1
|
Cheung BB, Mittra R, Murray J, Wang Q, Seneviratne JA, Raipuria M, Wong IPL, Restuccia D, Gifford A, Salib A, Sutton S, Huang L, Ferdowsi PV, Tsang J, Sekyere E, Mayoh C, Luo L, Brown DL, Stow JL, Zhu S, Young RJ, Solomon BJ, Chappaz S, Kile B, Kueh A, Herold MJ, Hilton DJ, Liu T, Norris MD, Haber M, Carter DR, Parker MW, Marshall GM. Golgi-localized Ring Finger Protein 121 is necessary for MYCN-driven neuroblastoma tumorigenesis. Commun Biol 2024; 7:1322. [PMID: 39402275 PMCID: PMC11473750 DOI: 10.1038/s42003-024-06899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
MYCN amplification predicts poor prognosis in childhood neuroblastoma. To identify MYCN oncogenic signal dependencies we performed N-ethyl-N-nitrosourea (ENU) mutagenesis on the germline of neuroblastoma-prone TH-MYCN transgenic mice to generate founders which had lost tumorigenesis. Sequencing of the mutant mouse genomes identified the Ring Finger Protein 121 (RNF121WT) gene mutated to RNFM158R associated with heritable loss of tumorigenicity. While the RNF121WT protein localised predominantly to the cis-Golgi Complex, the RNF121M158R mutation in Helix 4 of its transmembrane domain caused reduced RNF121 protein stability and absent Golgi localisation. RNF121WT expression markedly increased during TH-MYCN tumorigenesis, whereas hemizygous RNF121WT gene deletion reduced TH-MYCN tumorigenicity. The RNF121WT-enhanced growth of MYCN-amplified neuroblastoma cells depended on RNF121WT transmembrane Helix 5. RNF121WT directly bound MYCN protein and enhanced its stability. High RNF121 mRNA expression associated with poor prognosis in human neuroblastoma tissues and another MYC-driven malignancy, laryngeal cancer. RNF121 is thus an essential oncogenic cofactor for MYCN and a target for drug development.
Collapse
Affiliation(s)
- Belamy B Cheung
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia.
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia.
| | - Ritu Mittra
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - Jayne Murray
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - Qian Wang
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - Janith A Seneviratne
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - Mukesh Raipuria
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - Iris Poh Ling Wong
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - David Restuccia
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - Andrew Gifford
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - Alice Salib
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - Selina Sutton
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - Libby Huang
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - Parisa Vahidi Ferdowsi
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - Joanna Tsang
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - Eric Sekyere
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Lin Luo
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Darren L Brown
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Cancer Center and Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Stephane Chappaz
- Anatomy & Developmental Biology, Monash University, Melbourne, Australia
| | - Benjamin Kile
- Faculty of Health and Medical Sciences at the University of Adelaide, Adelaide, Australia
| | - Andrew Kueh
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, 3052, Australia
| | - Marco J Herold
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, 3052, Australia
| | - Douglas J Hilton
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, 3052, Australia
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
- University of New South Wales Centre for Childhood Cancer Research, Sydney, NSW 2052, Australia
| | - Murray D Norris
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
- University of New South Wales Centre for Childhood Cancer Research, Sydney, NSW 2052, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Daniel R Carter
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Michael W Parker
- ACRF Facility for Innovative Cancer Drug Discovery and Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Glenn M Marshall
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia.
