1
|
Zhu Z, Zhao Y, Li P. Establishment of a Basement Membrane-Related Prognosis Model and Characterization of Tumor Microenvironment Infiltration in Acute Myeloid Leukemia. J Cancer 2025; 16:1228-1242. [PMID: 39895788 PMCID: PMC11786050 DOI: 10.7150/jca.108041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/04/2025] [Indexed: 02/04/2025] Open
Abstract
Background: Basement membrane is a special component of extracellular matrix of epithelial and endothelial tissues, which can maintain their normal morphologies and functions. It can also participate in tumor progression and affect tumor treatment. However, the roles of basement membrane-related genes (BMGs) in acute myeloid leukemia (AML) remain unknown. Material and methods: We downloaded the data of AML and normal samples from TCGA, GTEx, and GEO. Then, we performed bioinformatics analysis to identify differential BMGs. We calculated the risk score of the training cohort and divided it into two risk groups. In addition, we also introduced external cohorts, serving as validation cohorts, to estimate the accuracy of risk score. A nomogram was established based on the risk score and clinicopathological characteristics to predict the prognosis. Based on BMGs, AML patients of TCGA were clustered into 2 subtypes. To investigate the biological features and the association between immune cells and TME, we utilized GSVA to assess pathway enrichment and ssGSEA to quantify the levels of immune cell infiltration across samples. Results: We obtained 3 differential BMGs between AML and normal samples. The training cohort was divided into high- and low-risk groups based on the risk score. The Kaplan-Meier survival analysis indicated that the two groups had significant differences. The nomogram could be used to predict the survival outcomes of AML patients. Based on the clustering result, we found significant differences between the two gene clusters. Sankey's diagram suggested that cluster B was associated with the high-risk group and poor prognosis. GSVA analysis showed that cluster B was also related to the upregulation of intercellular and intracellular signal transduction pathways. In TME, resting mast cells, follicular helper T cells, and plasma cells decreased while monocytes increased in the high-risk group. In addition, the high-risk group was more sensitive to BTK and AKT inhibitors. Conclusion: Our study indicated that the nomogram model of BMGs could predict the prognosis of AML patients. Meanwhile, BMGs were correlated with immune TME in AML. A correct and comprehensive assessment of the mechanisms of BMGs in individuals will help guide more effective treatment.
Collapse
Affiliation(s)
| | | | - Ping Li
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Varghese JF, Kaskow BJ, von Glehn F, Case J, Li Z, Julé AM, Berdan E, Ho Sui SJ, Hu Y, Krishnan R, Chitnis T, Kuchroo VK, Weiner HL, Baecher-Allan CM. Human regulatory memory B cells defined by expression of TIM-1 and TIGIT are dysfunctional in multiple sclerosis. Front Immunol 2024; 15:1360219. [PMID: 38745667 PMCID: PMC11091236 DOI: 10.3389/fimmu.2024.1360219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/13/2024] [Indexed: 05/16/2024] Open
Abstract
Background Regulatory B cells (Bregs) play a pivotal role in suppressing immune responses, yet there is still a lack of cell surface markers that can rigorously identify them. In mouse models for multiple sclerosis (MS), TIM-1 or TIGIT expression on B cells is required for maintaining self-tolerance and regulating autoimmunity to the central nervous system. Here we investigated the activities of human memory B cells that differentially express TIM-1 and TIGIT to determine their potential regulatory function in healthy donors and patients with relapsing-remitting (RR) MS. Methods FACS-sorted TIM-1+/-TIGIT+/- memory B (memB) cells co-cultured with allogenic CD4+ T cells were analyzed for proliferation and induction of inflammatory markers using flow cytometry and cytokine quantification, to determine Th1/Th17 cell differentiation. Transcriptional differences were assessed by SMARTSeq2 RNA sequencing analysis. Results TIM-1-TIGIT- double negative (DN) memB cells strongly induce T cell proliferation and pro-inflammatory cytokine expression. The TIM-1+ memB cells enabled low levels of CD4+ T cell activation and gave rise to T cells that co-express IL-10 with IFNγ and IL-17A or FoxP3. T cells cultured with the TIM-1+TIGIT+ double positive (DP) memB cells exhibited reduced proliferation and IFNγ, IL-17A, TNFα, and GM-CSF expression, and exhibited strong regulation in Breg suppression assays. The functional activity suggests the DP memB cells are a bonafide Breg population. However, MS DP memB cells were less inhibitory than HC DP memB cells. A retrospective longitudinal study of anti-CD20 treated patients found that post-treatment DP memB cell frequency and absolute number were associated with response to therapy. Transcriptomic analyses indicated that the dysfunctional MS-derived DP memB/Breg population exhibited increased expression of genes associated with T cell activation and survival (CD80, ZNF10, PIK3CA), and had distinct gene expression compared to the TIGIT+ or TIM-1+ memB cells. Conclusion These findings demonstrate that TIM-1/TIGIT expressing memory B cell subsets have distinct functionalities. Co-expression of TIM-1 and TIGIT defines a regulatory memory B cell subset that is functionally impaired in MS.
