1
|
Manini C, Larrinaga G, Angulo JC, López JI. Hot Spots in Urogenital Basic Cancer Research and Clinics. Cancers (Basel) 2025; 17:1173. [PMID: 40227699 PMCID: PMC11987958 DOI: 10.3390/cancers17071173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/15/2025] Open
Abstract
Urogenital cancer is very common in the male population of Western countries, a problem of major concern for public health systems, and a frequent test subject for oncological research. In this narrative, we identify the main hot topics for clinics and the basic science of urological cancer in the last few years (from 2021 onwards), considering the information given in the abstracts of almost 300 original articles published in outstanding journals of pathology, urology, and basic science. Once defined, for the top ten list of hot topics (the 2022 WHO update on the classification of urinary and male genital tumors, new entities in kidney cancer, urinary cancer-omics, update on the Gleason grading system, targeted therapies and other novel therapies in renal cancer, news on non-muscle invasive urothelial carcinoma, artificial intelligence in urologic cancer, intratumor heterogeneity influence in therapeutic failures in urologic neoplasms, intratumor microbiome and its influence in urologic tumor aggressiveness, and ecological principles and mathematics applied to urogenital cancer study), each issue is independently reviewed in an attempt to put together the most relevant updates and/or useful features accompanied by selected illustrations. This review article addresses some of the most interesting and current hot spots in urogenital basic cancer research and clinics and is mainly aimed toward clinicians, including pathologists, urologists, and oncologists. Readers are invited to explore each topic for further, more detailed information, in addition to the references provided.
Collapse
Affiliation(s)
- Claudia Manini
- Department of Pathology, San Giovanni Bosco Hospital, ASL Città di Torino, 10154 Turin, Italy;
| | - Gorka Larrinaga
- Department of Nursing, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Javier C. Angulo
- Clinical Department, Faculty of Medical Sciences, European University of Madrid, 28905 Getafe, Spain;
| | - José I. López
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| |
Collapse
|
2
|
Shi Z, Hu C, Li Q, Sun C. Cancer-Associated Fibroblasts as the "Architect" of the Lung Cancer Immune Microenvironment: Multidimensional Roles and Synergistic Regulation with Radiotherapy. Int J Mol Sci 2025; 26:3234. [PMID: 40244052 PMCID: PMC11989671 DOI: 10.3390/ijms26073234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs), as the "architect" of the immune microenvironment in lung cancer, play a multidimensional role in tumor progression and immune regulation. In this review, we summarize the heterogeneity of the origin and the molecular phenotype of CAFs in lung cancer, and explore the complex interactions between CAFs and multiple components of the tumor microenvironment, including the regulatory relationships with innate immune cells (e.g., tumor-associated macrophages, tumor-associated neutrophils), adaptive immune cells (e.g., T cells), and extracellular matrix (ECM). CAFs significantly influence tumor progression and immunomodulation through the secretion of cytokines, remodeling of the ECM, and the regulation of immune cell function significantly affects the immune escape and treatment resistance of tumors. In addition, this review also deeply explored the synergistic regulatory relationship between CAF and radiotherapy, revealing the key role of CAF in radiotherapy-induced remodeling of the immune microenvironment, which provides a new perspective for optimizing the comprehensive treatment strategy of lung cancer. By comprehensively analyzing the multidimensional roles of CAF and its interaction with radiotherapy, this review aims to provide a theoretical basis for the precise regulation of the immune microenvironment and clinical treatment of lung cancer.
Collapse
Affiliation(s)
- Zheng Shi
- School of Biopharmaceutical and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Cuilan Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
3
|
Zhang Z, Tang Y, Luo D, Qiu J, Chen L. Advances in nanotechnology for targeting cancer-associated fibroblasts: A review of multi-strategy drug delivery and preclinical insights. APL Bioeng 2025; 9:011502. [PMID: 40094065 PMCID: PMC11910205 DOI: 10.1063/5.0244706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a crucial role in the tumor microenvironment by promoting tumor growth, immune evasion, and metastasis. Recently, drug delivery systems targeting CAFs have emerged as a promising long-term and effective approach to cancer treatment. Advances in nanotechnology, in particular, have led to the development of nanomedicine delivery systems designed specifically to target CAFs, offering new possibilities for precise and personalized cancer therapies. This article reviews recent progress in drug delivery using nanocarriers that target CAFs. Additionally, we explore the potential of combining multiple therapies, such as chemotherapy and immunotherapy, with nanocarriers to enhance efficacy and overcome drug resistance. Although many preclinical studies show promise, the clinical application of nanomedicine still faces considerable challenges, especially in terms of drug penetration and large-scale production. Therefore, this review aims to provide a fresh perspective on CAF-targeted drug delivery systems and highlight potential future research directions and clinical applications.
