1
|
Tito C, Masciarelli S, Colotti G, Fazi F. EGF receptor in organ development, tissue homeostasis and regeneration. J Biomed Sci 2025; 32:24. [PMID: 39966897 PMCID: PMC11837477 DOI: 10.1186/s12929-025-01119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
The epidermal growth factor receptor (EGFR) is a protein embedded in the outer membrane of epithelial and mesenchymal cells, bone cells, blood and immune cells, heart cells, glia and stem neural cells. It belongs to the ErbB family, which includes three other related proteins: HER2/ErbB2/c-neu, HER3/ErbB3, and HER4/ErbB4. EGFR binds to seven known signaling molecules, including epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-α). This binding triggers the formation of receptor pairs (dimers), self-phosphorylation of EGFR, and the activation of several signaling pathways within the cell. These pathways influence various cellular processes like proliferation, differentiation, migration, and survival. EGFR plays a critical role in both development and tissue homeostasis, including tissue repair and adult organ regeneration. Altered expression of EGFR is linked to disruption of tissue homeostasis and various diseases, among which cancer. This review focuses on how EGFR contributes to the development of different organs like the placenta, gut, liver, bone, skin, brain, T cell regulation, pancreas, kidneys, mammary glands and lungs along with their associated pathologies. The involvement of EGFR in organ-specific branching morphogenesis process is also discussed. The level of EGFR activity and its impact vary across different organs. Factors as the affinity of its ligands, recycling or degradation processes, and transactivation by other proteins or environmental factors (such as heat stress and smoking) play a role in regulating EGFR activity. Understanding EGFR's role and regulatory mechanisms holds promise for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Claudia Tito
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, C/O Dept. Biochemical Sciences Sapienza University of Rome, Ed. CU027, P.Le A. Moro 5, 00185, Rome, Italy.
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy.
| |
Collapse
|
2
|
Guo L, Ji T, Xu X, Liu X, Cui Y. Circ_0008440 Inhibits Proliferation and Promotes Apoptosis of Trophoblast Cells through the miR-194-5p/PFKFB2 Axis. Reprod Sci 2024:10.1007/s43032-024-01757-8. [PMID: 39663300 DOI: 10.1007/s43032-024-01757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Preeclampsia (PE), an idiopathic hypertensive disorder that arises during pregnancy, poses a serious threat to the health of expectant mothers. Human chorionic trophoblast cells (HTR-8/SVneo) are associated with the development of PE. It has been reported that circ_0008440 expression is abnormally increased in the placental tissues of PE patients. However, the function of circ_0008440 within HTR-8/SVneo cells during PE has yet to be fully elucidated. The study used RT-qPCR and western blot assay to evaluate the expression levels of 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 2 (PFKFB2), circ_0008440, and miR-942-5p in PE patients. Cells viability was measured using cell counting kit-8 (CCK-8) assay. Cell cycle assay and 5-ethynyl-2'-deoxyuridine (EDU) assay were used to measure cell proliferation. Cell apoptosis was assessed using flow cytometry assay. Western blot assay was used to detect protein expression. Dual-luciferase reporter assay and RNA pull-down assay were used to assess the interactions among circ_0008440, miR-942-5p, and PFKFB2 in HTR-8/SVneo cells. The study showed that the expression levels of circ_0008440 and PFKFB2 were significantly increased, while the expression of miR-942-5p was significantly decreased in the placental tissues of PE patients. Silencing of circ_0008440 promoted proliferation and tube formation and inhibited apoptosis of HTR-8/SVneo cells. In terms of molecular mechanism, miR-942-5p inhibitor or overexpression of PFKFB2 could partially reverse the effects of circ_0008440 silencing on the biological characteristics of HTR-8/SVneo cells. Collectively, circ_0008440 could act as a sponge of miR-942-5p to regulate the expression of PFKFB2, which further inhibited viability and proliferation of HTR-8/SVneo cells and promoted cell apoptosis.
Collapse
Affiliation(s)
- Linqiong Guo
- Department of Obstetrics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Qujiang New District, Xi'an, 710061, China
| | - Ting Ji
- Department of Obstetrics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Qujiang New District, Xi'an, 710061, China
| | - Xiaoyan Xu
- Department of Obstetrics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Qujiang New District, Xi'an, 710061, China
| | - Xing Liu
- Department of Obstetrics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Qujiang New District, Xi'an, 710061, China
| | - Yanping Cui
- Department of Obstetrics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Qujiang New District, Xi'an, 710061, China.
| |
Collapse
|
3
|
Ounadjela JR, Zhang K, Kobayashi-Kirschvink KJ, Jin K, J C Russell A, Lackner AI, Callahan C, Viggiani F, Dey KK, Jagadeesh K, Maxian T, Prandstetter AM, Nadaf N, Gong Q, Raichur R, Zvezdov ML, Hui M, Simpson M, Liu X, Min W, Knöfler M, Chen F, Haider S, Shu J. Spatial multiomic landscape of the human placenta at molecular resolution. Nat Med 2024; 30:3495-3508. [PMID: 39567716 DOI: 10.1038/s41591-024-03073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/17/2024] [Indexed: 11/22/2024]
Abstract
Successful pregnancy relies directly on the placenta's complex, dynamic, gene-regulatory networks. Disruption of this vast collection of intercellular and intracellular programs leads to pregnancy complications and developmental defects. In the present study, we generated a comprehensive, spatially resolved, multimodal cell census elucidating the molecular architecture of the first trimester human placenta. We utilized paired single-nucleus (sn)ATAC (assay for transposase accessible chromatin) sequencing and RNA sequencing (RNA-seq), spatial snATAC-seq and RNA-seq, and in situ sequencing and hybridization mapping of transcriptomes at molecular resolution to spatially reconstruct the joint epigenomic and transcriptomic regulatory landscape. Paired analyses unraveled intricate tumor-like gene expression and transcription factor motif programs potentially sustaining the placenta in a hostile uterine environment; further investigation of gene-linked cis-regulatory elements revealed heightened regulatory complexity that may govern trophoblast differentiation and placental disease risk. Complementary spatial mapping techniques decoded these programs within the placental villous core and extravillous trophoblast cell column architecture while simultaneously revealing niche-establishing transcriptional elements and cell-cell communication. Finally, we computationally imputed genome-wide, multiomic single-cell profiles and spatially characterized the placental chromatin accessibility landscape. This spatially resolved, single-cell multiomic framework of the first trimester human placenta serves as a blueprint for future studies on early placental development and pregnancy.
