1
|
Wang Y, Yang Q, Lu Y, Jiang L, Zhang R, Jiang S, Xu Y, Xu S, Geng Z. Network pharmacology and experimental verification to explore the molecular mechanisms of Astragaloside IV against diabetic encephalopathy. Biochem Biophys Res Commun 2025; 763:151778. [PMID: 40239538 DOI: 10.1016/j.bbrc.2025.151778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
PURPOSE Diabetic encephalopathy (DE) is a neurological complication caused by diabetes mellitus, and its underlying mechanism has not been fully clarified. Astragaloside IV (AS-IV) has been demonstrated to have treatment effects on multiple neurologic diseases. The objective of this research is to explore the role and underlying mechanism of AS-IV in the treatment of DE, utilizing the methods of network pharmacology and experimental validation. METHODS Multiple public databases were used to search for the targets of AS-IV. Gene Expression Omnibus (GEO) dataset (GSE16135) was analyzed to identify differentially expressed genes (DEGs) in DE. The Venn diagram was employed to determine the intersecting genes. These genes were considered potential therapeutic targets of AS-IV in DE and were annotated using bioinformatics techniques. Subsequently, a protein-protein interaction (PPI) network was constructed utilizing Cytoscape software to identify the core targets of action. Additionally, molecular docking was conducted to validate the binding affinity of AS-IV to the main targets. Finally, we validated the predictive outcomes of network pharmacology in a DE rat model induced by intraperitoneal injection of streptozotocin (STZ). RESULTS Through the application of network pharmacology and bioinformatics analyses, we discovered the top two hub targets (EGFR and JAK2). Subsequent molecular docking analysis showed that AS-IV was precisely located within the binding sites of both EGFR and JAK2, with binding energies of -8.18 kJ/mol and -10.94 kJ/mol, respectively. Behavioral experiments demonstrated that the treated rats showed improvements in cognitive impairment. Following AS-IV treatment, there was a significant reduction in amyloid-β (Aβ) plaques deposition and neurofibrillary tangles in the hippocampal tissue of DE rats. Furthermore, TUNEL staining and Western blot analyses demonstrated that AS-IV suppressed neuronal apoptosis and inhibited the activation of the EGFR/JAK2/STAT3 signaling pathway. CONCLUSION These results demonstrated that the AS-IV has the potential to improve cognitive impairment in DE rats by mitigating neuronal apoptosis through the EGFR/JAK2/STAT3 signaling pathway, which provides important implications for the treatment of DE.
Collapse
Affiliation(s)
- Yong Wang
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China; Department of Radiology and Nuclear Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Qianqian Yang
- Clinical Pharmacy Department, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yanchao Lu
- Department of Radiology and Nuclear Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Lei Jiang
- Department of Radiology and Nuclear Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, 050000, Hebei, China
| | - Rui Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, 050000, Hebei, China
| | - Siyu Jiang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yuxuan Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, 050000, Hebei, China.
| | - Zuojun Geng
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
2
|
Huang X, Wang J, Zhao X, Sooranna SR, Liao B, Jian C, Shang J, Li X. Molecular mechanisms of MAPK9, BAX, and TFEB proteins: Genetic correlations between oxidative stress and autophagy pathways in Alzheimer's disease. Int J Biol Macromol 2025; 309:143196. [PMID: 40246113 DOI: 10.1016/j.ijbiomac.2025.143196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/03/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease whose pathological mechanisms involve dysregulation of oxidative stress and autophagy pathways. MAPK9, BAX and TFEB were used as key proteins. Wayne analysis was used to identify genes associated with autophagy and oxidative stress, and protein-protein interaction (PPI) networks were constructed to study the associations between key genes. The key genes were mined by machine learning algorithm and prognostic marker models were constructed. The immune characteristics of AD were investigated by gene collection enrichment analysis (GSEA) and immunoresponse pathway enrichment analysis, and the clinical application potential was evaluated by drug prediction and molecular docking analysis. Finally, Mendelian randomization (MR) analysis was used to verify the causal relationship between key genes and AD. The results showed that we successfully identified several genes associated with Alzheimer's disease, including MAPK9, BAX, and TFEB. GSEA analysis showed their active involvement in the immune response, indicating the importance of immune function in AD. Drug prediction models reveal potential therapeutic targets for these key genes.