Collapse
|
4
|
Zhang Z, Wang R, Chen L. Drug Delivery System Targeting Cancer-Associated Fibroblast for Improving Immunotherapy. Int J Nanomedicine 2025; 20:483-503. [PMID: 39816375 PMCID: PMC11734509 DOI: 10.2147/ijn.s500591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a heterogeneous population of non-malignant cells that play a crucial role in the tumor microenvironment, increasingly recognized as key contributors to cancer progression, metastasis, and treatment resistance. So, targeting CAFs has always been considered an important part of cancer immunotherapy. However, targeting CAFs to improve the efficacy of tumor therapy is currently a major challenge. Nanomaterials show their unique advantages in the whole process. At present, nanomaterials have achieved significant accomplishments in medical applications, particularly in the field of cancer-targeted therapy, showing enormous potential. It has been confirmed that nanomaterials can not only directly target CAFs, but also interact with the tumor microenvironment (TME) and immune cells to affect tumorigenesis. As for the cancer treatment, nanomaterials could enhance the therapeutic effect in many ways. Therefore, in this review, we first summarized the current understanding of the complex interactions between CAFs and TME, immune cells, and tumor cells. Next, we discussed common nanomaterials in modern medicine and their respective impacts on the TME, CAFs, and interactions with tumors. Finally, we focus on the application of nano drug delivery system targeting CAFs in cancer therapy.
Collapse
Affiliation(s)
- Zhongsong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610550, People’s Republic of China
| | - Rong Wang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610550, People’s Republic of China
| | - Long Chen
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610550, People’s Republic of China
| |
Collapse
|
5
|
Soko GF, Kosgei BK, Meena SS, Ng YJ, Liang H, Zhang B, Liu Q, Xu T, Hou X, Han RPS. Extracellular matrix re-normalization to improve cold tumor penetration by oncolytic viruses. Front Immunol 2025; 15:1535647. [PMID: 39845957 PMCID: PMC11751056 DOI: 10.3389/fimmu.2024.1535647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
Immunologically inert or cold tumors pose a substantial challenge to the effectiveness of immunotherapy. The use of oncolytic viruses (OVs) to induce immunogenic cell death (ICD) in tumor cells is a well-established strategy for initiating the cancer immunity cycle (CIC). This process promotes the trafficking and infiltration of CD8+ T cells into tumors, thereby eliciting a tumor-specific immune response. Despite the potential of OVs for handling cold tumors, clinical outcomes have fallen short of expectations. To better understand the obstacles faced by oncolytic virus immunotherapy (OVI), we would like to revisit the OV issue. Growing evidence indicates that limited intratumoral penetration and inadequate intratumoral distribution of OVs are critical factors contributing to the suboptimal response to OVI. Aberrant expressions of matrix proteins by cancer-associated fibroblasts (CAFs) alter the mechanical properties of the tumor extracellular matrix (ECM). This results in increased ECM desmoplasia and elevated intratumoral interstitial fluid pressure (IFP), creating physical barriers that impede the penetration and dissemination of OVs within tumors. This review explores the latest advancements in strategies designed to improve the intratumoral penetration of OVs to facilitate the penetration of tumor-infiltrating lymphocytes (TILs) into cold tumors. Additionally, we investigated current clinical trials and challenges associated with translating these strategies into clinical practice to improve patient outcomes.
