1
|
Struble EB, Rawson JMO, Stantchev T, Scott D, Shapiro MA. Uses and Challenges of Antiviral Polyclonal and Monoclonal Antibody Therapies. Pharmaceutics 2023; 15:pharmaceutics15051538. [PMID: 37242780 DOI: 10.3390/pharmaceutics15051538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Viral diseases represent a major public health concerns and ever-present risks for developing into future pandemics. Antiviral antibody therapeutics, either alone or in combination with other therapies, emerged as valuable preventative and treatment options, including during global emergencies. Here we will discuss polyclonal and monoclonal antiviral antibody therapies, focusing on the unique biochemical and physiological properties that make them well-suited as therapeutic agents. We will describe the methods of antibody characterization and potency assessment throughout development, highlighting similarities and differences between polyclonal and monoclonal products as appropriate. In addition, we will consider the benefits and challenges of antiviral antibodies when used in combination with other antibodies or other types of antiviral therapeutics. Lastly, we will discuss novel approaches to the characterization and development of antiviral antibodies and identify areas that would benefit from additional research.
Collapse
Affiliation(s)
- Evi B Struble
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jonathan M O Rawson
- Division of Antivirals, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tzanko Stantchev
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Dorothy Scott
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Marjorie A Shapiro
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
2
|
Huang Y, Zhang L, Eaton A, Mkhize NN, Carpp LN, Rudnicki E, DeCamp A, Juraska M, Randhawa A, McDermott A, Ledgerwood J, Andrew P, Karuna S, Edupuganti S, Mgodi N, Cohen M, Corey L, Mascola J, Gilbert PB, Morris L, Montefiori DC. Prediction of serum HIV-1 neutralization titers of VRC01 in HIV-uninfected Antibody Mediated Prevention (AMP) trial participants. Hum Vaccin Immunother 2022; 18:1908030. [PMID: 34213402 PMCID: PMC8928800 DOI: 10.1080/21645515.2021.1908030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Accepted: 01/27/2021] [Indexed: 12/29/2022] Open
Abstract
VRC01 is being evaluated in the AMP efficacy trials, the first assessment of a passively administered broadly neutralizing monoclonal antibody (bnAb) for HIV-1 prevention. A key analysis will assess serum VRC01-mediated neutralization as a potential correlate of protection. To prepare for this analysis, we conducted a pilot study where we measured longitudinal VRC01 serum concentrations and serum VRC01-mediated neutralization in 47 and 31 HIV-1 uninfected AMP participants, respectively. We applied four different statistical approaches to predict serum VRC01-mediated neutralization titer against Env-pseudotyped viruses, including breakthrough viruses isolated from AMP placebo recipients who became HIV-1 infected during the trial, using VRC01 serum concentration and neutralization potency (IC50 or IC80) of the VRC01 clinical lot against the same virus. Approaches 3 and 4, which utilized pharmacokinetics/pharmacodynamics joint modeling of concentration and neutralization titer, generally performed the best or comparably to Approaches 1 and 2, which, respectively, utilized only measured and model-predicted concentration. For prediction of ID80 titers against breakthrough viruses, Approaches 1 and 2 rendered comparable performance to Approaches 3 and 4, and could be reasonable approaches to adopt in practice as they entail reduced assay cost and less complicated statistical analysis. Our results may be applied to future studies of other bnAbs and bnAb combinations to maximize resource efficiency in serum neutralization titer measurement.