Collapse
Affiliation(s)
- Johain R Ounadjela
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- New York University Grossman School of Medicine, New York, NY, USA
| | - Ke Zhang
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Koseki J Kobayashi-Kirschvink
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kang Jin
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA
| | - Andrew J C Russell
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Andreas I Lackner
- Maternal-Fetal Immunology Group, Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Claire Callahan
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Francesca Viggiani
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kushal K Dey
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Karthik Jagadeesh
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Theresa Maxian
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Anna-Maria Prandstetter
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Naeem Nadaf
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Qiyu Gong
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ruth Raichur
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Morgan L Zvezdov
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Mingyang Hui
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mattew Simpson
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinwen Liu
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - Martin Knöfler
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Fei Chen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| | - Sandra Haider
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria.
| | - Jian Shu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Geisler HC, Safford HC, Mitchell MJ. Rational Design of Nanomedicine for Placental Disorders: Birthing a New Era in Women's Reproductive Health. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300852. [PMID: 37191231 PMCID: PMC10651803 DOI: 10.1002/smll.202300852] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/16/2023] [Indexed: 05/17/2023]
Abstract
The placenta is a transient organ that forms during pregnancy and acts as a biological barrier, mediating exchange between maternal and fetal circulation. Placental disorders, such as preeclampsia, fetal growth restriction, placenta accreta spectrum, and gestational trophoblastic disease, originate in dysfunctional placental development during pregnancy and can lead to severe complications for both the mother and fetus. Unfortunately, treatment options for these disorders are severely lacking. Challenges in designing therapeutics for use during pregnancy involve selectively delivering payloads to the placenta while protecting the fetus from potential toxic side effects. Nanomedicine holds great promise in overcoming these barriers; the versatile and modular nature of nanocarriers, including prolonged circulation times, intracellular delivery, and organ-specific targeting, can control how therapeutics interact with the placenta. In this review, nanomedicine strategies are discussed to treat and diagnose placental disorders with an emphasis on understanding the unique pathophysiology behind each of these diseases. Finally, prior study of the pathophysiologic mechanisms underlying these placental disorders has revealed novel disease targets. These targets are highlighted here to motivate the rational design of precision nanocarriers to improve therapeutic options for placental disorders.
Collapse
Affiliation(s)
- Hannah C. Geisler
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Hannah C. Safford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19014, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
5
|
Waye AA, Ticiani E, Sharmin Z, Perez Silos V, Perera T, Tu A, Buhimschi IA, Murga-Zamalloa CA, Hu YS, Veiga-Lopez A. Reduced bioenergetics and mitochondrial fragmentation in human primary cytotrophoblasts induced by an EGFR-targeting chemical mixture. CHEMOSPHERE 2024; 364:143301. [PMID: 39251161 PMCID: PMC11540307 DOI: 10.1016/j.chemosphere.2024.143301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Exposures to complex environmental chemical mixtures during pregnancy reach and target the feto-placental unit. This study investigates the influence of environmental chemical mixtures on placental bioenergetics. Recognizing the essential role of the epidermal growth factor receptor (EGFR) in placental development and its role in stimulating glycolysis and mitochondrial respiration in trophoblast cells, we explored the effects of chemicals known to disrupt EGFR signaling on cellular energy production. Human primary cytotrophoblasts (hCTBs) and a first-trimester extravillous trophoblast cell line (HTR-8/SVneo) were exposed to a mixture of EGFR-interfering chemicals, including atrazine, bisphenol S, niclosamide, PCB-126, PCB-153, and trans-nonachlor. An RNA sequencing approach revealed that the mixture altered the transcriptional signature of genes involved in cellular energetics. Next, the impact of the mixture on cellular bioenergetics was evaluated using a combination of mitochondrial and glycolytic stress tests, ATP production, glucose consumption, lactate synthesis, and super-resolution imaging. The chemical mixture did not alter basal oxygen consumption but diminished the maximum respiratory capacity in a dose-dependent manner, indicating a disruption of mitochondrial function. The respiratory capacity and ATP production were increased by EGF, while the Chem-Mix reduced both EGF- and non-EGF-mediated oxygen consumption rate in hCTBs. A similar pattern was observed in the glycolytic medium acidification, with EGF increasing the acidification, and the Chem-Mix blocking EGF-induced glycolytic acidification. Furthermore, direct stochastic optical reconstruction microscopy (dSTORM) imaging demonstrated that the Chem-Mix led to a reduction of the mitochondrial network architecture, with findings supported by a decrease in the abundance of OPA1, a mitochondrial membrane GTPase involved in mitochondrial fusion. In conclusion, we demonstrated that a mixture of EGFR-disrupting chemicals alters mitochondrial remodeling, resulting in disturbed cellular bioenergetics, reducing the capacity of human cytotrophoblast cells to generate energy. Future studies should investigate the mechanism by which mitochondrial dynamics are disrupted and the pathological significance of these findings.