- Kids Cancer Centre, Sydney Children's Hospital, Sydney, 2031, NSW, Australia.
| |
Collapse
|
2
|
Buzuk L, Hellerschmied D. Ubiquitin-mediated degradation at the Golgi apparatus. Front Mol Biosci 2023; 10:1197921. [PMID: 37484530 PMCID: PMC10357820 DOI: 10.3389/fmolb.2023.1197921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
The Golgi apparatus is an essential organelle of the secretory pathway in eukaryotic cells. It processes secretory and transmembrane proteins and orchestrates their transport to other endomembrane compartments or the plasma membrane. The Golgi apparatus thereby shapes the cell surface, controlling cell polarity, cell-cell communication, and immune signaling. The cytosolic face of the Golgi hosts and regulates signaling cascades, impacting most notably the DNA damage response and mitosis. These essential functions strongly depend on Golgi protein homeostasis and Golgi integrity. Golgi fragmentation and consequent malfunction is associated with neurodegenerative diseases and certain cancer types. Recent studies provide first insight into the critical role of ubiquitin signaling in maintaining Golgi integrity and in Golgi protein quality control. Similar to well described pathways at the endoplasmic reticulum, ubiquitin-dependent degradation of non-native proteins prevents the accumulation of toxic protein aggregates at the Golgi. Moreover, ubiquitination regulates Golgi structural rearrangements in response to cellular stress. Advances in elucidating ubiquitination and degradation events at the Golgi are starting to paint a picture of the molecular machinery underlying Golgi (protein) homeostasis.
Collapse
|
3
|
Zou L, Sun L, Hua R, Wu Y, Sun L, Chen T. Degradation of Ubiquitin-Editing Enzyme A20 following Autophagy Activation Promotes RNF168 Nuclear Translocation and NF-κB Activation in Lupus Nephritis. J Innate Immun 2023; 15:428-441. [PMID: 36944318 PMCID: PMC10090963 DOI: 10.1159/000527624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/19/2022] [Indexed: 03/23/2023] Open
Abstract
The correlation between ubiquitin-editing enzyme A20 and E3 ubiquitin ligase ring finger protein (RNF) 168 has been reported to be critical for repair of DNA damage. This study aimed to evaluate the potential role of this regulatory interaction in the pathogenesis of lupus nephritis (LN). The expression of RNF168 and A20 was measured in the podocytes derived from MRL/lpr murine lupus as well as patients with LN. Cell-based studies using renal podocytes bearing silenced RNF168, over-expressed A20, autophagy-related gene (Atg) 5 (a ubiquitin-like modifier), or silenced Atg5 were used to assess the effect of RNF168, A20, and Atg5 on DNA damage repair and nuclear factor kappa-B (NF-κB) activation in LN. It was found that podocyte autophagy was over-activated in LN and the abnormal podocyte autophagy led to down-regulation of A20, up-regulation of RNF168, and activation of the NF-κB. RNF168 silencing or A20 restoration inhibited activation of NF-κB pathway and promoted repair of DNA damage, where the level of autophagy was not changed. Activated A20 in podocytes weakened the promoting action of cell autophagy on RNF168. The current results suggest that RNF168 dysfunction may be involved in the pathogenesis of LN via down-regulation of A20 expression. Autophagy and RNF168 may be therapeutic targets for the prevention and treatment of LN.