Collapse
Affiliation(s)
- Yunda Huang
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Lily Zhang
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Amanda Eaton
- Duke Human Vaccine Institute, Department of Surgery, Duke University, Durham, North Carolina, USA
| | | | - Lindsay N. Carpp
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Erika Rudnicki
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Allan DeCamp
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michal Juraska
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - April Randhawa
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Adrian McDermott
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Julie Ledgerwood
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Philip Andrew
- Family Health International, Durham, North Carolina, USA
| | - Shelly Karuna
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Srilatha Edupuganti
- Division of Infectious Diseases, Department of Medicine, Emory University, Decatur, Georgia, USA
| | - Nyaradzo Mgodi
- Clinical Trials Research Centre, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
| | - Myron Cohen
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lawrence Corey
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Medicine and Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - John Mascola
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter B. Gilbert
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Lynn Morris
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | - David C. Montefiori
- Duke Human Vaccine Institute, Department of Surgery, Duke University, Durham, North Carolina, USA
| |
Collapse
|
3
|
Sobia P, Archary D. Preventive HIV Vaccines-Leveraging on Lessons from the Past to Pave the Way Forward. Vaccines (Basel) 2021; 9:vaccines9091001. [PMID: 34579238 PMCID: PMC8472969 DOI: 10.3390/vaccines9091001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/05/2022] Open
Abstract
Almost four decades on, since the 1980’s, with hundreds of HIV vaccine candidates tested in both non-human primates and humans, and several HIV vaccines trials later, an efficacious HIV vaccine continues to evade us. The enormous worldwide genetic diversity of HIV, combined with HIV’s inherent recombination and high mutation rates, has hampered the development of an effective vaccine. Despite the advent of antiretrovirals as pre-exposure prophylaxis and preventative treatment, which have shown to be effective, HIV infections continue to proliferate, highlighting the great need for a vaccine. Here, we provide a brief history for the HIV vaccine field, with the most recent disappointments and advancements. We also provide an update on current passive immunity trials, testing proof of the concept of the most clinically advanced broadly neutralizing monoclonal antibodies for HIV prevention. Finally, we include mucosal immunity, the importance of vaccine-elicited immune responses and the challenges thereof in the most vulnerable environment–the female genital tract and the rectal surfaces of the gastrointestinal tract for heterosexual and men who have sex with men transmissions, respectively.
Collapse
Affiliation(s)
- Parveen Sobia
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban 4001, South Africa
- Correspondence: ; Tel.: +27-(0)-31-655-0540
| |
Collapse
|
4
|
Doyle MP, Kose N, Borisevich V, Binshtein E, Amaya M, Nagel M, Annand EJ, Armstrong E, Bombardi R, Dong J, Schey KL, Broder CC, Zeitlin L, Kuang EA, Bornholdt ZA, West BR, Geisbert TW, Cross RW, Crowe JE. Cooperativity mediated by rationally selected combinations of human monoclonal antibodies targeting the henipavirus receptor binding protein. Cell Rep 2021; 36:109628. [PMID: 34469726 PMCID: PMC8527959 DOI: 10.1016/j.celrep.2021.109628] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/25/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022] Open
Abstract
Hendra virus and Nipah virus (NiV), members of the Henipavirus (HNV) genus, are zoonotic paramyxoviruses known to cause severe disease across six mammalian orders, including humans. We isolated a panel of human monoclonal antibodies (mAbs) from the B cells of an individual with prior exposure to equine Hendra virus (HeV) vaccine, targeting distinct antigenic sites. The most potent class of cross-reactive antibodies achieves neutralization by blocking viral attachment to the host cell receptors ephrin-B2 and ephrin-B3, with a second class being enhanced by receptor binding. mAbs from both classes display synergistic activity in vitro. In a stringent hamster model of NiV Bangladesh (NiVB) infection, antibodies from both classes reduce morbidity and mortality and achieve synergistic protection in combination. These candidate mAbs might be suitable for use in a cocktail therapeutic approach to achieve synergistic potency and reduce the risk of virus escape. Doyle et al. describe two human monoclonal antibodies that target the henipavirus receptor-binding protein, HENV-103 and HENV-117, that display highly potent activity in vitro and enhanced therapeutic efficacy in vivo when delivered as a cocktail.