Collapse
Affiliation(s)
- Anita A Waye
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA
| | - Elvis Ticiani
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA
| | - Zinat Sharmin
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA
| | | | - Thilini Perera
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Alex Tu
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Irina A Buhimschi
- Department of Obstetrics & Gynecology, University of Illinois Chicago, Chicago, IL, USA
| | | | - Ying S Hu
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA; The Chicago Center for Health and Environment, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Dong J, Zhang Y, Zhou J, Mao S, Tang J, Li S, Ma Q, Ai L, Wang W, Zhu G, Shao H, Meng Y, Chen H, Chen D. Therapeutic effect of E-Lip-siRNA-sFlt1 on pre-eclampsia: targeted gene silencing and improved pregnancy outcomes. Nanomedicine (Lond) 2024; 19:1615-1627. [PMID: 39016060 PMCID: PMC11389737 DOI: 10.1080/17435889.2024.2368449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
Aim: To evaluate a liposome complex conjugated with anti-epidermal growth factor receptor (EGFR) antibodies for the treatment of pre-eclampsia (PE).Methods: In in vitro experiments, the transfection rate, silencing effect and cytotoxicity were determined. In the in vivo PE model, the siRNA distribution, mean arterial pressure, 24-h urine protein concentration, serum sFlt1 concentration, number of viable fetuses and placental weight were measured.Results: The nanomedicine effectively reduced the expression of sFIt1 and had a strong ability to target placental tissues. It could significantly reduce the symptoms of pre-eclampsia and improve pregnancy outcomes in PE model rats.Conclusion: The constructed nanomedicine can improve pregnancy outcomes in a rat model of pre-eclampsia and provides a new strategy for the treatment of pre-eclampsia.
Collapse
Affiliation(s)
- Jinhua Dong
- Department of Obstetrics & Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- The Women & Children Hospital Affiliated to Jiaxing University, 2468 Middle Ring Eastern Road, Jiaxing City, Zhejiang, 314000, China
| | - Yingying Zhang
- Sunlipo Biotech Research Center for Nanomedicine, Shanghai, 201507, People's Republic of China
| | - Jingsheng Zhou
- Sunlipo Biotech Research Center for Nanomedicine, Shanghai, 201507, People's Republic of China
| | - Shuhui Mao
- Department of Obstetrics & Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- The Women & Children Hospital Affiliated to Jiaxing University, 2468 Middle Ring Eastern Road, Jiaxing City, Zhejiang, 314000, China
| | - Jianfen Tang
- The Women & Children Hospital Affiliated to Jiaxing University, 2468 Middle Ring Eastern Road, Jiaxing City, Zhejiang, 314000, China
| | - Suping Li
- The Women & Children Hospital Affiliated to Jiaxing University, 2468 Middle Ring Eastern Road, Jiaxing City, Zhejiang, 314000, China
| | - Qiang Ma
- The Women & Children Hospital Affiliated to Jiaxing University, 2468 Middle Ring Eastern Road, Jiaxing City, Zhejiang, 314000, China
| | - Ling Ai
- The Women & Children Hospital Affiliated to Jiaxing University, 2468 Middle Ring Eastern Road, Jiaxing City, Zhejiang, 314000, China
| | - Wei Wang
- Sunlipo Biotech Research Center for Nanomedicine, Shanghai, 201507, People's Republic of China
| | - Guanghao Zhu
- Sunlipo Biotech Research Center for Nanomedicine, Shanghai, 201507, People's Republic of China
| | - Huijing Shao
- Sunlipo Biotech Research Center for Nanomedicine, Shanghai, 201507, People's Republic of China
| | - Yingdi Meng
- Sunlipo Biotech Research Center for Nanomedicine, Shanghai, 201507, People's Republic of China
| | - Huaiwen Chen
- Sunlipo Biotech Research Center for Nanomedicine, Shanghai, 201507, People's Republic of China
| | - Danqing Chen
- Department of Obstetrics & Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| |
Collapse
|
7
|
Hoo R, Ruiz-Morales ER, Kelava I, Rawat M, Mazzeo CI, Tuck E, Sancho-Serra C, Chelaghma S, Predeus AV, Murray S, Fernandez-Antoran D, Waller RF, Álvarez-Errico D, Lee MCS, Vento-Tormo R. Acute response to pathogens in the early human placenta at single-cell resolution. Cell Syst 2024; 15:425-444.e9. [PMID: 38703772 DOI: 10.1016/j.cels.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/01/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
The placenta is a selective maternal-fetal barrier that provides nourishment and protection from infections. However, certain pathogens can attach to and even cross the placenta, causing pregnancy complications with potential lifelong impacts on the child's health. Here, we profiled at the single-cell level the placental responses to three pathogens associated with intrauterine complications-Plasmodium falciparum, Listeria monocytogenes, and Toxoplasma gondii. We found that upon exposure to the pathogens, all placental lineages trigger inflammatory responses that may compromise placental function. Additionally, we characterized the responses of fetal macrophages known as Hofbauer cells (HBCs) to each pathogen and propose that they are the probable niche for T. gondii. Finally, we revealed how P. falciparum adapts to the placental microenvironment by modulating protein export into the host erythrocyte and nutrient uptake pathways. Altogether, we have defined the cellular networks and signaling pathways mediating acute placental inflammatory responses that could contribute to pregnancy complications.
Collapse
Affiliation(s)
- Regina Hoo
- Wellcome Sanger Institute, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | | | - Iva Kelava
- Wellcome Sanger Institute, Cambridge, UK
| | - Mukul Rawat
- Wellcome Sanger Institute, Cambridge, UK; Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK
| | | | | | | | - Sara Chelaghma
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - David Fernandez-Antoran
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Marcus C S Lee
- Wellcome Sanger Institute, Cambridge, UK; Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK.