Collapse
Affiliation(s)
- Luxi Zou
- School of Management, Xuzhou Medical University, Xuzhou, China
| | - Ling Sun
- Division of Nephrology, Xuzhou Central Hospital, Xuzhou Medical University, Xuzhou, China
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Ruixue Hua
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Yu Wu
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Linlin Sun
- Division of Nephrology, Xuzhou Central Hospital, Xuzhou Medical University, Xuzhou, China
| | - Ting Chen
- Division of Nephrology, Xuzhou Central Hospital, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
Nishitsuji H, Iwahori S, Ohmori M, Shimotohno K, Murata T. Ubiquitination of SARS-CoV-2 NSP6 and ORF7a Facilitates NF-κB Activation. mBio 2022; 13:e0097122. [PMID: 35856559 PMCID: PMC9426613 DOI: 10.1128/mbio.00971-22] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
Patients with severe coronavirus disease 2019 tend to have high levels of proinflammatory cytokines, which eventually lead to cytokine storm and the development of acute respiratory distress syndrome. However, the detailed molecular mechanisms of proinflammatory cytokine production remain unknown. Here, we screened severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genes and found that nonstructural protein 6 (NSP6) and open reading frame 7a (ORF7a) activated the NF-κB pathway. NSP6 and ORF7a interacted with transforming growth factor β-activated kinase 1 (TAK1), and knockout (KO) of TAK1 or NF-κB essential modulator (NEMO) abolished NF-κB activation by NSP6 and ORF7a. Interestingly, K61 of NSP6 was conjugated to K63-linked polyubiquitin chains by the E3 ubiquitin ligase tripartite motif-containing 13, and this polyubiquitination of NSP6 appeared crucial for recruitment of NEMO to the NSP6-TAK1 complex and NF-κB activation. On the other hand, ring finger protein 121 (RNF121) was required for the polyubiquitination of ORF7a. Knockdown of RNF121 significantly decreased ORF7a binding of TAK1 and NEMO, resulting in the suppression of NF-κB activation. Taken together, our results provide novel molecular insights into the pathogenesis of SARS-CoV-2 and the host immune response to SARS-CoV-2 infection. IMPORTANCE The detailed molecular basis of the induction of proinflammatory cytokines and chemokines by SARS-CoV-2 is unclear, although such induction is clearly related to the severity of COVID-19. Here, we show that SARS-CoV-2 NSP6 and ORF7a lead to NF-κB activation through associations with TAK1. K63-linked polyubiquitination of NSP6 and ORF7a by TRIM13 and RNF121, respectively, appears essential for NF-κB activation. These results suggest that inhibition of the NSP6 and ORF7a gene products may reduce the severity of COVID-19 symptoms by decreasing proinflammatory cytokine levels.
Collapse
Affiliation(s)
- Hironori Nishitsuji
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Aichi, Japan
| | - Satoko Iwahori
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Aichi, Japan
| | - Mariko Ohmori
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Aichi, Japan
| | - Kunitada Shimotohno
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Aichi, Japan
| |
Collapse
|
5
|
The RING finger protein family in health and disease. Signal Transduct Target Ther 2022; 7:300. [PMID: 36042206 PMCID: PMC9424811 DOI: 10.1038/s41392-022-01152-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 02/05/2023] Open
Abstract
Ubiquitination is a highly conserved and fundamental posttranslational modification (PTM) in all eukaryotes regulating thousands of proteins. The RING (really interesting new gene) finger (RNF) protein, containing the RING domain, exerts E3 ubiquitin ligase that mediates the covalent attachment of ubiquitin (Ub) to target proteins. Multiple reviews have summarized the critical roles of the tripartite-motif (TRIM) protein family, a subgroup of RNF proteins, in various diseases, including cancer, inflammatory, infectious, and neuropsychiatric disorders. Except for TRIMs, since numerous studies over the past decades have delineated that other RNF proteins also exert widespread involvement in several diseases, their importance should not be underestimated. This review summarizes the potential contribution of dysregulated RNF proteins, except for TRIMs, to the pathogenesis of some diseases, including cancer, autoimmune diseases, and neurodegenerative disorder. Since viral infection is broadly involved in the induction and development of those diseases, this manuscript also highlights the regulatory roles of RNF proteins, excluding TRIMs, in the antiviral immune responses. In addition, we further discuss the potential intervention strategies targeting other RNF proteins for the prevention and therapeutics of those human diseases.