Collapse
Affiliation(s)
- Xiaorui Huang
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong, China; Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Jie Wang
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Xiaoyue Zhao
- Department of Nephrology, Baise People's Hospital, Baise, Guangxi, China
| | - Suren Rao Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW10 9NH, United Kingdom
| | - Bao Liao
- Department of Neurology, Baise People's Hospital, Baise, Guangxi, China
| | - Chongdong Jian
- Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China; Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Baise, Guangxi, China.
| | - Jingwei Shang
- Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China; Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Baise, Guangxi, China.
| | - Xuebin Li
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong, China; Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China; Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Baise, Guangxi, China.
| |
Collapse
|
3
|
Chu J, Song J, Fan Z, Zhang R, Wang Q, Yi K, Gong Q, Liu B. Investigating the Effect and Mechanism of 3-Methyladenine Against Diabetic Encephalopathy by Network Pharmacology, Molecular Docking, and Experimental Validation. Pharmaceuticals (Basel) 2025; 18:605. [PMID: 40430426 PMCID: PMC12115123 DOI: 10.3390/ph18050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Diabetic encephalopathy (DE), a severe neurological complication of diabetes mellitus (DM), is characterized by cognitive dysfunction. 3-Methyladenine (3-MA), a methylated adenine derivative, acts as a biomarker for DNA methylation and exhibits hypoglycemic and neuroprotective properties. However, the pharmacological mechanisms underlying 3-MA's therapeutic effects on diabetic microvascular complications remain incompletely understood, owing to the intricate and multifactorial pathogenesis of DE. Methods: This study employed network pharmacology and molecular docking techniques to predict potential targets and signaling pathways of 3-MA against DE, with subsequent validation through animal experiments to elucidate the molecular mechanisms of 3-MA in DE treatment. Results: Network pharmacological analysis identified two key targets of 3-MA in DE modulation: AKT and GSK3β. Molecular docking confirmed a strong binding affinity between 3-MA and AKT/GSK3β. In animal experiments, 3-MA significantly reduced blood glucose levels in diabetic mice, ameliorated learning and memory deficits, and preserved hippocampal neuronal integrity. Furthermore, we found that 3-MA inhibited apoptosis by regulating the expression of Bax and BCL-2. Notably, 3-MA also downregulated the expression of amyloid precursor protein (APP) and Tau while enhancing the expression of phosphorylated AKT and GSK-3β. Conclusions: Our findings may contribute to elucidating the therapeutic mechanisms of 3-MA in diabetic microangiopathy and provide potential therapeutic targets through activation of the AKT/GSK-3β pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Quan Gong
- Department of Medcine, Yangtze University, Jingzhou 434023, China; (J.C.)
| | - Benju Liu
- Department of Medcine, Yangtze University, Jingzhou 434023, China; (J.C.)
| |
Collapse
|
4
|
Wang Z, Zhang LN, Wu T, Pan X, Li L, Yang X, Zhang M, Liu Y, Liu Y. Actions of dexmedetomidine in regulating NLRP3 in postoperative cognitive dysfunction in aged mice via the autophagy-lysosome pathway. Br J Pharmacol 2025; 182:1683-1703. [PMID: 39815423 DOI: 10.1111/bph.17378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND AND PURPOSE Autophagy-lysosomal pathway dysfunction leads to postoperative cognitive dysfunction (POCD). Dexmedetomidine (Dex) improves POCD, and we probed the effects of Dex on autophagy-lysosomal pathway dysfunction in a POCD model. EXPERIMENTAL APPROACH A POCD mouse model was established and intraperitoneally injected with Dex. Cognitive function was evaluated by Morris water maze/open field test/novel object recognition assay. Levels of neurotransmitters/inflammatory cytokines in hippocampus, and NLRP3/ASC/Cleaved Caspase-1 proteins were determined by ELISA/Western blot. NLRP3 inflammasome-mediated microglial activation/astrocyte A1 differentiation in the hippocampal CA1 region were assessed by immunofluorescence assay. BV-2 cells were treated with lipopolysaccharide (LPS) and Dex and/or the NLRP3 inflammasome activator Nigericin, and transfected with si-TFEB for co-culture with primary reactive astrocytes (RAs) to verify the function of Dex in vitro. KEY RESULTS Dex alleviated cognitive dysfunction in POCD mice and repressed NLRP3 inflammasome-mediated microglial activation and astrocyte A1 differentiation. NLRP3 inflammasome activation partially reversed the protective effect of Dex on the POCD condition. In vitro experiments verified the inhibitory properties of Dex on microglial activation and astrocyte A1 differentiation. Dex induces TFEB nuclear translocation, microglial autophagy and lysosomal biogenesis. By activating the autophagy-lysosome pathway, Dex regulated NLRP3 inflammasome-mediated microglial activation, inhibited astrocyte A1 differentiation and alleviated POCD in vivo. CONCLUSION AND IMPLICATIONS Dex regulates NLRP3 inflammasome-mediated hippocampal microglial activation by promoting TFEB nuclear translocation and activating the autophagy-lysosome pathway and inhibits astrocyte A1 differentiation, thereby alleviating POCD.