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Yu Y, Xu W, Zhang S, Feng S, Feng F, Dai J, Zhang X, Tian P, Wang S, Zhao Z, Zhao W, Guan L, Qiu Z, Zhang J, Peng H, Lin J, Zhang Q, Chen W, Li H, Zhao Q, Xiao G, Li Z, Zhou S, Peng C, Xu Z, Zhang J, Zhang R, He X, Li H, Li J, Ruan X, Zhao L, He J. Non-invasive prediction of preeclampsia using the maternal plasma cell-free DNA profile and clinical risk factors. Front Med (Lausanne) 2024; 11:1254467. [PMID: 38695016 PMCID: PMC11061442 DOI: 10.3389/fmed.2024.1254467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/26/2024] [Indexed: 05/04/2024] Open
Abstract
Background Preeclampsia (PE) is a pregnancy complication defined by new onset hypertension and proteinuria or other maternal organ damage after 20 weeks of gestation. Although non-invasive prenatal testing (NIPT) has been widely used to detect fetal chromosomal abnormalities during pregnancy, its performance in combination with maternal risk factors to screen for PE has not been extensively validated. Our aim was to develop and validate classifiers that predict early- or late-onset PE using the maternal plasma cell-free DNA (cfDNA) profile and clinical risk factors. Methods We retrospectively collected and analyzed NIPT data of 2,727 pregnant women aged 24-45 years from four hospitals in China, which had previously been used to screen for fetal aneuploidy at 12 + 0 ~ 22 + 6 weeks of gestation. According to the diagnostic criteria for PE and the time of diagnosis (34 weeks of gestation), a total of 143 early-, 580 late-onset PE samples and 2,004 healthy controls were included. The wilcoxon rank sum test was used to identify the cfDNA profile for PE prediction. The Fisher's exact test and Mann-Whitney U-test were used to compare categorical and continuous variables of clinical risk factors between PE samples and healthy controls, respectively. Machine learning methods were performed to develop and validate PE classifiers based on the cfDNA profile and clinical risk factors. Results By using NIPT data to analyze cfDNA coverages in promoter regions, we found the cfDNA profile, which was differential cfDNA coverages in gene promoter regions between PE and healthy controls, could be used to predict early- and late-onset PE. Maternal age, body mass index, parity, past medical histories and method of conception were significantly differential between PE and healthy pregnant women. With a false positive rate of 10%, the classifiers based on the combination of the cfDNA profile and clinical risk factors predicted early- and late-onset PE in four datasets with an average accuracy of 89 and 80% and an average sensitivity of 63 and 48%, respectively. Conclusion Incorporating cfDNA profiles in classifiers might reduce performance variations in PE models based only on clinical risk factors, potentially expanding the application of NIPT in PE screening in the future.
Collapse
Affiliation(s)
- Yan Yu
- Department of Obstetrics, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen, China
| | - Wenqiu Xu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, Shijiazhuang BGI Genomics, Shijiazhuang, Hebei, China
| | - Sufen Zhang
- Department of Clinical Laboratory (Institute of Medical Genetics), Zhuhai Center for Maternal and Child Health Care, Zhuhai, China
| | - Suihua Feng
- Department of Obstetrics and Gynecology, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Feng Feng
- BGI-Tianjin, BGI-Shenzhen, Tianjin, China
| | - Junshang Dai
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, Shijiazhuang BGI Genomics, Shijiazhuang, Hebei, China
| | | | | | - Zhiguang Zhao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, Shijiazhuang BGI Genomics, Shijiazhuang, Hebei, China
| | - Wenrui Zhao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, Shijiazhuang BGI Genomics, Shijiazhuang, Hebei, China
| | - Liping Guan
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, Shijiazhuang BGI Genomics, Shijiazhuang, Hebei, China
| | - Zhixu Qiu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, Shijiazhuang BGI Genomics, Shijiazhuang, Hebei, China
| | - Jianguo Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, Shijiazhuang BGI Genomics, Shijiazhuang, Hebei, China
| | | | - Jiawei Lin
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Qun Zhang
- Department of Obstetrics and Gynecology, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Weiping Chen
- Department of Obstetrics and Gynecology, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Huahua Li
- Department of Obstetrics and Gynecology, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Qiang Zhao
- Department of Obstetrics and Gynecology, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Gefei Xiao
- Department of Clinical Laboratory (Institute of Medical Genetics), Zhuhai Center for Maternal and Child Health Care, Zhuhai, China
| | - Zhongzhe Li
- Department of Prevention and Health Care, Zhuhai Center for Maternal and Child Health Care, Zhuhai, China
| | - Shihao Zhou
- Department of Genetics and Eugenics, Changsha Hospital for Maternal and Child Health Care, Changsha, China
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Can Peng
- Department of Genetics and Eugenics, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Zhen Xu
- Department of Genetics and Eugenics, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Jingjing Zhang
- Hospital Office, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Rui Zhang
- Department of Medical Genetics and Prenatal Diagnosis, Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| | - Xiaohong He
- Department of Medical Genetics and Prenatal Diagnosis, Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| | - Hua Li
- Department of Clinical Laboratory (Institute of Medical Genetics), Zhuhai Center for Maternal and Child Health Care, Zhuhai, China
| | - Jia Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, Shijiazhuang BGI Genomics, Shijiazhuang, Hebei, China
| | - Xiaohong Ruan
- Department of Obstetrics and Gynecology, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Lijian Zhao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, Shijiazhuang BGI Genomics, Shijiazhuang, Hebei, China
- Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jun He
- Department of Genetics and Eugenics, Changsha Hospital for Maternal and Child Health Care, Changsha, China
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| |
Collapse
|
9
|
Lin Z, Wu S, Jiang Y, Chen Z, Huang X, Wen Z, Yuan Y. Unraveling the molecular mechanisms driving enhanced invasion capability of extravillous trophoblast cells: a comprehensive review. J Assist Reprod Genet 2024; 41:591-608. [PMID: 38315418 PMCID: PMC10957806 DOI: 10.1007/s10815-024-03036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Precise extravillous trophoblast (EVT) invasion is crucial for successful placentation and pregnancy. This review focuses on elucidating the mechanisms that promote heightened EVT invasion. We comprehensively summarize the pivotal roles of hormones, angiogenesis, hypoxia, stress, the extracellular matrix microenvironment, epithelial-to-mesenchymal transition (EMT), immunity, inflammation, programmed cell death, epigenetic modifications, and microbiota in facilitating EVT invasion. The molecular mechanisms underlying enhanced EVT invasion may provide valuable insights into potential pathogenic mechanisms associated with diseases characterized by excessive invasion, such as the placenta accreta spectrum (PAS), thereby offering novel perspectives for managing pregnancy complications related to deficient EVT invasion.