Collapse
Affiliation(s)
- Michael P Doyle
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nurgun Kose
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Viktoriya Borisevich
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Elad Binshtein
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Moushimi Amaya
- Department of Microbiology & Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Marcus Nagel
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Edward J Annand
- Sydney School of Veterinary Science and Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia; Black Mountain Laboratories & Australian Centre for Disease Preparedness, Health and Biosecurity, CSIRO, Canberra & Geelong, Australia
| | - Erica Armstrong
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robin Bombardi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jinhui Dong
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Christopher C Broder
- Department of Microbiology & Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, USA
| | - Erin A Kuang
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, USA
| | | | | | - Thomas W Geisbert
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert W Cross
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
5
|
Xu W, Song C, Wang X, Li Y, Bai X, Liang X, Wu J, Liu J. Downregulation of miR-155-5p enhances the anti-tumor effect of cetuximab on triple-negative breast cancer cells via inducing cell apoptosis and pyroptosis. Aging (Albany NY) 2021; 13:228-240. [PMID: 33472170 PMCID: PMC7835015 DOI: 10.18632/aging.103669] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022]
Abstract
Cetuximab resistance is the main obstacle for the treatment of EGFR overexpression cancer, including triple-negative breast cancer (TNBC). MicroRNA (miRNA)-155-5p is upregulated in TNBC cells; thus, the present study explored whether the downregulation of miR-155-5p enhanced the anti-tumor effect of cetuximab in TNBC cells. MDA-MB-231 and MDA-MB-468 cells were infected with lentivirus-epidermal growth factor receptor (EGFR) for 72 h to obtain EGFR-overexpressed cell lines (MDA-MB-231 and MDA-MB-468). The inhibitory effects of cetuximab on the proliferation and migration of EGFR-overexpressed MDA-MB-468 cells were enhanced following transfection with the miR-155-5p antagomir, and miR-155-5p knockdown enhanced the pro-apoptotic effect of cetuximab on EGFR-overexpressed MDA-MB-468 cells. Further, the luciferase reporter assay revealed that gasdermin E (GSDME) was the direct binding target of miR-155-5p. The combination of cetuximab with the miR-155-5p antagomir promoted pyroptosis in EGFR-overexpressed MDA-MB-468 cells via the upregulation of GSDME-N and cleaved caspase-1. Results from the in vivo experiments confirmed that the downregulation of miR-155-5p enhanced the anti-tumor effect of cetuximab in an MDA-MB-468 xenograft model and on EGFR-overexpressed TNBC cells via inducing cell apoptosis and pyroptosis. Therefore, cetuximab combination with an miR-155-5p antagomir may be a novel therapeutic strategy for the treatment of TNBC.
Collapse
Affiliation(s)
- Wen Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Changfeng Song
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Xiaotong Wang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Yueqi Li
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Xue Bai
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Jingjing Wu
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai 200032, P.R. China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P.R. China
| |
Collapse
|
6
|
Natali EN, Principato S, Ferlicca F, Bianchi F, Fontana LE, Faleri A, Pansegrau W, Surdo PL, Bartolini E, Santini L, Brunelli B, Giusti F, Veggi D, Ferlenghi I, Norais N, Scarselli M. Synergic complement-mediated bactericidal activity of monoclonal antibodies with distinct specificity. FASEB J 2020; 34:10329-10341. [PMID: 32725956 DOI: 10.1096/fj.201902795r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 01/24/2023]
Abstract
The classical complement pathway is triggered when antigen-bound immunoglobulins bind to C1q through their Fc region. While C1q binds to a single Fc with low affinity, a higher avidity stable binding of two or more of C1q globular heads initiates the downstream reactions of the complement cascade ultimately resulting in bacteriolysis. Synergistic bactericidal activity has been demonstrated when monoclonal antibodies recognize nonoverlapping epitopes of the same antigen. The aim of the present work was to investigate the synergistic effect between antibodies directed toward different antigens. To this purpose, we investigated the bactericidal activity induced by combinations of monoclonal antibodies (mAbs) raised against factor H-binding protein (fHbp) and Neisserial Heparin-Binding Antigen (NHBA), two major antigens included in Bexsero, the vaccine against Meningococcus B, for prevention from this devastating disease in infants and adolescents. Collectively, our results show that mAbs recognizing different antigens can synergistically activate complement even when each single Mab is not bactericidal, reinforcing the evidence that cooperative immunity induced by antigen combinations can represent a remarkable added value of multicomponent vaccines. Our study also shows that the synergistic effect of antibodies is modulated by the nature of the respective epitopes, as well as by the antigen density on the bacterial cell surface.