Collapse
Affiliation(s)
- Zhi Wang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Li-Na Zhang
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Ting Wu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Xu Pan
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Le Li
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Xin Yang
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Miao Zhang
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Ying Liu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yong Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
5
|
Lin Y, Cheng L, Chen Y, Li W, Guo Q, Miao Y. TFEB signaling promotes autophagic degradation of NLRP3 to attenuate neuroinflammation in diabetic encephalopathy. Am J Physiol Cell Physiol 2024; 327:C1481-C1496. [PMID: 39437446 DOI: 10.1152/ajpcell.00322.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
Diabetic encephalopathy (DE), a neurological complication of diabetes mellitus, has an unclear etiology. Shreds of evidence show that the nucleotide-binding oligomerization domain-like receptor family protein 3 (NLRP3) inflammasome-induced neuroinflammation and transcription factor EB (TFEB)-mediated autophagy impairment may take part in DE development. The cross talk between these two pathways and their contribution to DE remains to be explored. A mouse model of type 2 diabetes mellitus (T2DM) exhibiting cognitive dysfunction was created, along with high-glucose (HG) cultured BV2 cells. Following, 3-methyladenine (3-MA) and rapamycin were used to modulate autophagy. To evaluate the potential therapeutic benefits of TFEB in DE, we overexpressed and knocked down TFEB in both mice and cells. Autophagy impairment and NLRP3 inflammasome activation were noticed in T2DM mice and HG-cultured BV2 cells. The inflammatory response caused by NLRP3 inflammasome activation was decreased by rapamycin-induced autophagy enhancement, while 3-MA treatment further deteriorated it. Nuclear translocation and expression of TFEB were hampered in HG-cultured BV2 cells and T2DM mice. Exogenous TFEB overexpression boosted NLRP3 degradation via autophagy, which in turn alleviated microglial activation as well as ameliorated cognitive deficits and neuronal damage. In addition, TFEB knockdown exacerbated neuroinflammation by decreasing autophagy-mediated NLRP3 degradation. Our findings have unraveled the pathogenesis of a previously underappreciated disease, implying that the activation of NLRP3 inflammasome and impairment of autophagy in microglia are significant etiological factors in the DE. The TFEB-mediated autophagy pathway can reduce neuroinflammation by enhancing NLRP3 degradation. This could potentially serve as a viable and innovative treatment approach for DE.NEW & NOTEWORTHY This article delves into the intricate connections between inflammation, autophagy, diabetes, and neurodegeneration, with a particular focus on a disease that is not yet fully understood-diabetic encephalopathy (DE). TFEB emerges as a pivotal regulator in balancing autophagy and inflammation in DE. Our findings highlight the crucial function of the TFEB-mediated autophagy pathway in mitigating inflammatory damage in DE, suggesting a new treatment strategy.