Collapse
Affiliation(s)
- Zihan Lin
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Shuang Wu
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Yinghui Jiang
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Ziqi Chen
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Xiaoye Huang
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Zhuofeng Wen
- The Sixth Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Yi Yuan
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Waye AA, Ticiani E, Veiga-Lopez A. Chemical mixture that targets the epidermal growth factor pathway impairs human trophoblast cell functions. Toxicol Appl Pharmacol 2024; 483:116804. [PMID: 38185387 PMCID: PMC11212468 DOI: 10.1016/j.taap.2024.116804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Pregnant women are exposed to complex chemical mixtures, many of which reach the placenta. Some of these chemicals interfere with epidermal growth factor receptor (EGFR) activation, a receptor tyrosine kinase that modulates several placenta cell functions. We hypothesized that a mixture of chemicals (Chem-Mix) known to reduce EGFR activation (polychlorinated biphenyl (PCB)-126, PCB-153, atrazine, trans-nonachlor, niclosamide, and bisphenol S) would interfere with EGFR-mediated trophoblast cell functions. To test this, we determined the chemicals' EGFR binding ability, EGFR and downstream effectors activation, and trophoblast functions (proliferation, invasion, and endovascular differentiation) known to be regulated by EGFR in extravillous trophoblasts (EVTs). The Chem-Mix competed with EGF for EGFR binding, however only PCB-153, niclosamide, trans-nonachlor, and BPS competed for binding as single chemicals. The effects of the Chem-Mix on EGFR phosphorylation were tested by exposing the placental EVT cell line, HTR-8/SVneo to control (0.1% DMSO), Chem-Mix (1, 10, or 100 ng/ml), EGF (30 ng/ml), or Chem-Mix + EGF. The Chem-Mix - but not the individual chemicals - reduced EGF-mediated EGFR phosphorylation in a dose dependent manner, while no effect was observed in its downstream effectors (AKT and STAT3). None of the individual chemicals affected EVT cell invasion, but the Chem-Mix reduced EVT cell invasion independent of EGF. In support of previous studies that have explored chemicals targeting a specific pathway (estrogen/androgen receptor), current findings indicate that exposure to a chemical mixture that targets the EGFR pathway can result in a greater impact compared to individual chemicals in the context of placental cell functions.
Collapse
Affiliation(s)
- Anita A Waye
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Elvis Ticiani
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA; The Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Markantes GK, Panagodimou E, Koika V, Mamali I, Kaponis A, Adonakis G, Georgopoulos NA. Placental mRNA Expression of Neurokinin B Is Increased in PCOS Pregnancies with Female Offspring. Biomedicines 2024; 12:334. [PMID: 38397936 PMCID: PMC10886712 DOI: 10.3390/biomedicines12020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Current research suggests that polycystic ovary syndrome (PCOS) might originate in utero and implicates the placenta in its pathogenesis. Kisspeptin (KISS1) and neurokinin B (NKB) are produced by the placenta in high amounts, and they have been implicated in several pregnancy complications associated with placental dysfunction. However, their placental expression has not been studied in PCOS. We isolated mRNA after delivery from the placentae of 31 PCOS and 37 control women with term, uncomplicated, singleton pregnancies. The expression of KISS1, NKB, and neurokinin receptors 1, 2, and 3 was analyzed with real-time polymerase chain reaction, using β-actin as the reference gene. Maternal serum and umbilical cord levels of total testosterone, sex hormone-binding globulin (SHBG), free androgen index (FAI), androstenedione, dehydroepiandrosterone sulfate (DHEAS), Anti-Mullerian hormone (AMH), and estradiol were also assessed. NKB placental mRNA expression was higher in PCOS women versus controls in pregnancies with female offspring. NKB expression depended on fetal gender, being higher in pregnancies with male fetuses, regardless of PCOS. NKB was positively correlated with umbilical cord FAI and AMH, and KISS1 was positively correlated with cord testosterone and FAI; there was also a strong positive correlation between NKB and KISS1 expression. Women with PCOS had higher serum AMH and FAI and lower SHBG than controls. Our findings indicate that NKB might be involved in the PCOS-related placental dysfunction and warrant further investigation. Studies assessing the placental expression of NKB should take fetal gender into consideration.
Collapse
Affiliation(s)
- Georgios K Markantes
- Division of Endocrinology, Department of Internal Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Evangelia Panagodimou
- Department of Obstetrics and Gynecology, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Vasiliki Koika
- Division of Endocrinology, Department of Internal Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Irene Mamali
- Division of Endocrinology, Department of Internal Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Apostolos Kaponis
- Department of Obstetrics and Gynecology, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - George Adonakis
- Department of Obstetrics and Gynecology, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Neoklis A Georgopoulos
- Division of Endocrinology, Department of Internal Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece
| |
Collapse
|
12
|
Wang B, Li MD, Xu HY, Zhang XC, Bu LG, Li TY, Sun Y, Ni H. Epidermal growth factor: Expression in goat endometrial epithelia during early pregnancy and regulation by interferon tau and FOXO1. Anim Reprod Sci 2024; 261:107406. [PMID: 38141547 DOI: 10.1016/j.anireprosci.2023.107406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
In ruminants, establishment and maintenance of pregnancy depends upon a well-coordinated interaction between the conceptus and the maternal endometrium. Epidermal growth factor (EGF) is important for embryo implantation and pregnancy establishment. However, the regulatory mechanisms of EGF expression remain unclear. FOXO1, a member of the Forkhead box O (FOXO) subfamily of transcription factors, is currently accepted as a novel endometrial receptivity marker for humans and mice owing to its timely and specific expression at the window of implantation. In this study, we examined the spatiotemporal expression profile of EGF in goat uterus during early pregnancy (Day 0 to Day 50 of pregnancy) and verified that EGF expression was regulated by FOXO1 and interferon tau (IFNT). Our results showed that EGF was highly expressed in the luminal epithelium (LE) and the glandular epithelium (GE) during conceptus adhesion (Day 16 to Day 25 of pregnancy). After implantation, EGF protein signals were continuously detected in the endometrial epithelia and appeared in the conceptus trophectoderm. Furthermore, EGF expression could be up-regulated by IFNT in goat uterus and primary endometrial epithelium cells (EECs). The luciferase assay results showed that FOXO1 could promote EGF transcription by binding to its promoter. And FOXO1 positively regulates EGF expression in goat EECs. These findings contribute to better understanding the role and regulation mechanisms of EGF during ruminant early pregnancy.