Collapse
Affiliation(s)
- Eriberto Noel Natali
- GSK, Siena, Italy.,CERM, Department of Chemistry, University of Florence, Florence, Italy
| | - Silvia Principato
- GSK, Siena, Italy.,Department of Biological Sciences, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Structural Basis of Nanobodies Targeting the Prototype Norovirus. J Virol 2019; 93:JVI.02005-18. [PMID: 30602609 PMCID: PMC6401464 DOI: 10.1128/jvi.02005-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/07/2018] [Indexed: 12/17/2022] Open
Abstract
The discovery of vulnerable regions on norovirus particles is instrumental in the development of effective inhibitors, particularly for GI noroviruses that are genetically diverse. Analysis of these GI.1-specific Nanobodies has shown that similar to GII norovirus particles, the GI particles have vulnerable regions. The only known cofactor region, the HBGA binding pocket, represents the main target for inhibition. With a combination treatment, i.e., the addition of Nano-7 or Nano-94 with 2′FL, the effect of inhibition was increased. Therefore, combination drug treatments might offer a better approach to combat norovirus infections, especially since the GI genotypes are highly diverse and are continually changing the capsid landscape, and few conserved epitopes have so far been identified. Human norovirus infections are a major disease burden. In this study, we analyzed three new norovirus-specific Nanobodies that interacted with the prototype human norovirus (i.e., genogroup I genotype 1 [GI.1]). We showed that the Nanobodies bound on the side (Nano-7 and Nano-62) and top (Nano-94) of the capsid-protruding (P) domain using X-ray crystallography. Nano-7 and Nano-62 bound at a similar region on the P domain, but the orientations of these two Nanobodies clashed with the shell (S) domain and neighboring P domains on intact particles. This finding suggested that the P domains on the particles should shift in order for Nano-7 and Nano-62 to bind to intact particles. Interestingly, both Nano-7 and Nano-94 were capable of blocking norovirus virus-like particles (VLPs) from binding to histo-blood group antigens (HBGAs), which are important cofactors for norovirus infection. Previously, we showed that the GI.1 HBGA pocket could be blocked with the soluble human milk oligosaccharide 2-fucosyllactose (2′FL). In the current study, we showed that a combined treatment of Nano-7 or Nano-94 with 2′FL enhanced the blocking potential with an additive (Nano-7) or synergistic (Nano-94) effect. We also found that GII Nanobodies with 2′FL also enhanced inhibition. The Nanobody inhibition likely occurred by different mechanisms, including particle aggregation or particle disassembly, whereas 2′FL blocked the HBGA binding site. Overall, these new data showed that the positive effect of the addition of 2′FL was not limited to a single mode of action of Nanobodies or to a single norovirus genogroup. IMPORTANCE The discovery of vulnerable regions on norovirus particles is instrumental in the development of effective inhibitors, particularly for GI noroviruses that are genetically diverse. Analysis of these GI.1-specific Nanobodies has shown that similar to GII norovirus particles, the GI particles have vulnerable regions. The only known cofactor region, the HBGA binding pocket, represents the main target for inhibition. With a combination treatment, i.e., the addition of Nano-7 or Nano-94 with 2′FL, the effect of inhibition was increased. Therefore, combination drug treatments might offer a better approach to combat norovirus infections, especially since the GI genotypes are highly diverse and are continually changing the capsid landscape, and few conserved epitopes have so far been identified.
Collapse
|
8
|
The development of HIV vaccines targeting gp41 membrane-proximal external region (MPER): challenges and prospects. Protein Cell 2018; 9:596-615. [PMID: 29667004 PMCID: PMC6019655 DOI: 10.1007/s13238-018-0534-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 03/05/2018] [Indexed: 10/31/2022] Open
Abstract
A human immunodeficiency virus type-1 (HIV-1) vaccine which is able to effectively prevent infection would be the most powerful method of extinguishing pandemic of the acquired immunodeficiency syndrome (AIDS). Yet, achieving such vaccine remains great challenges. The membrane-proximal external region (MPER) is a highly conserved region of the envelope glycoprotein (Env) gp41 subunit near the viral envelope surface, and it plays a key role in membrane fusion. It is also the target of some reported broadly neutralizing antibodies (bNAbs). Thus, MPER is deemed to be one of the most attractive vaccine targets. However, no one can induce these bNAbs by immunization with immunogens containing the MPER sequence(s). The few attempts at developing a vaccine have only resulted in the induction of neutralizing antibodies with quite low potency and limited breadth. Thus far, vaccine failure can be attributed to various characteristics of MPER, such as those involving structure and immunology; therefore, we will focus on these and review the recent progress in the field from the following perspectives: (1) MPER structure and its role in membrane fusion, (2) the epitopes and neutralization mechanisms of MPER-specific bNAbs, as well as the limitations in eliciting neutralizing antibodies, and (3) different strategies for MPER vaccine design and current harvests.