Collapse
Affiliation(s)
- Yijia Lin
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lizhen Cheng
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Chen
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Li
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qihao Guo
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Miao
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Chen X, Song Y, Hong Y, Zhang X, Li Q, Zhou H. "NO" controversy?: A controversial role in insulin signaling of diabetic encephalopathy. Mol Cell Endocrinol 2024; 593:112346. [PMID: 39151653 DOI: 10.1016/j.mce.2024.112346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/14/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Insulin, a critical hormone in the human body, exerts its effects by binding to insulin receptors and regulating various cellular processes. While nitric oxide (NO) plays an important role in insulin secretion and acts as a mediator in the signal transduction pathway between upstream molecules and downstream effectors, holds a significant position in the downstream signal network of insulin. Researches have shown that the insulin-NO system exhibits a dual regulatory effect within the central nervous system, which is crucial in the regulation of diabetic encephalopathy (DE). Understanding this system holds immense practical importance in comprehending the targets of existing drugs and the development of potential therapeutic interventions. This review extensively examines the characterization of insulin, NO, Nitric oxide synthase (NOS), specific NO pathway, their interconnections, and the mechanisms underlying their regulatory effects in DE, providing a reference for new therapeutic targets of DE.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China; Hangzhou King's Bio-pharmaceutical Technology Co., Ltd, Hangzhou, Zhejiang, 310007, China.
| | - Ye Hong
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xiaomin Zhang
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Qisong Li
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Hongling Zhou
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
7
|
Lu W, Chu H, Yang C, Li X. Transcription factor EB (TFEB) promotes autophagy in early brain injury after subarachnoid hemorrhage in rats. Neurosurg Rev 2024; 47:741. [PMID: 39375262 DOI: 10.1007/s10143-024-02879-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 10/09/2024]
Abstract
Subarachnoid hemorrhage (SAH) has high mortality. Early brain injury (EBI) is responsible for unfavorable outcomes for patients with SAH. The protective involvement of autophagy in hemorrhagic stroke has been proposed. The transcription factor EB (TFEB) can increase autophagic flux by promoting autophagosome formation and autophagosome-lysosome fusion, and dysregulation of TFEB activity might induce the development of several diseases. However, the biological functions of TFEB in EBI after SAH remain unknown. We established an animal model of SAH by the modified endovascular perforation method. Expression of TFEB and autophagy required genes was measured by western blotting and immunofluorescence staining. SAH grading, brain water content and neurobehavioral functions were evaluated at 24 h post-SAH. Neuronal apoptosis in cerebral cortex was assessed by TUNEL staining and Fluoro Jade B staining. TFEB was downregulated in SAH rats, and its overexpression reduced brain edema and ameliorated neurological deficits of SAH rats. Additionally, the neuronal apoptosis induced by SAH was inhibited by TFEB overexpression. Moreover, TFEB overexpression promoted autophagy after SAH. TFEB overexpression promotes autophagy to inhibit neuronal apoptosis, brain edema and neurological deficits post-SAH.
Collapse
Affiliation(s)
- Wenqi Lu
- Department of Anesthesiology, The first Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
| | - Haichao Chu
- Department of Anesthesiology, The first Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
| | - Chunchen Yang
- Department of Anesthesiology, The first Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
| | - Xiaoxu Li
- Department of Neurosurgery, The first Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China.
| |
Collapse
|
8
|
Sun S, Zhang T, Liu L, Zhou H, Yin P, Wang L. Maresin1 restrains chronic inflammation and Aβ production to ameliorate Alzheimer's disease via modulating ADAM10/17 and its associated neuroprotective signal pathways: A pilot study. Arch Biochem Biophys 2024; 759:110109. [PMID: 39117070 DOI: 10.1016/j.abb.2024.110109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Chronic inflammation is an important pathogenetic factor that leads to the progression of Alzheimer's disease (AD), and specialized pro-resolving lipid mediators (SPMs) play critical role in regulating inflammatory responses during AD pathogenesis. Maresin1 (MaR1) is the latest discovered SPMs, and it is found that MaR1 improves AD cognitive impairment by regulating neurotrophic pathways to protect AD synapses and reduce Aβ production, which made MaR1 as candidate agent for AD treatment. Unfortunately, the underlying mechanisms are still largely known. In this study, the AD mice and cellular models were subjected to MaR1 treatment, and we found that MaR1 reduced Aβ production to ameliorate AD-related symptoms and increased the expression levels of ADAM10/17, sAPPα and sAPPβ to exert its anti-inflammatory role. In addition, as it was determined by Western Blot analysis, we observed that MaR1 could affected the neuroprotective signal pathways. Specifically, MaR1 downregulated p57NTR and upregulated TrkA to activate the p75NTR/TrkA signal pathway, and it could increase the expression levels of p-PI3K and p-Akt, and downregulated p-mTOR to activate the PI3K/AKT/ERK/mTOR pathway. Finally, we verified the role of ADAM10/17 in regulating AD progression, and we found that silencing of ADAM10/17 inactivated the above neuroprotective signal pathways to aggravate AD pathogenesis. In conclusion, MaR1 is verified as potential therapeutic agent for AD by eliminating Aβ production, upregulating ADAM10/17, sAPPα and sAPPβ, and activating the neuroprotective p75NTR/TrkA pathway and the PI3K/AKT/ERK/mTOR pathway.