Collapse
Affiliation(s)
- Bo Wang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Meng-Die Li
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hai-Yue Xu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin-Cheng Zhang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Li-Ge Bu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Ting-Yue Li
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Ya Sun
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hua Ni
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
13
|
Zhang X, Sun L. Inhibiting HNF4A suppresses inflammation whilst promoting trophoblast invasion and migration: A promising target for the treatment of preeclampsia. Chem Biol Interact 2023; 386:110752. [PMID: 37806381 DOI: 10.1016/j.cbi.2023.110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
Preeclampsia (PE) is a complex disease of pregnancy, and an important cause of this disease is insufficient trophoblast invasion and migration. However, the underlying mechanism of PE remains largely unknown. Here, transcriptome sequencing analysis found the high expression of hepatocyte nuclear factor 4 alpha (HNF4A) in PE placentas. Meanwhile, we found that HNF4A expression was up-regulated in the placentas of PE patients. Thus, we assumed that HNF4A might be involved in PE progression. To validate our hypothesis, l-arginine methyl ester (l-NAME) or lipopolysaccharide (LPS)-treated rats were used to mimic the pathological status of PE in vivo. Consistently, HTR8/SVneo cells were treated with hypoxia/reoxygenation (H/R) or LPS to simulate PE progression in vitro. The results observed an increase in elevated urine protein levels, systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP), which indicated that the PE-like rat model was successfully established. Meanwhile, the expression of pro-inflammatory cytokines interleukin (IL)-6 and IL-1β was increased in PE placentas. HTR8/SVneo cells were used to further explore the underlying mechanism of PE in vitro. H/R conditions up-regulated the acetylation level of HNF4A. Further analysis showed that HNF4A overexpression inhibited trophoblast invasion and migration, while HNF4A knockdown promoted the progression. Additionally, inhibiting HNF4A was found to reduce the levels of IL-6 and IL-1β secretion in HTR8/SVneo cells following H/R or LPS exposure. Conclusively, these findings suggest that inhibiting HNF4A suppresses inflammation whilst promoting trophoblast invasion and migration in PE, providing a promising target for the treatment of PE.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Lei Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
14
|
Milyutina YP, Arutjunyan AV, Korenevsky AV, Selkov SA, Kogan IY. Neurotrophins: are they involved in immune tolerance in pregnancy? Am J Reprod Immunol 2023; 89:e13694. [PMID: 36792972 DOI: 10.1111/aji.13694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/06/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
In this review, an attempt was made to substantiate the possibility for neurotrophins to be involved in the development of immune tolerance based on data accumulated on neurotrophin content and receptor expression in the trophoblast and immune cells, in particular, in natural killer cells. Numerous research results are reviewed to show that the expression and localization of neurotrophins along with their high-affinity tyrosine kinase receptors and low-affinity p75NTR receptor in the mother-placenta-fetus system indicate the important role of neurotrophins as binding molecules in regulating the crosstalk between the nervous, endocrine, and immune systems in pregnancy. An imbalance between these systems can occur with tumor growth and pathological processes observed in pregnancy complications and fetal development anomalies.
Collapse
Affiliation(s)
- Yulia P Milyutina
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
- St. Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - Alexander V Arutjunyan
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| | - Andrey V Korenevsky
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| | - Sergey A Selkov
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| | - Igor Yu Kogan
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| |
Collapse
|
15
|
Yoshie M, Ohishi K, Ishikawa G, Tsuru A, Kusama K, Azumi M, Tamura K. Small GTP-binding protein Rap1 mediates EGF and HB-EGF signaling and modulates EGF receptor expression in HTR-8/SVneo extravillous trophoblast cells. Reprod Med Biol 2023; 22:e12537. [PMID: 37614815 PMCID: PMC10442520 DOI: 10.1002/rmb2.12537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
Purpose Extravillous trophoblasts (EVTs) invade the endometrium to establish a fetomaternal interaction during pregnancy. Epidermal growth factor (EGF) and heparin-binding EGF-like growth factor (HB-EGF) stimulate EVT invasion by binding to the EGF receptor (EGFR). We examined the role of the small GTP-binding protein Rap1 in EGF- and HB-EGF-stimulated EVT invasion. Methods Expression of Rap1 in the first-trimester placenta was examined by immunohistochemistry. Effect of EGF or HB-EGF on Rap1 activation (GTP-Rap1) and Rap1 knockdown on invasion was assessed in EVT cell line (HTR-8/SVneo). In addition, effect of Rap1 knockdown and Rap1GAP (a Rap1 inactivator) overexpression on the activation of EGF signaling and EGFR expression were examined. Results Rap1 was expressed by EVTs, villous cytotrophoblasts, and syncytiotrophoblasts in the placenta. EGF and HB-EGF activated Rap1 and promoted invasion of HTR-8/SVneo, and these effects were inhibited by Rap1 knockdown. The EGF- and HB-EGF-induced phosphorylation of AKT, ERK1/2, p38MAPK, and Src was inhibited by Rap1 knockdown. Furthermore, the knockdown of Rap1 reduced the EGFR protein level. Overexpression of Rap1GAP repressed EGF- and HB-EGF-induced Rap1 activation and reduced EGFR expression. Conclusion Rap1 may function as a mediator of EGF and HB-EGF signaling pathways and can modulate EGFR expression in EVTs during placental development.
