GDM. Finally, we examined stimulus specificity for CXC and CX3CL1 chemokine expression and synthesis in PE and GDM and preclinical and clinical trials of CXC-based PE and GDM therapies.
Collapse
Affiliation(s)
- Amin Ullah
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zhao
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K. Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Abdelhady SA, Ali MA, Yacout DM, Essawy MM, Kandil LS, El-Mas MM. The suppression of MAPK/NOX/MMP signaling prompts renoprotection conferred by prenatal naproxen in weaning preeclamptic rats. Sci Rep 2023; 13:17498. [PMID: 37840054 PMCID: PMC10577149 DOI: 10.1038/s41598-023-44617-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023] Open
Abstract
Although nonsteroidal antiinflammatory drugs (NSAIDs) are frequently used for fever and pain during pregnancy, their possible interaction with perinatal renal injury induced by preeclampsia (PE) has not been addressed. Here, studies were undertaken in the N(gamma)-nitro-L-arginine methyl ester (L-NAME) PE model to assess the influence of gestational NSAIDs on renal damage in weaning dams. PE-evoked increments and decrements in urine protein and creatinine clearance, respectively, were intensified by celecoxib and weakened by diclofenac or naproxen. Naproxen also improved renal cloudy swelling, necrosis, and reduced glomerular area evoked by PE. The concomitant rises in renal expression of markers of oxidative stress (NOX2/4), extracellular matrix metaloproteinase deposition (MMP9), and prostanoids (PGE2, PGF2α, TXA2) were all more effectively reduced by naproxen compared with celecoxib or diclofenac. Western blotting showed tripled expression of mitogen-activated protein kinases (MAPKs; p-p38, p-JNK1, p-ERK1, p-ERK2) in PE kidneys that was overturned by all NSAIDs, with naproxen producing the largest drop in p-ERK2 expression. The PE-provoked elevation in renal expression of autophagic marker LC3 was reduced by naproxen and diclofenac, but not celecoxib. The data suggests superior effect for naproxen over other NSAIDs in rectifying preeclamptic renal injury and predisposing inflammatory, oxidative, autophagic, and fibrotic signals.
Collapse
Affiliation(s)
- Sherien A Abdelhady
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia Street, Alexandria, 21568, Egypt.
| | - Mennatallah A Ali
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia Street, Alexandria, 21568, Egypt
| | - Dalia M Yacout
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Marwa M Essawy
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Lamia S Kandil
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
10
|
Samara A, Khalil A. Editorial: Unravelling human placental (patho-) physiology at the epigenetic and transcriptome level. Front Cell Dev Biol 2023; 11:1228803. [PMID: 37427377 PMCID: PMC10327601 DOI: 10.3389/fcell.2023.1228803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023] Open
Affiliation(s)
- Athina Samara
- Department of Women’s and Children’s Health, Karolinska Institute, Stockholm, Sweden
- Department of Neonatology, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
- Center for Functional Tissue Reconstruction, University of Oslo, Oslo, Norway
| | - Asma Khalil
- Fetal Medicine Unit, St George’s Hospital, St George’s University of London, London, United Kingdom
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, London, United Kingdom
- Fetal Medicine Unit, Liverpool Women’s Hospital, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|