Collapse
Affiliation(s)
- Shuang Sun
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150036, China; Department of Neurology, Heilongjiang Provincial Hospital, Harbin, China.
| | - Ting Zhang
- College of Life Science, Northeast Forestry University, Harbin, China.
| | - Lijuan Liu
- Department of Neurology, Aviation General Hospital, Beijing, China.
| | - Huimin Zhou
- College of Life Science, Northeast Forestry University, Harbin, China.
| | - Ping Yin
- Department of Neurology, Aviation General Hospital, Beijing, China.
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150036, China.
| |
Collapse
|
9
|
Vikram A, Patel SK, Singh A, Pathania D, Ray RS, Upadhyay AK, Dwivedi A. Natural autophagy activators: A promising strategy for combating photoaging. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155508. [PMID: 38901286 DOI: 10.1016/j.phymed.2024.155508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Photodamage to the skin stands out as one of the most widespread epidermal challenges globally. Prolonged exposure to sunlight containing ultraviolet radiation (UVR) instigates stress, thereby compromising the skin's functionality and culminating in photoaging. Recent investigations have shed light on the importance of autophagy in shielding the skin from photodamage. Despite the acknowledgment of numerous phytochemicals possessing photoprotective attributes, their potential to induce autophagy remains relatively unexplored. PURPOSE Diminished autophagy activity in photoaged skin underscores the potential benefits of restoring autophagy through natural compounds to enhance photoprotection. Consequently, this study aims to highlight the role of natural compounds in safeguarding against photodamage and to assess their potential to induce autophagy via an in-silico approach. METHODS A thorough search of the literature was done using several databases, including PUBMED, Science Direct, and Google Scholar, to gather relevant studies. Several keywords such as Phytochemical, Photoprotection, mTOR, Ultraviolet Radiation, Reactive oxygen species, Photoaging, and Autophagy were utilized to ensure thorough exploration. To assess the autophagy potential of phytochemicals through virtual screening, computational methodologies such as molecular docking were employed, utilizing tools like AutoDock Vina. Receptor preparation for docking was facilitated using MGLTools. RESULTS The initiation of structural and functional deterioration in the skin due to ultraviolet radiation (UVR) or sunlight-induced reactive oxygen species/reactive nitrogen species (ROS/RNS) involves the modulation of various pathways. Natural compounds like phenolics, flavonoids, flavones, and anthocyanins, among others, possess chromophores capable of absorbing light, thereby offering photoprotection by modulating these pathways. In our molecular docking study, these phytochemicals have shown binding affinity with mTOR, a negative regulator of autophagy, indicating their potential as autophagy modulators. CONCLUSION This integrated review underscores the photoprotective characteristics of natural compounds, while the in-silico analysis reveals their potential to modulate autophagy, which could significantly contribute to their anti-photoaging properties. The findings of this study hold promise for the advancement of cosmeceuticals and therapeutics containing natural compounds aimed at addressing photoaging and various skin-related diseases. By leveraging their dual benefits of photoprotection and autophagy modulation, these natural compounds offer a multifaceted approach to combatting skin aging and related conditions.
Collapse
Affiliation(s)
- Apeksha Vikram
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India
| | - Sunil Kumar Patel
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India
| | - Arshwinder Singh
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala-147004 Punjab, India
| | - Diksha Pathania
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India
| | - Ratan Singh Ray
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India
| | - Atul Kumar Upadhyay
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala-147004 Punjab, India.
| | - Ashish Dwivedi
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India.