Collapse
|
6
|
Yu Y, Lin D, Liu Z, Fang R, Zheng S, Cheng Y, Huang Z, Ng CW, Lau HYA. 6-O-angeloylplenolin inhibits anti-IgE-stimulated human mast cell activation via suppressing calcium influx and ERK phosphorylation. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:629-634. [PMID: 35911641 PMCID: PMC9282743 DOI: 10.22038/ijbms.2022.64132.14120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 11/08/2022]
Abstract
Objectives Mast cells are important immune cells that primarily localize in the interface between the host and external environment, and protect us from pathogen infection. However, they are also involved in the pathology of allergic diseases such as asthma and atopic dermatitis. A novel S phase kinase-associated protein 1 (SKP1) inhibitor 6-O-angeloylplenolin (6-OAP), was studied with its potential ability to alleviate the anti-IgE-induced inflammatory responses of primary human cultured mast cells (HCMCs) and LAD2 cell line. Materials and Methods We isolated the HCMCs from the buffy coat of voluntary blood donors. The effects of 6-OAP on mast cell activation were evaluated by measuring degranulation, cytokine release, migration, calcium influx, and ERK phosphorylation using spectro-fluorescence assay, multiplex cytometric bead assay/ELISA, migration assay, Fluo-4 calcium flux assay, and western blot, respectively. Results It was found that 6-OAP exerted anti-inflammatory effects on human mast cells by dose-dependently suppressing the anti-IgE-mediated degranulation and release of cytokines such as proinflammatory cytokines (IL-8 and TNF-α), growth factors (GM-CSF, VEGF, and FGF), and chemokines (CCL2 and CCL3) in HCMC and LAD2 cells. It also suppressed the migration of immature HCMCs induced by CXCL12. Moreover, the process of calcium influx and ERK phosphorylation in activated HCMC cells were inhibited by 6-OAP administration. Conclusion Our results showed that 6-OAP inhibited anti-IgE-induced inflammatory responses of human mast cells via suppressing calcium influx and ERK phosphorylation.
Collapse
Affiliation(s)
- Yangyang Yu
- Shenzhen University Health Science Center, Shenzhen, China,Corresponding author: Yangyang Yu. Shenzhen University Health Science Center, No. 1066 Xueyuan Avenue, Nanshan District, Shenzhen, China. Tel: +86-13603059069;
| | - Dongxu Lin
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyu Liu
- GI Division, Shenzhen University General Hospital, Shenzhen, China
| | - Ran Fang
- Shenzhen University Health Science Center, Shenzhen, China
| | - Siman Zheng
- Shenzhen University Health Science Center, Shenzhen, China
| | - Yongxian Cheng
- Shenzhen University Health Science Center, Shenzhen, China
| | - Zhong Huang
- Shenzhen University Health Science Center, Shenzhen, China
| | - Chun Wai Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hang Yung Alaster Lau
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Madigan VJ, Yuziuk JA, Chiarella AM, Tyson TO, Meganck RM, Elmore ZC, Tse LV, Hathaway NA, Asokan A. Ring finger protein 121 is a potent regulator of adeno-associated viral genome transcription. PLoS Pathog 2019; 15:e1007988. [PMID: 31386698 PMCID: PMC6697353 DOI: 10.1371/journal.ppat.1007988] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/16/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Adeno-associated viruses (AAV) are Dependoparvoviruses that have shown promise as recombinant vectors for gene therapy. While infectious pathways of AAV are well studied, gaps remain in our understanding of host factors affecting vector genome expression. Here, we map the role of ring finger protein 121 (RNF121), an E3 ubiquitin ligase, as a key regulator of AAV genome transcription. CRISPR-mediated knockout of RNF121 (RNF121 KO) in different cells markedly decreased AAV transduction regardless of capsid serotype or vector dose. Recombinant AAV transduction is partially rescued by overexpressing RNF121, but not by co-infection with helper Adenovirus. Major steps in the AAV infectious pathway including cell surface binding, cellular uptake, nuclear entry, capsid uncoating and second strand synthesis are unaffected. While gene expression from transfected plasmids or AAV genomes is unaffected, mRNA synthesis from AAV capsid-associated genomes is markedly decreased in RNF121 KO cells. These observations were attributed to transcriptional arrest as corroborated by RNAPol-ChIP and mRNA half-life measurements. Although AAV capsid proteins do not appear to be direct substrates of RNF121, the catalytic domain of the E3 ligase appears essential. Inhibition of ubiquitin-proteasome pathways revealed that blocking Valosin Containing Protein (VCP/p97), which targets substrates to the proteasome, can selectively and completely restore AAV-mediated transgene expression in RNF121 KO cells. Expanding on this finding, transcriptomic and proteomic analysis revealed that the catalytic subunit of DNA PK (DNAPK-Cs), a known activator of VCP, is upregulated in RNF121 KO cells and that the DNA damage machinery is enriched at sites of stalled AAV genome transcription. We postulate that a network of RNF121, VCP and DNA damage response elements function together to regulate transcriptional silencing and/or activation of AAV vector genomes. Recombinant AAV vectors are at the forefront of clinical gene therapy. There is a need to better understand the mechanisms dictating AAV transduction in the host. Here, we identify a network of host proteins involving RNF121, p97 and the DNA damage machinery as potent factors regulating AAV genome transcription. Our study sheds light on an understudied aspect of AAV biology with implications for gene therapy.