Collapse
Affiliation(s)
- Geofrey F. Soko
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Benson K. Kosgei
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Stephene S. Meena
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Ying Jing Ng
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Huihui Liang
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Bing Zhang
- The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qingjun Liu
- Biosensor National Special Laboratory & Key Laboratory for Biomedical Engineering of Education Ministry, Dept. of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Tielong Xu
- Evidence-based Medicine Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xinju Hou
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
- Dept. of Rehabilitation, Nanchang Hongdu Hospital of Chinese Medicine, Nanchang, China
| | - Ray P. S. Han
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
6
|
Larrinaga G, Redrado M, Loizaga-Iriarte A, Pérez-Fernández A, Santos-Martín A, Angulo JC, Fernández JA, Calvo A, López JI. Spatial expression of fibroblast activation protein-α in clear cell renal cell carcinomas revealed by multiplex immunoprofiling analysis of the tumor microenvironment. Cancer Immunol Immunother 2025; 74:53. [PMID: 39751643 PMCID: PMC11699175 DOI: 10.1007/s00262-024-03896-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 11/13/2024] [Indexed: 01/04/2025]
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most challenging neoplasms because of its phenotypic variability and intratumoral heterogeneity. Because of its variability, ccRCC is a good test bench for the application of new technological approaches to unveiling its intricacies. Multiplex immunofluorescence (mIF) is an emerging method that enables the simultaneous and detailed assessment of tumor and stromal cell subpopulations in a single tissue section. This novel approach represents a promising step forward for analyzing the microenvironmental cell composition and distribution across the tumor and understanding its possible interactions with tumor cells. This study provides the first characterization of the spatial distribution of fibroblast activation protein-α (FAP)-expressing cancer-associated fibroblasts (FAP + CAFs) in conjunction with lymphoid (CD4 + , CD8 + , CD4 + FOXP3 + , and CD20 +) and myeloid (CD68 +) cells in tissue sections from ccRCC in their early phases of evolution (n = 88). Both the tumor center and periphery were analyzed with mIF. FAP + CAFs and tumor-infiltrating lymphocytes (TILs) were significantly concentrated at the tumor periphery. Additionally, elevated percentages of FAP + CAFs were correlated with larger tumors and synchronous metastases. Increased levels of CD68 + and CD4 + FOXP3 + cells (above the 75th percentile) were linked to worse cancer-specific survival (CSS) in patients with ccRCC. Furthermore, significant correlations emerged among FAP + CAFs, TILs, and CD68 + cells, and the co-occurrence of elevated FAP + CAFs, T-cytotoxic (CD8 +), T-regulatory (CD4 + FOXP3 +) cells, and macrophages (CD68 +) at the tumor center were independently associated with worse CSS. These findings suggest that FAP + CAFs contribute to the aggressiveness of ccRCC, and their role is potentially mediated by their ability to foster an immunosuppressive environment within the renal tumor microenvironment.
Collapse
Affiliation(s)
- Gorka Larrinaga
- Department of Nursing, Medicine and Nursing Faculty, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940, Leioa, Spain.
- Department of Physiology, Medicine and Nursing Faculty, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain.
- Biobizkaia Health Research Institute, 48903, Barakaldo, Spain.
| | - Miriam Redrado
- Center for Applied Medical Research (CIMA), University of Navarra, IDISNA and Program in Solid Tumors, 31008, Pamplona, Spain
| | | | | | | | - Javier C Angulo
- Clinical Department, Faculty of Medical Sciences, European University of Madrid, 28005, Madrid, Spain
- Department of Urology, University Hospital of Getafe, 28907, Madrid, Spain
| | - José A Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena, S/N, 48940, Leioa, Spain
| | - Alfonso Calvo
- Center for Applied Medical Research (CIMA), University of Navarra, IDISNA and Program in Solid Tumors, 31008, Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, CIBERONC, ISCIII, Madrid, Spain, 31009, Pamplona, Spain
| | - José I López
- Biobizkaia Health Research Institute, 48903, Barakaldo, Spain
| |
Collapse
|
7
|
Cui JY, Ma J, Gao XX, Sheng ZM, Pan ZX, Shi LH, Zhang BG. Unraveling the role of cancer-associated fibroblasts in colorectal cancer. World J Gastrointest Oncol 2024; 16:4565-4578. [PMID: 39678792 PMCID: PMC11577382 DOI: 10.4251/wjgo.v16.i12.4565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 11/12/2024] Open
Abstract
Within the intricate milieu of colorectal cancer (CRC) tissues, cancer-associated fibroblasts (CAFs) act as pivotal orchestrators, wielding considerable influence over tumor progression. This review endeavors to dissect the multifaceted functions of CAFs within the realm of CRC, thereby highlighting their indispensability in fostering CRC malignant microenvironment and indicating the development of CAFs-targeted therapeutic interventions. Through a comprehensive synthesis of current knowledge, this review delineates insights into CAFs-mediated modulation of cancer cell proliferation, invasiveness, immune evasion, and neovascularization, elucidating the intricate web of interactions that sustain the pro-tumor metabolism and secretion of multiple factors. Additionally, recognizing the high level of heterogeneity within CAFs is crucial, as they encompass a range of subtypes, including myofibroblastic CAFs, inflammatory CAFs, antigen-presenting CAFs, and vessel-associated CAFs. Innovatively, the symbiotic relationship between CAFs and the intestinal microbiota is explored, shedding light on a novel dimension of CRC pathogenesis. Despite remarkable progress, the orchestrated dynamic functions of CAFs remain incompletely deciphered, underscoring the need for continued research endeavors for therapeutic advancements in CRC management.