Collapse
|
9
|
Molinos-Albert LM, Clotet B, Blanco J, Carrillo J. Immunologic Insights on the Membrane Proximal External Region: A Major Human Immunodeficiency Virus Type-1 Vaccine Target. Front Immunol 2017; 8:1154. [PMID: 28970835 PMCID: PMC5609547 DOI: 10.3389/fimmu.2017.01154] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) targeting conserved regions within the human immunodeficiency virus type-1 (HIV-1) envelope glycoprotein (Env) can be generated by the human immune system and their elicitation by vaccination will be a key point to protect against the wide range of viral diversity. The membrane proximal external region (MPER) is a highly conserved region within the Env gp41 subunit, plays a major role in membrane fusion and is targeted by naturally induced bNAbs. Therefore, the MPER is considered as an attractive vaccine target. However, despite many attempts to design MPER-based immunogens, further study is still needed to understand its structural complexity, its amphiphilic feature, and its limited accessibility by steric hindrance. These particular features compromise the development of MPER-specific neutralizing responses during natural infection and limit the number of bNAbs isolated against this region, as compared with other HIV-1 vulnerability sites, and represent additional hurdles for immunogen development. Nevertheless, the analysis of MPER humoral responses elicited during natural infection as well as the MPER bNAbs isolated to date highlight that the human immune system is capable of generating MPER protective antibodies. Here, we discuss the recent advances describing the immunologic and biochemical features that make the MPER a unique HIV-1 vulnerability site, the different strategies to generate MPER-neutralizing antibodies in immunization protocols and point the importance of extending our knowledge toward new MPER epitopes by the isolation of novel monoclonal antibodies. This will be crucial for the redesign of immunogens able to skip non-neutralizing MPER determinants.
Collapse
Affiliation(s)
- Luis M Molinos-Albert
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol (IGTP), Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol (IGTP), Germans Trias i Pujol University Hospital, Barcelona, Spain.,Universitat de Vic - Universitat Central de Catalunya, Barcelona, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol (IGTP), Germans Trias i Pujol University Hospital, Barcelona, Spain.,Universitat de Vic - Universitat Central de Catalunya, Barcelona, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol (IGTP), Germans Trias i Pujol University Hospital, Barcelona, Spain
| |
Collapse
|
10
|
Howell KA, Brannan JM, Bryan C, McNeal A, Davidson E, Turner HL, Vu H, Shulenin S, He S, Kuehne A, Herbert AS, Qiu X, Doranz BJ, Holtsberg FW, Ward AB, Dye JM, Aman MJ. Cooperativity Enables Non-neutralizing Antibodies to Neutralize Ebolavirus. Cell Rep 2017; 19:413-424. [PMID: 28402862 PMCID: PMC6082427 DOI: 10.1016/j.celrep.2017.03.049] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/13/2017] [Accepted: 03/15/2017] [Indexed: 11/25/2022] Open
Abstract
Drug combinations are synergistic when their combined efficacy exceeds the sum of the individual actions, but they rarely include ineffective drugs that become effective only in combination. We identified several “enabling pairs” of neutralizing and non-neutralizing anti-ebolavirus monoclonal antibodies, whose combination exhibited new functional profiles, including transforming a non-neutralizing antibody to a neutralizer. Sub-neutralizing concentrations of antibodies 2G4 or m8C4 enabled non-neutralizing antibody FVM09 (IC50 >1 μM) to exhibit potent neutralization (IC50 1–10 nM). While FVM09 or m8C4 alone failed to protect Ebola-virus-infected mice, a combination of the two antibodies provided 100% protection. Furthermore, non-neutralizers FVM09 and FVM02 exponentially enhanced the potency of two neutralizing antibodies against both Ebola and Sudan viruses. We identified a hotspot for the binding of these enabling antibody pairs near the interface of the glycan cap and GP2. Enabling cooperativity may be an underappreciated phenomenon for viruses, with implications for the design and development of immunotherapeutics and vaccines. We describe cooperative neutralization and in vivo protection Cooperativity turns non-neutralizing ebolavirus antibodies into potent neutralizers A hotspot for antibody cooperativity identified on Ebola virus glycoprotein
Collapse
Affiliation(s)
- Katie A Howell
- Integrated BioTherapeutics, Inc., Rockville, MD 20850, USA
| | - Jennifer M Brannan
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702-5011, USA
| | | | | | | | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hong Vu
- Integrated BioTherapeutics, Inc., Rockville, MD 20850, USA
| | | | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Ana Kuehne
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702-5011, USA
| | - Andrew S Herbert
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702-5011, USA
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | | | | | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John M Dye
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702-5011, USA
| | - M Javad Aman
- Integrated BioTherapeutics, Inc., Rockville, MD 20850, USA.