Collapse
Affiliation(s)
- Victoria J. Madigan
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Gene Therapy Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States of America
| | - Julianne A. Yuziuk
- Gene Therapy Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Anna M. Chiarella
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Chapel Hill, NC, United States of America
| | - Tyne O. Tyson
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States of America
| | - Rita M. Meganck
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Gene Therapy Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States of America
| | - Zachary C. Elmore
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States of America
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, United States of America
| | - Longping V. Tse
- Gene Therapy Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Nathaniel A. Hathaway
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Chapel Hill, NC, United States of America
| | - Aravind Asokan
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States of America
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, United States of America
- * E-mail:
| |
Collapse
|
8
|
Outlioua A, Pourcelot M, Arnoult D. The Role of Optineurin in Antiviral Type I Interferon Production. Front Immunol 2018; 9:853. [PMID: 29755463 PMCID: PMC5932347 DOI: 10.3389/fimmu.2018.00853] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/06/2018] [Indexed: 12/14/2022] Open
Abstract
After a viral infection and the stimulation of some pattern-recognition receptors as the toll-like receptor 3 in the endosomes or the RIG-I-like receptors in the cytosol, activation of the IKK-related kinase TBK1 leads to the production of type I interferons (IFNs) after phosphorylation of the transcription factors IRF3 and IRF7. Recent findings indicate an involvement of K63-linked polyubiquitination and of the Golgi-localized protein optineurin (OPTN) in the activation of this crucial kinase involved in innate antiviral immunity. This review summarizes the sensing of viruses and the signaling leading to type I IFN production following TBK1 activation through its ubiquitination and the sensing of ubiquitin chains by OPTN at the Golgi apparatus.
Collapse
Affiliation(s)
- Ahmed Outlioua
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
- Molecular Genetics and Immunophysiopathology Research Team, Health and Environment Laboratory, Aïn Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco
| | - Marie Pourcelot
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
- ANSES, INRA, ENVA, UPEC, UMR_1161 Virology, LabEx IBEID, Maisons-Alfort, France
| | - Damien Arnoult
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
| |
Collapse
|
9
|
Wu Y, Kang J, Zhang L, Liang Z, Tang X, Yan Y, Qian H, Zhang X, Xu W, Mao F. Ubiquitination regulation of inflammatory responses through NF-κB pathway. Am J Transl Res 2018; 10:881-891. [PMID: 29636878 PMCID: PMC5883129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
The development of inflammation is mutually affected with damaged DNA and the abnormal expression of protein modification. Ubiquitination, a way of protein modification, plays a key role in regulating various biological functions including inflammation responses. The ubiquitin enzymes and deubiquitinating enzymes (DUBs) jointly control the ubiquitination. The fact that various ubiquitin linkage chains control the fate of the substrate suggests that the regulatory mechanisms of ubiquitin enzymes are central for ubiquitination. In inflammation diseases, the pro-inflammatory transcription factor NF-κB regulates transcription of pro-labour mediators in response to inflammatory stimuli and expression of numerous genes that control inflammation which is associated with ubiquitination. The ubiquitination regulates NF-κB signaling pathway with many receptor families, including NOD-like receptors (NLR), Toll-like receptors (TLR) and RIG-I-like receptors (RLR), mainly by K63-linked polyubiquitin chains. In this review, we highlight the study of ubiquitination in the inflammatory signaling pathway including NF-κB signaling regulated by ubiquitin enzymes and DUBs. Furthermore, it is emphasized that the interaction of ubiquitin-mediated inflammatory signaling system accurately regulates the inflammatory responses.