Collapse
Affiliation(s)
- Jia-Yu Cui
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Jing Ma
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Xin-Xin Gao
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Zhi-Mei Sheng
- Affiliated Hospital of Shandong Second Medical University, Department of Pathology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Zi-Xin Pan
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Li-Hong Shi
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Bao-Gang Zhang
- Department of Pathology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| |
Collapse
|
8
|
Wang Z, Chen H, Sun L, Wang X, Xu Y, Tian S, Liu X. Uncovering the potential of APOD as a biomarker in gastric cancer: A retrospective and multi-center study. Comput Struct Biotechnol J 2024; 23:1051-1064. [PMID: 38455068 PMCID: PMC10918487 DOI: 10.1016/j.csbj.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
Gastric cancer (GC) poses a significant health challenge worldwide, necessitating the identification of predictive biomarkers to improve prognosis. Dysregulated lipid metabolism is a well-recognized hallmark of tumorigenesis, prompting investigation into apolipoproteins (APOs). In this study, we focused on apolipoprotein D (APOD) following comprehensive analyses of APOs in pan-cancer. Utilizing data from the TCGA-STAD and GSE62254 cohorts, we elucidated associations between APOD expression and multiple facets of GC, including prognosis, tumor microenvironment (TME), cancer biomarkers, mutations, and immunotherapy response, and identified potential anti-GC drugs. Single-cell analyses and immunohistochemical staining confirmed APOD expression in fibroblasts within the GC microenvironment. Additionally, we independently validated the prognostic significance of APOD in the ZN-GC cohort. Our comprehensive analyses revealed that high APOD expression in GC patients was notably associated with unfavorable clinical outcomes, reduced microsatellite instability and tumor mutation burden, alterations in the TME, and diminished response to immunotherapy. These findings provide valuable insights into the potential prognostic and therapeutic implications of APOD in GC.
Collapse
Affiliation(s)
- Zisong Wang
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Hongshan Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Le Sun
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xuanyu Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Yihang Xu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Sufang Tian
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xiaoping Liu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
9
|
Erreni M, Fumagalli MR, D’Anna R, Sollai M, Bozzarelli S, Nappo G, Zanini D, Parente R, Garlanda C, Rimassa L, Terracciano LM, Biswas SK, Zerbi A, Mantovani A, Doni A. Depicting the cellular complexity of pancreatic adenocarcinoma by Imaging Mass Cytometry: focus on cancer-associated fibroblasts. Front Immunol 2024; 15:1472433. [PMID: 39575252 PMCID: PMC11578750 DOI: 10.3389/fimmu.2024.1472433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/08/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) represents the complexity of interaction between cancer and cells of the tumor microenvironment (TME). Immune cells affect tumor cell behavior, thus driving cancer progression. Cancer-associated fibroblasts (CAFs) are responsible of the desmoplastic and fibrotic reaction by regulating deposition and remodeling of extracellular matrix (ECM). As tumor-promoting cells abundant in PDAC ECM, CAFs represent promising targets for novel anticancer interventions. However, relevant clinical trials are hampered by the lack of specific markers and elusive differences among CAF subtypes. Indeed, while single-cell transcriptomic analyses have provided important information on the cellular constituents of PDACs and related molecular pathways, studies based on the identification of protein markers in tissues aimed at identifying CAF subtypes and new molecular targets result incomplete. Methods Herein, we applied multiplexed Imaging Mass Cytometry (IMC) at single-cell resolution on 8 human PDAC tissues to depict the PDAC composing cells, and profiling immune cells, endothelial cells (ECs), as well as endocrine cells and tumor cells. Results We focused on CAFs by characterizing up to 19 clusters distinguished by phenotype, spatiality, and interaction with immune and tumor cells. We report evidence that specific subtypes of CAFs (CAFs 10 and 11) predominantly are enriched at the tumor-stroma interface and closely associated with tumor cells. CAFs expressing different combinations of FAP, podoplanin and cadherin-11, were associated with a higher level of CA19-9. Moreover, we identified specific subsets of FAP+ and podoplanin+/cadherin-11+ CAFs enriched in patients with negative prognosis. Discussion The present study provides new general insights into the complexity of the PDAC microenvironment by defining phenotypic heterogeneities and spatial distributions of CAFs, thus suggesting different functions of their subtypes in the PDAC microenvironment.
