1
|
Hodapp SJ, Gravel N, Kannan N, Newton AC. Cancer-associated mutations in protein kinase C theta are loss-of-function. Biochem J 2024; 481:759-775. [PMID: 38752473 PMCID: PMC11346454 DOI: 10.1042/bcj20240148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/11/2024]
Abstract
The Ca2+-independent, but diacylglycerol-regulated, novel protein kinase C (PKC) theta (θ) is highly expressed in hematopoietic cells where it participates in immune signaling and platelet function. Mounting evidence suggests that PKCθ may be involved in cancer, particularly blood cancers, breast cancer, and gastrointestinal stromal tumors, yet how to target this kinase (as an oncogene or as a tumor suppressor) has not been established. Here, we examine the effect of four cancer-associated mutations, R145H/C in the autoinhibitory pseudosubstrate, E161K in the regulatory C1A domain, and R635W in the regulatory C-terminal tail, on the cellular activity and stability of PKCθ. Live-cell imaging studies using the genetically-encoded fluorescence resonance energy transfer-based reporter for PKC activity, C kinase activity reporter 2 (CKAR2), revealed that the pseudosubstrate and C1A domain mutations impaired autoinhibition to increase basal signaling. This impaired autoinhibition resulted in decreased stability of the protein, consistent with the well-characterized behavior of Ca2+-regulated PKC isozymes wherein mutations that impair autoinhibition are paradoxically loss-of-function because the mutant protein is degraded. In marked contrast, the C-terminal tail mutation resulted in enhanced autoinhibition and enhanced stability. Thus, the examined mutations were loss-of-function by different mechanisms: mutations that impaired autoinhibition promoted the degradation of PKC, and those that enhanced autoinhibition stabilized an inactive PKC. Supporting a general loss-of-function of PKCθ in cancer, bioinformatics analysis revealed that protein levels of PKCθ are reduced in diverse cancers, including lung, renal, head and neck, and pancreatic. Our results reveal that PKCθ function is lost in cancer.
Collapse
Affiliation(s)
- Stefanie J. Hodapp
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Nathan Gravel
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, U.S.A
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, U.S.A
| | - Alexandra C. Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
| |
Collapse
|
2
|
Koutník J, Leitges M, Siegmund K. T cell-intrinsic protein kinase D3 is dispensable for the cells' activation. Front Immunol 2022; 13:1049033. [PMID: 36466811 PMCID: PMC9713823 DOI: 10.3389/fimmu.2022.1049033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 07/21/2023] Open
Abstract
Protein kinases D (PKDs) are implicated in T cell receptor (TCR) signaling. Of the two T cell-expressed isoforms PKD2 and PKD3, however, only the former one is rather well understood in this immune cell type. Recently, we have observed a putative hyper-phenotype of T cells from conventional PKD3-knockout mice, which we explained as a secondary effect due to a skewed T cell compartment from naïve towards effector/memory T cells already under steady state conditions. Nonetheless, to this end it is not clear whether these aberrations are mediated by a T cell-intrinsic or -extrinsic function of PKD3. To address this question, we have investigated mice lacking PKD3 specifically in the T cell compartment. We could show that T cells from CD4-Cre-driven conditional knockout mice did not phenocopy the ones from conventional PKD3-knockout mice. In brief, no skewing in the T cell compartment of peripheral lymphoid organs, no hyper-activation upon stimulation in vitro or in vivo as well as no aberrations in follicular helper T cells (TFH) upon immunization were observed. Hence, although PKD3 is strongly regulated upon TCR stimulation, in T cells this kinase seems to be dispensable for their activation. The described skewing in the T cell compartment of conventional PKD3-deficient mice seems to be mediated by T cell-extrinsic mechanisms, thus once more emphasizing the importance of cell type-specific mouse models.