| |
Collapse
|
10
|
Zhang Z, Cheng J, Zhou X, Wu H, Zhang B. Integrated network pharmacology and molecular docking to investigate the potential mechanism of Tufuling on Alzheimer's disease. Heliyon 2024; 10:e36471. [PMID: 39253234 PMCID: PMC11382023 DOI: 10.1016/j.heliyon.2024.e36471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024] Open
Abstract
Objective This study aimed to investigate the mechanism of Tu Fu Ling in treating Alzheimer's disease (AD) using network pharmacology and molecular docking. Methods The TCMSP and Swiss target prediction databases were utilized to confirm the active components of Tu Fu Ling and their corresponding targets, with target gene names converted using the UniProt database. Genes related to AD were collected from DisGeNET, GeneCards, and the Open Target Platform databases. Common target genes between the disease and the drug were obtained using Venny 2.1 tools and visualized using Cytoscape software. Protein-protein interaction (PPI) data were further analyzed to determine correlations between common target genes, and GO and KEGG pathway enrichment analyses were performed for intersecting genes. Finally, PYmol, AutoDock Tool, Discovery Studio 2020, and PyRx software were used for preliminary computer virtual verification and visualization of active drug ingredients and target proteins. Results Nine active ingredients meeting the screening criteria yielded a total of 168 genes after removing duplicates. A total of 3833 target genes were collected, with 129 overlapping target genes identified. GO enrichment analysis identified 643 biological processes, 82 cellular components, and 147 molecular functions. KEGG pathway enrichment analysis also revealed a pathway closely related to AD (hsa05010: Alzheimer's disease). In molecular docking analysis, the binding affinity between the 9 active ingredients and 10 core targets ranged from -3.5 to -12.3 kcal/mol, indicating strong binding. Conclusion This study preliminarily verified the combination of Tu Fu Ling's screened active ingredient and the calculated core target, suggesting a potential mechanism of action to improve the symptoms of AD patients through multi-target and multi-pathway approaches. This provides a valuable reference for further exploration of the pharmacological mechanism of AD and the formulation of drug therapy.
Collapse
Affiliation(s)
- Ziyou Zhang
- Dali University, College of Basic Medicine, Dali, 671000, China
| | - Jiamao Cheng
- Dali University, College of Basic Medicine, Dali, 671000, China
| | - Xinpei Zhou
- Dali University, College of Basic Medicine, Dali, 671000, China
| | - Haoyi Wu
- Dali University, College of Basic Medicine, Dali, 671000, China
| | - Bensi Zhang
- Dali University, College of Basic Medicine, Dali, 671000, China
| |
Collapse
|
11
|
Lin H, Zhang C, Gao Y, Zhou Y, Ma B, Jiang J, Long X, Yimamu N, Zhong K, Li Y, Cui X, Wang H. HLH-30/TFEB modulates autophagy to improve proteostasis in Aβ transgenic Caenorhabditis elegans. Front Pharmacol 2024; 15:1433030. [PMID: 39281281 PMCID: PMC11392864 DOI: 10.3389/fphar.2024.1433030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease that affects elderly individuals, characterized by senile plaques formed by extracellular amyloid beta (Aβ). Autophagy dysfunction is a manifestation of protein homeostasis imbalance in patients with AD, but its relationship with Aβ remains unclear. Here, we showed that in Aβ transgenic Caenorhabditis elegans, Aβ activated the TOR pathway and reduced the nuclear entry of HLH-30, leading to autophagy dysfunction characterized by autophagosome accumulation. Then, utilizing RNA-seq, we investigated the regulatory mechanisms by which HLH-30 modulates autophagy in C. elegans. We found that HLH-30 elevated the transcript levels of v-ATPase and cathepsin, thus enhancing lysosomal activity. This led to an increase in autophagic flux, facilitating more pronounced degradation of Aβ. Moreover, HLH-30 reduced the level of ROS induction by Aβ and enhanced the antioxidant stress capacity of the worms through the gsto-1 gene. Additionally, we identified two HLH-30/TFEB activators, saikosaponin B2 and hypericin, that improved autophagic flux, thereby enhancing protein homeostasis in C. elegans. Overall, our findings suggested that HLH-30/TFEB plays a key role in modulating autophagy and can be considered a promising drug target for AD treatments.
Collapse
Affiliation(s)
- Hongru Lin
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chen Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yehui Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yi Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Botian Ma
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jinyun Jiang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xue Long
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Nuerziya Yimamu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Kaixin Zhong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yingzi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xianghuan Cui
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hongbing Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Tongji Alpha Natural Medicine Research Institute, Tongji University, Shanghai, China
| |
Collapse
|