Collapse
Affiliation(s)
- Mikihiro Yoshie
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Kensuke Ohishi
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Gen Ishikawa
- Department of ObstetricsMiyagi Children's HospitalSendaiJapan
| | - Atsuya Tsuru
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Kazuya Kusama
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Mana Azumi
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Kazuhiro Tamura
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesTokyoJapan
| |
Collapse
|
16
|
Siriwardena D, Boroviak TE. Evolutionary divergence of embryo implantation in primates. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210256. [PMID: 36252209 DOI: 10.1098/rstb.2021.0256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Implantation of the conceptus into the uterus is absolutely essential for successful embryo development. In humans, our understanding of this process has remained rudimentary owing to the inaccessibility of early implantation stages. Non-human primates recapitulate many aspects of human embryo development and provide crucial insights into trophoblast development, uterine receptivity and embryo invasion. Moreover, primate species exhibit a variety of implantation strategies and differ in embryo invasion depths. This review examines conservation and divergence of the key processes required for embryo implantation in different primates and in comparison with the canonical rodent model. We discuss trophectoderm compartmentalization, endometrial remodelling and embryo adhesion and invasion. Finally, we propose that studying the mechanism controlling invasion depth between different primate species may provide new insights and treatment strategies for placentation disorders in humans. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Dylan Siriwardena
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Thorsten E Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| |
Collapse
|
17
|
Zhang Y, An C, Yu Y, Lin J, Jin L, Li C, Tan T, Yu Y, Fan Y. Epidermal growth factor induces a trophectoderm lineage transcriptome resembling that of human embryos during reconstruction of blastoids from extended pluripotent stem cells. Cell Prolif 2022; 55:e13317. [PMID: 35880490 PMCID: PMC9628219 DOI: 10.1111/cpr.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES This study aims to optimize the human extended pluripotent stem cell (EPSC) to trophectoderm (TE)-like cell induction with addition of EGF and improve the quality of the reconstructing blastoids. MATERIALS AND METHODS TE-like cells were differentiated from human EPSCs. RNA-seq data analysis was performed to compare with TE-like cells from multiple human pluripotent stem cells (hPSCs) and embryos. A small-scale compound selection was performed for optimizing the TE-like cell induction and the efficiency was characterized using TE-lineage markers expression by immunofluorescence stanning. Blastoids were generated by using the optimized TE-like cells and the undifferentiated human EPSCs through three-dimensional culture system. Single-cell RNA sequencing was performed to investigate the lineage segregation of the optimized blastoids to human blastocysts. RESULTS TE-like cells derived from human EPSCs exhibited similar transcriptome with TE cells from embryos. Additionally, TE-like cells from multiple naive hPSCs exhibited heterogeneous gene expression patterns and signalling pathways because of the incomplete silencing of naive-specific genes and loss of imprinting. Furthermore, with the addition of EGF, TE-like cells derived from human EPSCs enhanced the TE lineage-related signalling pathways and exhibited more similar transcriptome to human embryos. Through resembling with undifferentiated human EPSCs, we elevated the quality and efficiency of reconstructing blastoids and separated more lineage cells with precise temporal and spatial expression, especially the PE lineage. CONCLUSION Addition of EGF enhanced TE lineage differentiation and human blastoids reconstruction. The optimized blastoids could be used as a blastocyst model for simulating early embryonic development.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Chenrui An
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Yanhong Yu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jiajing Lin
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Long Jin
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Chaohui Li
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Tao Tan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
| | - Yong Fan
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
18
|
Szydełko-Gorzkowicz M, Poniedziałek-Czajkowska E, Mierzyński R, Sotowski M, Leszczyńska-Gorzelak B. The Role of Kisspeptin in the Pathogenesis of Pregnancy Complications: A Narrative Review. Int J Mol Sci 2022; 23:ijms23126611. [PMID: 35743054 PMCID: PMC9223875 DOI: 10.3390/ijms23126611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/15/2022] Open
Abstract
Kisspeptins are the family of neuropeptide products of the KISS-1 gene that exert the biological action by binding with the G-protein coupled receptor 54 (GPR54), also known as the KISS-1 receptor. The kisspeptin level dramatically increases during pregnancy, and the placenta is supposed to be its primary source. The role of kisspeptin has already been widely studied in hypogonadotropic hypogonadism, fertility, puberty disorders, and insulin resistance-related conditions, including type 2 diabetes mellitus, polycystic ovary syndrome, and obesity. Gestational diabetes mellitus (GDM), preeclampsia (PE), preterm birth, fetal growth restriction (FGR), or spontaneous abortion affected 2 to 20% of pregnancies worldwide. Their occurrence is associated with numerous short and long-term consequences for mothers and newborns; hence, novel, non-invasive predictors of their development are intensively investigated. The study aims to present a comprehensive review emphasizing the role of kisspeptin in the most common pregnancy-related disorders and neonatal outcomes. The decreased level of kisspeptin is observed in women with GDM, FGR, and a high risk of spontaneous abortion. Nevertheless, there are still many inconsistencies in kisspeptin concentration in pregnancies with preterm birth or PE. Further research is needed to determine the usefulness of kisspeptin as an early marker of gestational and neonatal complications.
Collapse
|
19
|
Gao X, Wang J, Shi J, Sun Q, Jia N, Li H. The Efficacy Mechanism of Epigallocatechin Gallate against Pre-Eclampsia based on Network Pharmacology and Molecular Docking. Reprod Sci 2022; 29:1859-1873. [PMID: 35211881 DOI: 10.1007/s43032-022-00894-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/16/2022] [Indexed: 12/19/2022]
Abstract
Pre-eclampsia (PE), a pregnancy complication, affects 3-5% of all pregnancies worldwide and is the main cause of maternal and perinatal morbidity. However, there is no drug which can clearly slow this disease progression. Epigallocatechin gallate (EGCG), a natural compound extracted from green tea, has been found to enhance the treatment efficacy of oral nifedipine against pregnancy-induced severe PE. This study aims to clarify the potential targets and pharmacological mechanisms of EGCG in treatment of PE. We used Traditional Chinese Medicine Systems Pharmacology database and Gene Cards database to obtain 179 putative target proteins of EGCG, 550 PE-related hub genes and 39 intersecting targets between EGCG and PE. By using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses, we got the gene entries and enrichment pathways closely related to the intersecting targets. The top 10 enrichment pathways were pathway in cancer, proteoglycans in cancer, HIF-1 signaling pathway, AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, bladder cancer, hepatitis B, IL-17 signaling pathway, toxoplasmosis, PI3K-Akt signaling pathway. Furthermore, compound-target-pathway (CTP) and protein-protein interaction (PPI) network analysis were employed to explore the interaction of the top twelve targets for EGCG in treating PE. Molecular docking analysis showed combinations between these targets and EGCG, and the interaction between EGCG and the targets IL-6 and EGFR was confirmed by using molecular dynamic simulation. In conclusion, these findings hint the underlying mechanism of EGCG in the treatment of PE and point out directions in further studies on PE.