Collapse
Affiliation(s)
- Marco Erreni
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Maria Rita Fumagalli
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Raffaella D’Anna
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Mauro Sollai
- Pathology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Silvia Bozzarelli
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Gennaro Nappo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Pancreatic Surgery Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Damiano Zanini
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Raffaella Parente
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Cecilia Garlanda
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luigi Maria Terracciano
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Pathology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Subhra K. Biswas
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Alessandro Zerbi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Pancreatic Surgery Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Andrea Doni
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
10
|
Zhu B, Xiang K, Li T, Li X, Shi F. The signature of extracellular vesicles in hypoxic breast cancer and their therapeutic engineering. Cell Commun Signal 2024; 22:512. [PMID: 39434182 PMCID: PMC11492701 DOI: 10.1186/s12964-024-01870-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
Breast cancer (BC) currently ranks second in the global cancer incidence rate. Hypoxia is a common phenomenon in BC. Under hypoxic conditions, cells in the tumor microenvironment (TME) secrete numerous extracellular vesicles (EVs) to achieve intercellular communication and alter the metabolism of primary and metastatic tumors that shape the TME. In addition, emerging studies have indicated that hypoxia can promote resistance to tumor treatment. Engineered EVs are expected to become carriers for cancer treatment due to their high biocompatibility, low immunogenicity, high drug delivery efficiency, and ease of modification. In this review, we summarize the mechanisms of EVs in the primary TME and distant metastasis of BC under hypoxic conditions. Additionally, we highlight the potential applications of engineered EVs in mitigating the malignant phenotypes of BC cells under hypoxia.
Collapse
Affiliation(s)
- Baiheng Zhu
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Kehao Xiang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Tanghua Li
- The First Clinical Medical School, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xin Li
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Fujun Shi
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
11
|
Yu S, Wang S, Wang X, Xu X. The axis of tumor-associated macrophages, extracellular matrix proteins, and cancer-associated fibroblasts in oncogenesis. Cancer Cell Int 2024; 24:335. [PMID: 39375726 PMCID: PMC11459962 DOI: 10.1186/s12935-024-03518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
The extracellular matrix (ECM) is a complex, dynamic network of multiple macromolecules that serve as a crucial structural and physical scaffold for neighboring cells. In the tumor microenvironment (TME), ECM proteins play a significant role in mediating cellular communication between cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). Revealing the ECM modification of the TME necessitates the intricate signaling cascades that transpire among diverse cell populations and ECM proteins. The advent of single-cell sequencing has enabled the identification and refinement of specific cellular subpopulations, which has substantially enhanced our comprehension of the intricate milieu and given us a high-resolution perspective on the diversity of ECM proteins. However, it is essential to integrate single-cell data and establish a coherent framework. In this regard, we present a comprehensive review of the relationships among ECM, TAMs, and CAFs. This encompasses insights into the ECM proteins released by TAMs and CAFs, signaling integration in the TAM-ECM-CAF axis, and the potential applications and limitations of targeted therapies for CAFs. This review serves as a reliable resource for focused therapeutic strategies while highlighting the crucial role of ECM proteins as intermediates in the TME.
Collapse
Affiliation(s)
- Shuhong Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Siyu Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xuanyu Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
12
|
Di Carlo E, Sorrentino C. The multifaceted role of the stroma in the healthy prostate and prostate cancer. J Transl Med 2024; 22:825. [PMID: 39238004 PMCID: PMC11378418 DOI: 10.1186/s12967-024-05564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
Prostate cancer (PC) is an age-related disease and represents, after lung cancer, the second cause of cancer death in males worldwide. Mortality is due to the metastatic disease, which mainly involves the bones, lungs, and liver. In the last 20 years, the incidence of metastatic PC has increased in Western Countries, and a further increase is expected in the near future, due to the population ageing. Current treatment options, including state of the art cancer immunotherapy, need to be more effective to achieve long-term disease control. The most significant anatomical barrier to overcome to improve the effectiveness of current and newly designed drug strategies consists of the prostatic stroma, in particular the fibroblasts and the extracellular matrix, which are the most abundant components of both the normal and tumor prostatic microenvironment. By weaving a complex communication network with the glandular epithelium, the immune cells, the microbiota, the endothelium, and the nerves, in the healthy prostatic microenvironment, the fibroblasts and the extracellular matrix support organ development and homeostasis. However, during inflammation, ageing and prostate tumorigenesis, they undergo dramatic phenotypic and genotypic changes, which impact on tumor growth and progression and on the development of therapy resistance. Here, we focus on the characteristics and functions of the prostate associated fibroblasts and of the extracellular matrix in health and cancer. We emphasize their roles in shaping tumor behavior and the feasibility of manipulating and/or targeting these stromal components to overcome the limitations of current treatments and to improve precision medicine's chances of success.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy.