Collapse
Affiliation(s)
- Yunbing Wu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Jingjing Kang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Lu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Zhaofeng Liang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Xudong Tang
- Jiangsu University of Science and TechnologyZhenjiang 212018, Jiangsu, China
| | - Yongmin Yan
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Hui Qian
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| |
Collapse
|
10
|
Nair S, Bist P, Dikshit N, Krishnan MN. Global functional profiling of human ubiquitome identifies E3 ubiquitin ligase DCST1 as a novel negative regulator of Type-I interferon signaling. Sci Rep 2016; 6:36179. [PMID: 27782195 PMCID: PMC5080589 DOI: 10.1038/srep36179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/12/2016] [Indexed: 12/28/2022] Open
Abstract
Type I interferon (IFN-I) mediated innate immune response controls virus infections by inducing the expression of interferon stimulated genes (ISGs). Although ubiquitination plays key roles in immune signaling regulation, a human genome-wide understanding of the role of E3 ubiquitin ligases in interferon mediated ISG induction is lacking. Here, we report a genome-wide profiling of the effect of ectopic expression of 521 E3 ubiquitin ligases and substrate recognition subunits encoded in the human genome (which constitutes 84.4% of all ubiquitination related genes encoded in the human genome, hereafter termed Human Ubiquitome) on IFNβ mediated induction of interferon stimulated DNA response element (ISRE) driven reporter activity. We identified 96 and 42 genes of the human ubiquitome as novel negative and positive regulators of interferon signaling respectively. Furthermore, we characterized DCST1 as a novel E3 ubiquitin ligase negatively regulating interferon response. Ectopic expression and gene silencing of DCST1 respectively attenuated and increased ISRE reporter activity. DCST1 regulated Type I interferon signaling by interacting with and promoting ubiquitination-mediated degradation of STAT2, an essential component of antiviral gene induction. In summary, this study provided a systems level view on the role of human ubiquitination associated genes in Type I interferon response.
Collapse
Affiliation(s)
- Sajith Nair
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Pradeep Bist
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Neha Dikshit
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Manoj N Krishnan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| |
Collapse
|
11
|
Pourcelot M, Zemirli N, Silva Da Costa L, Loyant R, Garcin D, Vitour D, Munitic I, Vazquez A, Arnoult D. The Golgi apparatus acts as a platform for TBK1 activation after viral RNA sensing. BMC Biol 2016; 14:69. [PMID: 27538435 PMCID: PMC4991008 DOI: 10.1186/s12915-016-0292-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/05/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND After viral infection and the stimulation of some pattern-recognition receptors, TANK-binding kinase I (TBK1) is activated by K63-linked polyubiquitination followed by trans-autophosphorylation. While the activated TBK1 induces type I interferon production by phosphorylating the transcription factor IRF3, the precise molecular mechanisms underlying TBK1 activation remain unclear. RESULTS We report here the localization of the ubiquitinated and phosphorylated active form of TBK1 to the Golgi apparatus after the stimulation of RIG-I-like receptors (RLRs) or Toll-like receptor-3 (TLR3), due to TBK1 K63-linked ubiquitination on lysine residues 30 and 401. The ubiquitin-binding protein optineurin (OPTN) recruits ubiquitinated TBK1 to the Golgi apparatus, leading to the formation of complexes in which TBK1 is activated by trans-autophosphorylation. Indeed, OPTN deficiency in various cell lines and primary cells impairs TBK1 targeting to the Golgi apparatus and its activation following RLR or TLR3 stimulation. Interestingly, the Bluetongue virus NS3 protein binds OPTN at the Golgi apparatus, neutralizing its activity and thereby decreasing TBK1 activation and downstream signaling. CONCLUSIONS Our results highlight an unexpected role of the Golgi apparatus in innate immunity as a key subcellular gateway for TBK1 activation after RNA virus infection.