Collapse
Affiliation(s)
- Xinru Gao
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.,Northwest Women's and Children's Hospital, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jiahao Wang
- Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jiamiao Shi
- Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Qinru Sun
- Institute of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Ning Jia
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Hui Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
20
|
Fang L, Yan Y, Gao Y, Wu Z, Wang Z, Yang S, Cheng JC, Sun YP. TGF-β1 inhibits human trophoblast cell invasion by upregulating kisspeptin expression through ERK1/2 but not SMAD signaling pathway. Reprod Biol Endocrinol 2022; 20:22. [PMID: 35101033 PMCID: PMC8802482 DOI: 10.1186/s12958-022-00902-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/22/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Tightly regulation of extravillous cytotrophoblast (EVT) cell invasion is critical for the placentation and establishment of a successful pregnancy. Insufficient EVT cell invasion leads to the development of preeclampsia (PE) which is a leading cause of maternal and perinatal mortality and morbidity. Transforming growth factor-beta1 (TGF-β1) and kisspeptin are expressed in the human placenta and have been shown to inhibit EVT cell invasion. Kisspeptin is a downstream target of TGF-β1 in human breast cancer cells. However, whether kisspeptin is regulated by TGF-β1 and mediates TGF-β1-suppressed human EVT cell invasion remains unclear. METHODS The effect of TGF-β1 on kisspeptin expression and the underlying mechanisms were explored by a series of in vitro experiments in a human EVT cell line, HTR-8/SVneo, and primary cultures of human EVT cells. Serum levels of TGF-β1 and kisspeptin in patients with or without PE were measured by ELISA. RESULTS TGF-β1 upregulates kisspeptin expression in HTR-8/SVneo cells and primary cultures of human EVT cells. Using pharmacological inhibitor and siRNA, we demonstrate that the stimulatory effect of TGF-β1 on kisspeptin expression is mediated via the ALK5 receptor. Treatment with TGF-β1 activates SMAD2/3 canonical pathways as well as ERK1/2 and PI3K/AKT non-canonical pathways. However, only inhibition of ERK1/2 activation attenuates the stimulatory effect of TGF-β1 on kisspeptin expression. In addition, siRNA-mediated knockdown of kisspeptin attenuated TGF-β1-suppressed EVT cell invasion. Moreover, we report that serum levels of TGF-β1 and kisspeptin are significantly upregulated in patients with PE. CONCLUSIONS By illustrating the potential physiological role of TGF-β1 in the regulation of kisspeptin expression, our results may serve to improve current strategies used to treat placental diseases.
Collapse
Affiliation(s)
- Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan, China
| | - Yang Yan
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan, China
| | - Yibo Gao
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan, China
| | - Ze Wu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan, China
| | - Zhen Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan, China
| | - Sizhu Yang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan, China
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan, China.
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan, China.
| |
Collapse
|
21
|
Santos BR, dos Anjos Cordeiro JM, Santos LC, Barbosa EM, Mendonça LD, Santos EO, de Macedo IO, de Lavor MSL, Szawka RE, Serakides R, Silva JF. Kisspeptin treatment improves fetal-placental development and blocks placental oxidative damage caused by maternal hypothyroidism in an experimental rat model. Front Endocrinol (Lausanne) 2022; 13:908240. [PMID: 35966095 PMCID: PMC9365946 DOI: 10.3389/fendo.2022.908240] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
Maternal hypothyroidism is associated with fetal growth restriction, placental dysfunction, and reduced kisspeptin/Kiss1R at the maternal-fetal interface. Kisspeptin affects trophoblastic migration and has antioxidant and immunomodulatory activities. This study aimed to evaluate the therapeutic potential of kisspeptin in the fetal-placental dysfunction of hypothyroid Wistar rats. Hypothyroidism was induced by daily administration of propylthiouracil. Kisspeptin-10 (Kp-10) treatment was performed every other day or daily beginning on day 8 of gestation. Feto-placental development, placental histomorphometry, and expression levels of growth factors (VEGF, PLGF, IGF1, IGF2, and GLUT1), hormonal (Dio2) and inflammatory mediators (TNFα, IL10, and IL6), markers of hypoxia (HIF1α) and oxidative damage (8-OHdG), antioxidant enzymes (SOD1, Cat, and GPx1), and endoplasmic reticulum stress mediators (ATF4, GRP78, and CHOP) were evaluated on day 18 of gestation. Daily treatment with Kp-10 increased free T3 and T4 levels and improved fetal weight. Both treatments reestablished the glycogen cell population in the junctional zone. Daily treatment with Kp-10 increased the gene expression levels of Plgf, Igf1, and Glut1 in the placenta of hypothyroid animals, in addition to blocking the increase in 8-OHdG and increasing protein and/or mRNA expression levels of SOD1, Cat, and GPx1. Daily treatment with Kp-10 did not alter the higher protein expression levels of VEGF, HIF1α, IL10, GRP78, and CHOP caused by hypothyroidism in the junctional zone compared to control, nor the lower expression of Dio2 caused by hypothyroidism. However, in the labyrinth zone, this treatment restored the expression of VEGF and IL10 and reduced the GRP78 and CHOP immunostaining. These findings demonstrate that daily treatment with Kp-10 improves fetal development and placental morphology in hypothyroid rats, blocks placental oxidative damage, and increases the expression of growth factors and antioxidant enzymes in the placenta.
Collapse
Affiliation(s)
- Bianca Reis Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Jeane Martinha dos Anjos Cordeiro
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Luciano Cardoso Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Erikles Macedo Barbosa
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Letícia Dias Mendonça
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Emilly Oliveira Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Isabella Oliveira de Macedo
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Mário Sergio Lima de Lavor
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Raphael Escorsim Szawka
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rogeria Serakides
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinaria, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
- *Correspondence: Juneo Freitas Silva,
| |
Collapse
|