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy
| |
Collapse
|
13
|
Chen J, Yang L, Ma Y, Zhang Y. Recent advances in understanding the immune microenvironment in ovarian cancer. Front Immunol 2024; 15:1412328. [PMID: 38903506 PMCID: PMC11188340 DOI: 10.3389/fimmu.2024.1412328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
The occurrence of ovarian cancer (OC) is a major factor in women's mortality rates. Despite progress in medical treatments, like new drugs targeting homologous recombination deficiency, survival rates for OC patients are still not ideal. The tumor microenvironment (TME) includes cancer cells, fibroblasts linked to cancer (CAFs), immune-inflammatory cells, and the substances these cells secrete, along with non-cellular components in the extracellular matrix (ECM). First, the TME mainly plays a role in inhibiting tumor growth and protecting normal cell survival. As tumors progress, the TME gradually becomes a place to promote tumor cell progression. Immune cells in the TME have attracted much attention as targets for immunotherapy. Immune checkpoint inhibitor (ICI) therapy has the potential to regulate the TME, suppressing factors that facilitate tumor advancement, reactivating immune cells, managing tumor growth, and extending the survival of patients with advanced cancer. This review presents an outline of current studies on the distinct cellular elements within the OC TME, detailing their main functions and possible signaling pathways. Additionally, we examine immunotherapy rechallenge in OC, with a specific emphasis on the biological reasons behind resistance to ICIs.
Collapse
Affiliation(s)
- Jinxin Chen
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Lu Yang
- Department of Internal Medicine, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yiming Ma
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning, China
| | - Ye Zhang
- Department of Radiation Oncology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
14
|
Cordani M, Dando I, Ambrosini G, González-Menéndez P. Signaling, cancer cell plasticity, and intratumor heterogeneity. Cell Commun Signal 2024; 22:255. [PMID: 38702718 PMCID: PMC11067149 DOI: 10.1186/s12964-024-01643-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024] Open
Abstract
Cancer's complexity is in part due to the presence of intratumor heterogeneity and the dynamic nature of cancer cell plasticity, which create substantial obstacles in effective cancer management. Variability within a tumor arises from the existence of diverse populations of cancer cells, impacting the progression, spread, and resistance to treatments. At the core of this variability is the concept of cellular plasticity - the intrinsic ability of cancer cells to alter their molecular and cellular identity in reaction to environmental and genetic changes. This adaptability is a cornerstone of cancer's persistence and progression, making it a formidable target for treatments. Emerging studies have emphasized the critical role of such plasticity in fostering tumor diversity, which in turn influences the course of the disease and the effectiveness of therapeutic strategies. The transformative nature of cancer involves a network of signal transduction pathways, notably those that drive the epithelial-to-mesenchymal transition and metabolic remodeling, shaping the evolutionary path of cancer cells. Despite advancements, our understanding of the precise molecular machinations and signaling networks driving these changes is still evolving, underscoring the necessity for further research. This editorial presents a series entitled "Signaling Cancer Cell Plasticity and Intratumor Heterogeneity" in Cell Communication and Signaling, dedicated to unraveling these complex processes and proposing new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, 28040, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, 28040, Spain.
| | - Ilaria Dando
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Verona, 37134, Italy.
| | - Giulia Ambrosini
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Verona, 37134, Italy.
| | - Pedro González-Menéndez
- Departamento de Morfología y Biología Celular, School of Medicine, Julián Claveria 6, Oviedo, 33006, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, 33006, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), Oviedo, 33011, Spain.