| |
Collapse
|
11
|
Musumeci G, Bon I, Lembo D, Cagno V, Re MC, Signoretto C, Diani E, Lopalco L, Pastori C, Martin L, Ponchel G, Gibellini D, Bouchemal K. M48U1 and Tenofovir combination synergistically inhibits HIV infection in activated PBMCs and human cervicovaginal histocultures. Sci Rep 2017; 7:41018. [PMID: 28145455 PMCID: PMC5286506 DOI: 10.1038/srep41018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/15/2016] [Indexed: 11/25/2022] Open
Abstract
Microbicides are considered a promising strategy for preventing human immunodeficiency virus (HIV-1) transmission and disease. In this report, we first analyzed the antiviral activity of the miniCD4 M48U1 peptide formulated in hydroxyethylcellulose (HEC) hydrogel in activated peripheral blood mononuclear cells (PBMCs) infected with R5- and X4–tropic HIV-1 strains. The results demonstrate that M48U1 prevented infection by several HIV-1 strains including laboratory strains, and HIV-1 subtype B and C strains isolated from the activated PBMCs of patients. M48U1 also inhibited infection by two HIV-1 transmitted/founder infectious molecular clones (pREJO.c/2864 and pTHRO.c/2626). In addition, M48U1 was administered in association with tenofovir, and these two antiretroviral drugs synergistically inhibited HIV-1 infection. In the next series of experiments, we tested M48U1 alone or in combination with tenofovir in HEC hydrogel with an organ-like structure mimicking human cervicovaginal tissue. We demonstrated a strong antiviral effect in absence of significant tissue toxicity. Together, these results indicate that co-treatment with M48U1 plus tenofovir is an effective antiviral strategy that may be used as a new topical microbicide to prevent HIV-1 transmission.
Collapse
Affiliation(s)
- Giuseppina Musumeci
- Department of Experimental, Diagnostics and Specialty Medicine (DIMES), Microbiology Section, University of Bologna, 40138 Bologna, Italy
| | - Isabella Bon
- Department of Experimental, Diagnostics and Specialty Medicine (DIMES), Microbiology Section, University of Bologna, 40138 Bologna, Italy
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy
| | - Valeria Cagno
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy
| | - Maria Carla Re
- Department of Experimental, Diagnostics and Specialty Medicine (DIMES), Microbiology Section, University of Bologna, 40138 Bologna, Italy
| | - Caterina Signoretto
- Department of Diagnostics and Public Health, Microbiology and Virology Unit, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Erica Diani
- Department of Diagnostics and Public Health, Microbiology and Virology Unit, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudia Pastori
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Loïc Martin
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), Gif sur Yvette, F-91191, France
| | - Gilles Ponchel
- Institut Galien Paris Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris Saclay, 5 rue J-B. Clément, 92296, Châtenay-Malabry cedex, France
| | - Davide Gibellini
- Department of Diagnostics and Public Health, Microbiology and Virology Unit, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Kawthar Bouchemal
- Institut Galien Paris Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris Saclay, 5 rue J-B. Clément, 92296, Châtenay-Malabry cedex, France
| |
Collapse
|
12
|
Abstract
Recent biological, structural, and technical advances are converging within the HIV-1 vaccine field to harness the power of antibodies for prevention and therapy. Numerous monoclonal antibodies with broad neutralizing activity against diverse HIV-1 isolates have now been identified, revealing at least five sites of vulnerability on the envelope (Env) glycoproteins. While there are practical and technological barriers blocking a clear path from broadly neutralizing antibodies (bNAb) to a protective vaccine, this is not a dead end. Scientists are revisiting old approaches with new technology, cutting new trails through unexplored territory, and paving new roads in the hopes of preventing HIV-1 infection. Other promising avenues to capitalize on the power of bNAbs are also being pursued, such as passive antibody immunotherapy and gene therapy approaches. Moreover, non-neutralizing antibodies have inhibitory activities that could have protective potential, alone or in combination with bNAbs. With a new generation of bNAbs, and a clinical trial that associated antibodies with reduced acquisition, the field is closer than ever to developing strategies to use antibodies against HIV-1.