Collapse
Affiliation(s)
- Jiří Koutník
- Institute of Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Leitges
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Kerstin Siegmund
- Institute of Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Koutník J, Neururer V, Gruber T, Peer S, Hermann-Kleiter N, Olson WJ, Labi V, Leitges M, Baier G, Siegmund K. Addressing the role of PKD3 in the T cell compartment with knockout mice. Cell Commun Signal 2022; 20:54. [PMID: 35440091 PMCID: PMC9020081 DOI: 10.1186/s12964-022-00864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Protein kinase D3 (PKD3) has been implicated in signal transduction downstream of the T cell receptor (TCR). However, its role for the activation of primary T lymphocytes has not been elucidated so far. METHODS Expression of PKD isoforms in primary murine T cells was determined by RT-PCR and SDS-Page. A germline PKD3-knockout mouse line was analyzed for its immune response to OVA/alum intraperitoneal immunization. Phenotyping of the T cell compartment ex vivo as well as upon stimulation in vitro was performed by flow cytometry. Additionally, cytokine expression was assessed by flow cytometry, RT-PCR and Luminex technology. RESULTS PKD expression in T cells is modulated by TCR stimulation, leading to a rapid down-regulation on mRNA and on protein level. PKD3-deficient mice respond to immunization with enhanced T follicular helper cell generation. Furthermore, peripheral PKD3-deficient CD4+ T cells express more interleukin-2 than wild type CD4+ T cells upon TCR stimulation ex vivo. However, purified naïve CD4+ T cells do not differ in their phenotype upon differentiation in vitro from wild type T cells. Moreover, we observed a shift towards an effector/memory phenotype of splenic T cells at steady state, which might explain the contradictory results obtained with pan-T cells ex vivo and naïve-sorted T cells. CONCLUSION While PKD3-deficiency in vivo in mice leads to a skewing of the T cell compartment towards a more activated phenotype, this kinase seems to be dispensable for naïve CD4+ T cell differentiation in vitro. Video Abstract.
Collapse
Affiliation(s)
- Jiří Koutník
- Institute of Cell Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Verena Neururer
- Institute of Cell Genetics, Medical University Innsbruck, Innsbruck, Austria
- Apoptosis, Cancer, and Development Laboratory, Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon1, 69008, Lyon, France
| | - Thomas Gruber
- Institute of Cell Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Sebastian Peer
- Institute of Cell Genetics, Medical University Innsbruck, Innsbruck, Austria
| | | | - William J Olson
- Institute of Cell Genetics, Medical University Innsbruck, Innsbruck, Austria
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Verena Labi
- Institute of Developmental Immunology, Medical University Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Michael Leitges
- Division of BioMedical Sciences, Faculty of Medicine, Craig L Dobbin Genetics Research Centre, Memorial University of Newfoundland Health Science Centre, 300 Prince Philip Drive, St. John's, NF, A1B 3V6, Canada
| | - Gottfried Baier
- Institute of Cell Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Kerstin Siegmund
- Institute of Cell Genetics, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
4
|
Thuille N, Siegmund K, Klepsch V, Schörgenhuber J, Danklmaier S, Leitges M, Baier G. Loss-of-function phenotype of a PKCθ T219A knockin mouse strain. Cell Commun Signal 2019; 17:141. [PMID: 31694643 PMCID: PMC6836476 DOI: 10.1186/s12964-019-0466-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/22/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein kinase C θ has been established as an important signaling intermediate in T-effector-cell activation and survival pathways by controlling activity of the key transcription factors NF-κB and NFAT. Previous studies identified an activation-induced auto-phosphorylation site at Thr-219, located between the tandem C1 domains of the regulatory fragment in PKCθ, as a structural requirement for its correct membrane translocation and the subsequent transactivation of downstream signals leading to IL-2 production in a human T cell line. METHODS The present work aimed to define the role of this phosphorylation switch on PKCθ in a physiological context through a homozygous T219A knockin mouse strain. T cell activation was analyzed by H3-thymidine uptake (proliferative response), qRT-PCR and luminex measurements (cytokine production). NFAT and NF-κB transactivation responses were estimated by Gel mobility shift and Alpha Screen assays. Frequencies of T cell subsets were analyzed by flow cytometry. RESULTS Despite a normal T cell development, in vitro activated effector T cells clearly revealed a requirement of Thr-219 phosphorylation site on PKCθ for a transactivation of NF-κB and NFAT transcription factors and, subsequently, robust IL-2 and IFN-γ expression. CONCLUSION This phenotype is reminiscent of the PKCθ knockout T cells, physiologically validating that this (p) Thr-219 auto-phosphorylation site indeed critically regulates PKCθ function in primary mouse T cells.
Collapse
Affiliation(s)
- Nikolaus Thuille
- Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria.
| | - Kerstin Siegmund
- Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Victoria Klepsch
- Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria
| | | | - Sarah Danklmaier
- Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria
| | | | - Gottfried Baier
- Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|