| |
Collapse
|
15
|
Gou Z, Li J, Liu J, Yang N. The hidden messengers: cancer associated fibroblasts-derived exosomal miRNAs as key regulators of cancer malignancy. Front Cell Dev Biol 2024; 12:1378302. [PMID: 38694824 PMCID: PMC11061421 DOI: 10.3389/fcell.2024.1378302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs), a class of stromal cells in the tumor microenvironment (TME), play a key role in controlling cancer cell invasion and metastasis, immune evasion, angiogenesis, and resistance to chemotherapy. CAFs mediate their activities by secreting soluble chemicals, releasing exosomes, and altering the extracellular matrix (ECM). Exosomes contain various biomolecules, such as nucleic acids, lipids, and proteins. microRNA (miRNA), a 22-26 nucleotide non-coding RNA, can regulate the cellular transcription processes. Studies have shown that miRNA-loaded exosomes secreted by CAFs engage in various regulatory communication networks with other TME constituents. This study focused on the roles of CAF-derived exosomal miRNAs in generating cancer malignant characteristics, including immune modulation, tumor growth, migration and invasion, epithelial-mesenchymal transition (EMT), and treatment resistance. This study thoroughly examines miRNA's dual regulatory roles in promoting and suppressing cancer. Thus, changes in the CAF-derived exosomal miRNAs can be used as biomarkers for the diagnosis and prognosis of patients, and their specificity can be used to develop newer therapies. This review also discusses the pressing problems that require immediate attention, aiming to inspire researchers to explore more novel avenues in this field.
Collapse
Affiliation(s)
- Zixuan Gou
- Bethune First Clinical School of Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jianming Liu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Na Yang
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Marks J, Sridhar A, Ai A, Kiel L, Kaufman R, Abioye O, Mantz C, Florez N. Precision Immuno-Oncology in NSCLC through Gender Equity Lenses. Cancers (Basel) 2024; 16:1413. [PMID: 38611091 PMCID: PMC11010825 DOI: 10.3390/cancers16071413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Precision immuno-oncology involves the development of personalized cancer treatments that are influenced by the unique nature of an individual's DNA, immune cells, and their tumor's molecular characterization. Biological sex influences immunity; females typically mount stronger innate and adaptive immune responses than males. Though more research is warranted, we continue to observe an enhanced benefit for females with lung cancer when treated with combination chemoimmunotherapy in contrast to the preferred approach of utilizing immunotherapy alone in men. Despite the observed sex differences in response to treatments, women remain underrepresented in oncology clinical trials, largely as a result of gender-biased misconceptions. Such exclusion has resulted in the development of less efficacious treatment guidelines and clinical recommendations and has created a knowledge gap in regard to immunotherapy-related survivorship issues such as fertility. To develop a more precise approach to care and overcome the exclusion of women from clinical trials, flexible trial schedules, multilingual communication strategies, financial, and transportation assistance for participants should be adopted. The impact of intersectionality and other determinants of health that affect the diagnosis, treatment, and outcomes in women must also be considered in order to develop a comprehensive understanding of the unique impact of immunotherapy in all women with lung cancer.
Collapse
Affiliation(s)
- Jennifer Marks
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA;
| | | | - Angela Ai
- Olive View-UCLA Medical Center, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Lauren Kiel
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.K.); (R.K.); (O.A.); (C.M.)
| | - Rebekah Kaufman
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.K.); (R.K.); (O.A.); (C.M.)
| | - Oyepeju Abioye
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.K.); (R.K.); (O.A.); (C.M.)
| | - Courtney Mantz
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.K.); (R.K.); (O.A.); (C.M.)
| | - Narjust Florez
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.K.); (R.K.); (O.A.); (C.M.)
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
17
|
Freag MS, Mohammed MT, Kulkarni A, Emam HE, Maremanda KP, Elzoghby AO. Modulating tumoral exosomes and fibroblast phenotype using nanoliposomes augments cancer immunotherapy. SCIENCE ADVANCES 2024; 10:eadk3074. [PMID: 38416824 PMCID: PMC10901379 DOI: 10.1126/sciadv.adk3074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/25/2024] [Indexed: 03/01/2024]
Abstract
Cancer cells program fibroblasts into cancer associated fibroblasts (CAFs) in a two-step manner. First, cancer cells secrete exosomes to program quiescent fibroblasts into activated CAFs. Second, cancer cells maintain the CAF phenotype via activation of signal transduction pathways. We rationalized that inhibiting this two-step process can normalize CAFs into quiescent fibroblasts and augment the efficacy of immunotherapy. We show that cancer cell-targeted nanoliposomes that inhibit sequential steps of exosome biogenesis and release from lung cancer cells block the differentiation of lung fibroblasts into CAFs. In parallel, we demonstrate that CAF-targeted nanoliposomes that block two distinct nodes in fibroblast growth factor receptor (FGFR)-Wnt/β-catenin signaling pathway can reverse activate CAFs into quiescent fibroblasts. Co-administration of both nanoliposomes significantly improves the infiltration of cytotoxic T cells and enhances the antitumor efficacy of αPD-L1 in immunocompetent lung cancer-bearing mice. Simultaneously blocking the tumoral exosome-mediated activation of fibroblasts and FGFR-Wnt/β-catenin signaling constitutes a promising approach to augment immunotherapy.