Collapse
Affiliation(s)
- Marie Pourcelot
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
- Equipe Labellisée Ligue contre le Cancer, Villejuif, France
| | - Naima Zemirli
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
- Equipe Labellisée Ligue contre le Cancer, Villejuif, France
| | - Leandro Silva Da Costa
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
- Equipe Labellisée Ligue contre le Cancer, Villejuif, France
| | - Roxane Loyant
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
- Equipe Labellisée Ligue contre le Cancer, Villejuif, France
| | - Dominique Garcin
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Damien Vitour
- ANSES, INRA, ENVA, UPEC, UMR_1161 Virology, LabEx IBEID, Maisons-Alfort, France
| | - Ivana Munitic
- Laboratory of Molecular Immunology, Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Aimé Vazquez
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
- Equipe Labellisée Ligue contre le Cancer, Villejuif, France
| | - Damien Arnoult
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France.
- Université Paris-Saclay, Paris, France.
- Equipe Labellisée Ligue contre le Cancer, Villejuif, France.
| |
Collapse
|
12
|
Maghsoudlou A, Meyer RD, Rezazadeh K, Arafa E, Pudney J, Hartsough E, Rahimi N. RNF121 Inhibits Angiogenic Growth Factor Signaling by Restricting Cell Surface Expression of VEGFR-2. Traffic 2015; 17:289-300. [PMID: 26602861 DOI: 10.1111/tra.12353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 12/22/2022]
Abstract
Ligand stimulation promotes downregulation of RTKs, a mechanism by which RTKs, through the ubiquitination pathway are removed from the cell surface, causing a temporary termination of RTK signaling. The molecular mechanisms governing RTK trafficking and maturation in the endoplasmic reticulum (ER)/Golgi compartments are poorly understood. Vascular endothelial growth factor receptor-2 (VEGFR-2) is a prototypic RTK that plays a critical role in physiologic and pathologic angiogenesis. Here we demonstrate that Ring Finger Protein 121 (RNF121), an ER ubiquitin E3 ligase, is expressed in endothelial cells and regulates maturation of VEGFR-2. RNF121 recognizes newly synthesized VEGFR-2 in the ER and controls its trafficking and maturation. Over-expression of RNF121 promoted ubiquitination of VEGFR-2, inhibited its maturation and resulted a significantly reduced VEGFR-2 presence at the cell surface. Conversely, the shRNA-mediated knockdown of RNF121 in primary endothelial cells reduced VEGFR-2 ubiquitination and increased its cell surface level. The RING Finger domain of RNF121 is required for its activity toward VEGFR-2, as its deletion significantly reduced the effect of RNF121 on VEGFR-2. Additionally, RNF121 inhibited VEGF-induced endothelial cell proliferation and angiogenesis. Taken together, these data identify RNF121 as a key determinant of angiogenic signaling that restricts VEGFR-2 cell surface presence and its angiogenic signaling.
Collapse
Affiliation(s)
- Armin Maghsoudlou
- Department of Pathology and Laboratory Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| | - Rosana D Meyer
- Department of Pathology and Laboratory Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| | - Kobra Rezazadeh
- Department of Pathology and Laboratory Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| | - Emad Arafa
- Department of Pathology and Laboratory Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| | - Jeffrey Pudney
- Department of Obstetrics & Gynecology, Boston University Medical Campus, Boston, MA 02118, USA
| | - Edward Hartsough
- Department of Pathology and Laboratory Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| | - Nader Rahimi
- Department of Pathology and Laboratory Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| |
Collapse
|