1
|
Vujovic F, Farahani RM. Thyroid Hormones and Brain Development: A Focus on the Role of Mitochondria as Regulators of Developmental Time. Cells 2025; 14:150. [PMID: 39936942 PMCID: PMC11816491 DOI: 10.3390/cells14030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 02/13/2025] Open
Abstract
Thyroid hormones (THs) regulate metabolism in a homeostatic state in an adult organism. During the prenatal period, prior to the establishment of homeostatic mechanisms, THs assume additional functions as key regulators of brain development. Here, we focus on reviewing the role of THs in orchestrating cellular dynamics in a developing brain. The evidence from the reviewed scientific literature suggests that the developmental roles of the hormones are predominantly mediated by non-genomic mitochondrial effects of THs due to attenuation of genomic effects of THs that antagonise non-genomic impacts. We argue that the key function of TH signalling during brain development is to orchestrate the tempo of self-organisation of neural progenitor cells. Further, evidence is provided that major neurodevelopmental consequences of hypothyroidism stem from an altered tempo of cellular self-organisation.
Collapse
Affiliation(s)
- Filip Vujovic
- IDR/WSLHD Research and Education Network, Sydney, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Ramin M Farahani
- IDR/WSLHD Research and Education Network, Sydney, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Farahani RM. Neural differentiation in perspective: mitochondria as early programmers. Front Neurosci 2025; 18:1529855. [PMID: 39844856 PMCID: PMC11751005 DOI: 10.3389/fnins.2024.1529855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Neural differentiation during development of the nervous system has been extensively studied for decades. These efforts have culminated in the generation of a detailed map of developmental events that appear to be associated with emergence of committed cells in the nervous system. In this review the landscape of neural differentiation is revisited by focusing on abiotic signals that play a role in induction of neural differentiation. Evidence is presented regarding a chimeric landscape whereby abiotic signals generated by mitochondria orchestrate early events during neural differentiation. This early stage, characterised by mitochondrial hyperactivity, in turn triggers a late stage of differentiation by reprogramming the activity of biotic signals.
Collapse
Affiliation(s)
- Ramin M. Farahani
- IDR/Research and Education Network, Westmead, NSW, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Schneider M, Allman A, Maillard I. Regulation of immune cell development, differentiation and function by stromal Notch ligands. Curr Opin Cell Biol 2023; 85:102256. [PMID: 37806295 PMCID: PMC10873072 DOI: 10.1016/j.ceb.2023.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/23/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023]
Abstract
In multicellular organisms, cell-to-cell communication is critical for the regulation of tissue organization. Notch signaling relies on direct interactions between Notch receptors on signal-receiving cells and Notch ligands on adjacent cells. Notch evolved to mediate local cellular interactions that are responsive to spatial cues via dosage-sensitive short-lived signals. Immune cells utilize these unique properties of Notch signaling to direct their development, differentiation, and function. In this review, we explore how immune cells interact through Notch receptors with stromal cells in specialized niches of lymphohematopoietic organs that express Notch-activating ligands. We emphasize factors that control these interactions and focus on how Notch signals communicate spatial, quantitative, and temporal information to program the function of signal-receiving cells in the immune system.
Collapse
Affiliation(s)
- Michael Schneider
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anneka Allman
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Vujovic F, Shepherd CE, Witting PK, Hunter N, Farahani RM. Redox-Mediated Rewiring of Signalling Pathways: The Role of a Cellular Clock in Brain Health and Disease. Antioxidants (Basel) 2023; 12:1873. [PMID: 37891951 PMCID: PMC10604469 DOI: 10.3390/antiox12101873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Metazoan signalling pathways can be rewired to dampen or amplify the rate of events, such as those that occur in development and aging. Given that a linear network topology restricts the capacity to rewire signalling pathways, such scalability of the pace of biological events suggests the existence of programmable non-linear elements in the underlying signalling pathways. Here, we review the network topology of key signalling pathways with a focus on redox-sensitive proteins, including PTEN and Ras GTPase, that reshape the connectivity profile of signalling pathways in response to an altered redox state. While this network-level impact of redox is achieved by the modulation of individual redox-sensitive proteins, it is the population by these proteins of critical nodes in a network topology of signal transduction pathways that amplifies the impact of redox-mediated reprogramming. We propose that redox-mediated rewiring is essential to regulate the rate of transmission of biological signals, giving rise to a programmable cellular clock that orchestrates the pace of biological phenomena such as development and aging. We further review the evidence that an aberrant redox-mediated modulation of output of the cellular clock contributes to the emergence of pathological conditions affecting the human brain.
Collapse
Affiliation(s)
- Filip Vujovic
- IDR/Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; (F.V.); (N.H.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Paul K. Witting
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Neil Hunter
- IDR/Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; (F.V.); (N.H.)
| | - Ramin M. Farahani
- IDR/Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; (F.V.); (N.H.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Bénit P, Goncalves J, El Khoury R, Rak M, Favier J, Gimenez-Roqueplo AP, Rustin P. Succinate Dehydrogenase, Succinate, and Superoxides: A Genetic, Epigenetic, Metabolic, Environmental Explosive Crossroad. Biomedicines 2022; 10:1788. [PMID: 35892689 PMCID: PMC9394281 DOI: 10.3390/biomedicines10081788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Research focused on succinate dehydrogenase (SDH) and its substrate, succinate, culminated in the 1950s accompanying the rapid development of research dedicated to bioenergetics and intermediary metabolism. This allowed researchers to uncover the implication of SDH in both the mitochondrial respiratory chain and the Krebs cycle. Nowadays, this theme is experiencing a real revival following the discovery of the role of SDH and succinate in a subset of tumors and cancers in humans. The aim of this review is to enlighten the many questions yet unanswered, ranging from fundamental to clinically oriented aspects, up to the danger of the current use of SDH as a target for a subclass of pesticides.
Collapse
Affiliation(s)
- Paule Bénit
- NeuroDiderot, Inserm, Université Paris Cité, F-75019 Paris, France; (P.B.); (M.R.)
| | - Judith Goncalves
- Paris Centre de Recherche Cardiovasculaire (PARCC), Inserm, Université Paris Cité, F-75015 Paris, France; (J.G.); (J.F.)
| | - Riyad El Khoury
- Department of Pathology and Laboratory Medicine, Neuromuscular Diagnostic Laboratory, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
| | - Malgorzata Rak
- NeuroDiderot, Inserm, Université Paris Cité, F-75019 Paris, France; (P.B.); (M.R.)
| | - Judith Favier
- Paris Centre de Recherche Cardiovasculaire (PARCC), Inserm, Université Paris Cité, F-75015 Paris, France; (J.G.); (J.F.)
| | - Anne-Paule Gimenez-Roqueplo
- Département de Médecine Génomique des Tumeurs et des Cancers, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, F-75015 Paris, France;
| | - Pierre Rustin
- NeuroDiderot, Inserm, Université Paris Cité, F-75019 Paris, France; (P.B.); (M.R.)
| |
Collapse
|