Collapse
Affiliation(s)
- S Abigail Smith
- Yerkes National Primate Research Center, Atlanta, Georgia, 30322, USA
| | - Cynthia A Derdeyn
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, 30322, USA; Yerkes National Primate Research Center, Atlanta, Georgia, 30322, USA
| |
Collapse
|
13
|
Alberti MO, Jones JJ, Miglietta R, Ding H, Bakshi RK, Edmonds TG, Kappes JC, Ochsenbauer C. Optimized Replicating Renilla Luciferase Reporter HIV-1 Utilizing Novel Internal Ribosome Entry Site Elements for Native Nef Expression and Function. AIDS Res Hum Retroviruses 2015; 31:1278-96. [PMID: 26101895 DOI: 10.1089/aid.2015.0074] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We previously developed replication-competent reporter HIV-1 (referred to herein as LucR.T2A reporter viruses), utilizing a "ribosome skipping" T2A peptide strategy to link Renilla luciferase (LucR) with Nef expression. The demonstrated utility for HIV-1 vaccine and transmission study applications included measurement of neutralizing antibody (NAb) activity in vaccine sera, improved cell-mediated virus inhibition assays, such as T cell-mediated virus inhibition and antibody-dependent cell-mediated cytotoxicity (ADCC) assays, and humanized mouse models. Herein, we extend our prior work and introduce reporter virus technology for applications that require fully functional Nef. We demonstrate that in CD4(+) T cells productively infected with LucR.T2A reporter viruses, T2A peptide-driven Nef expression and function, such as down-regulation of surface CD4 and MHC-I, were impaired. We overcame this limitation of LucR.T2A reporter viruses and achieved physiological Nef expression and function by engineering novel LucR reporter HIV-1 comprising 11 different internal ribosome entry site (IRES) elements chosen for size and relative activity. A range of Nef expression was observed in 293T cells transfected with the different LucR.IRES reporter virus constructs. Iteratively, we identified IRES reporter genomes that expressed Nef closest to physiological levels and produced virus with infectivity, titers, and replication kinetics similar to nonreporter viruses. Our results demonstrated that LucR reporter activity was stable over multiple replication cycles in peripheral blood mononuclear cells (PBMCs). Furthermore, we analyzed Nef functionality, i.e., down-modulation of MHC-I and CD4, following infection of T cell lines and PBMCs. Unlike LucR.T2A reporter virus, one of the redesigned LucR.IRES reporter viruses [containing the modified encephalomyocarditis virus (EMCV) 6ATR IRES element, "6ATRi"] demonstrated Nef expression and function similar to parental "nonreporter" virus. In a previously validated (nef-independent) T cell-based NAb neutralization assay, LucR.6ATRi reporter virus performed indistinguishably from LucR.T2A reporter virus. In summary, reporter viruses comprising the "6ATRi" element promise to augment HIV-1 vaccine and transmission research approaches requiring a sensitive reporter readout combined with wild-type Nef function.
Collapse
Affiliation(s)
- Michael O. Alberti
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer J. Jones
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Riccardo Miglietta
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rakesh K. Bakshi
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tara G. Edmonds
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for AIDS Research, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Center for AIDS Research, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama
| |
Collapse
|