Collapse
Affiliation(s)
- May S. Freag
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Investigative Toxicology, Drug Safety Research and Evaluation, Takeda Pharmaceuticals, Cambridge, MA, USA
| | - Mostafa T. Mohammed
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Anatomical and Clinical Pathology Department, Tufts Medical Center, Boston, MA, USA
| | - Arpita Kulkarni
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Hagar E. Emam
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Krishna P. Maremanda
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Ahmed O. Elzoghby
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Manini C, López-Fernández E, Larrinaga G, López JI. Clear Cell Renal Cell Carcinoma: A Test Bench for Investigating Tumor Complexity. Cancers (Basel) 2024; 16:829. [PMID: 38398220 PMCID: PMC10886793 DOI: 10.3390/cancers16040829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Clear cell renal cell carcinoma (CCRCC), by far the most common renal cancer subtype, is an aggressive tumor variant, serving in recent years as a prolific test bench in cancer research [...].
Collapse
Affiliation(s)
- Claudia Manini
- Department of Pathology, San Giovanni Bosco Hospital, ASL Città di Torino, 10154 Turin, Italy;
- Department of Sciences of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy
| | - Estíbaliz López-Fernández
- FISABIO Foundation, 46020 Valencia, Spain;
- Faculty of Health Sciences, European University of Valencia, 46023 Valencia, Spain
| | - Gorka Larrinaga
- Department of Nursing, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - José I. López
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| |
Collapse
|
19
|
Henrich LM, Greimelmaier K, Wessolly M, Klopp NA, Mairinger E, Krause Y, Berger S, Wohlschlaeger J, Schildhaus HU, Baba HA, Mairinger FD, Borchert S. The Impact of Cancer-Associated Fibroblasts on the Biology and Progression of Colorectal Carcinomas. Genes (Basel) 2024; 15:209. [PMID: 38397199 PMCID: PMC10888097 DOI: 10.3390/genes15020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Colorectal cancer (CRC) is a leading cause of cancer-related deaths globally. Cancer-associated fibroblasts (CAFs) are major components of CRC's tumour microenvironment (TME), but their biological background and interplay with the TME remain poorly understood. This study investigates CAF biology and its impact on CRC progression. (2) The cohort comprises 155 cases, including CRC, with diverse localizations, adenomas, inflammations, and controls. Digital gene expression analysis examines genes associated with signalling pathways (MAPK, PI3K/Akt, TGF-β, WNT, p53), while next-generation sequencing (NGS) determines CRC mutational profiles. Immunohistochemical FAP scoring assesses CAF density and activity. (3) FAP expression is found in 81 of 150 samples, prevalent in CRC (98.4%), adenomas (27.5%), and inflammatory disease (38.9%). Several key genes show significant associations with FAP-positive fibroblasts. Gene set enrichment analysis (GSEA) highlights PI3K and MAPK pathway enrichment alongside the activation of immune response pathways like natural killer (NK)-cell-mediated cytotoxicity via CAFs. (4) The findings suggest an interplay between CAFs and cancer cells, influencing growth, invasiveness, angiogenesis, and immunogenicity. Notably, TGF-β, CDKs, and the Wnt pathway are affected. In conclusion, CAFs play a significant role in CRC and impact the TME throughout development.
Collapse
Affiliation(s)
- Larissa Maria Henrich
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| | - Kristina Greimelmaier
- Department of Pathology, Diakonissenkrankenhaus Flensburg, 24939 Flensburg, Germany (J.W.)
| | - Michael Wessolly
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| | - Nick Alexander Klopp
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| | - Elena Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| | - Yvonne Krause
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| | - Sophia Berger
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| | - Jeremias Wohlschlaeger
- Department of Pathology, Diakonissenkrankenhaus Flensburg, 24939 Flensburg, Germany (J.W.)
| | - Hans-Ulrich Schildhaus
- Targos-A Discovery Life Sciences Company, Germaniastraße 7, 34119 Kassel, Germany;
- Institute of Pathology Nordhessen, Germaniastraße 7, 34119 Kassel, Germany
| | - Hideo Andreas Baba
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| | - Fabian Dominik Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| | - Sabrina Borchert
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (L.M.H.); (M.W.); (N.A.K.); (E.M.); (H.A.B.); (S.B.)
| |
Collapse
|