Collapse
Affiliation(s)
- Johnna F. Varghese
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Belinda J. Kaskow
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Felipe von Glehn
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Junning Case
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Zhenhua Li
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Amélie M. Julé
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Emma Berdan
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Shannan Janelle Ho Sui
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Yong Hu
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Rajesh Krishnan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
- The Gene Lay Institute of Immunology and Inflammation, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
| | - Tanuja Chitnis
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Vijay K. Kuchroo
- Harvard Medical School, Boston, MA, United States
- The Gene Lay Institute of Immunology and Inflammation, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
| | - Howard L. Weiner
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Clare Mary Baecher-Allan
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
3
|
Flynn PA, Long MD, Kosaka Y, Long N, Mulkey JS, Coy JL, Agarwal A, Lind EF. Leukemic mutation FLT3-ITD is retained in dendritic cells and disrupts their homeostasis leading to expanded Th17 frequency. Front Immunol 2024; 15:1297338. [PMID: 38495876 PMCID: PMC10943691 DOI: 10.3389/fimmu.2024.1297338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/09/2024] [Indexed: 03/19/2024] Open
Abstract
Dendritic cells (DC) are mediators between innate and adaptive immune responses to pathogens and tumors. DC development is determined by signaling through the receptor tyrosine kinase Fms-like tyrosine kinase 3 (FLT3) in bone marrow myeloid progenitors. Recently the naming conventions for DC phenotypes have been updated to distinguish between "Conventional" DCs (cDCs) and plasmacytoid DCs (pDCs). Activating mutations of FLT3, including Internal Tandem Duplication (FLT3-ITD), are associated with poor prognosis for acute myeloid leukemia (AML) patients. Having a shared myeloid lineage it can be difficult to distinguish bone fide DCs from AML tumor cells. To date, there is little information on the effects of FLT3-ITD in DC biology. To further elucidate this relationship we utilized CITE-seq technology in combination with flow cytometry and multiplex immunoassays to measure changes to DCs in human and mouse tissues. We examined the cDC phenotype and frequency in bone marrow aspirates from patients with AML to understand the changes to cDCs associated with FLT3-ITD. When compared to healthy donor (HD) we found that a subset of FLT3-ITD+ AML patient samples have overrepresented populations of cDCs and disrupted phenotypes. Using a mouse model of FLT3-ITD+ AML, we found that cDCs were increased in percentage and number compared to control wild-type (WT) mice. Single cell RNA-seq identified FLT3-ITD+ cDCs as skewed towards a cDC2 T-bet- phenotype, previously shown to promote Th17 T cells. We assessed the phenotypes of CD4+ T cells in the AML mice and found significant enrichment of both Treg and Th17 CD4+ T cells in the bone marrow and spleen compartments. Ex vivo stimulation of CD4+ T cells also showed increased Th17 phenotype in AML mice. Moreover, co-culture of AML mouse-derived DCs and naïve OT-II cells preferentially skewed T cells into a Th17 phenotype. Together, our data suggests that FLT3-ITD+ leukemia-associated cDCs polarize CD4+ T cells into Th17 subsets, a population that has been shown to be negatively associated with survival in solid tumor contexts. This illustrates the complex tumor microenvironment of AML and highlights the need for further investigation into the effects of FLT3-ITD mutations on DC phenotypes and their downstream effects on Th polarization.
Collapse
Affiliation(s)
- Patrick A. Flynn
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - Mark D. Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Yoko Kosaka
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - Nicola Long
- Department of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Jessica S. Mulkey
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - Jesse L. Coy
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - Anupriya Agarwal
- Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, United States
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Evan F. Lind
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
- Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
4
|
Bassani B, Simonetti G, Cancila V, Fiorino A, Ciciarello M, Piva A, Khorasani AM, Chiodoni C, Lecis D, Gulino A, Fonzi E, Botti L, Portararo P, Costanza M, Brambilla M, Colombo G, Schwaller J, Tzankov A, Ponzoni M, Ciceri F, Bolli N, Curti A, Tripodo C, Colombo MP, Sangaletti S. ZEB1 shapes AML immunological niches, suppressing CD8 T cell activity while fostering Th17 cell expansion. Cell Rep 2024; 43:113794. [PMID: 38363677 DOI: 10.1016/j.celrep.2024.113794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/07/2023] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
Acute myeloid leukemia (AML) progression is influenced by immune suppression induced by leukemia cells. ZEB1, a critical transcription factor in epithelial-to-mesenchymal transition, demonstrates immune regulatory functions in AML. Silencing ZEB1 in leukemic cells reduces engraftment and extramedullary disease in immune-competent mice, activating CD8 T lymphocytes and limiting Th17 cell expansion. ZEB1 in AML cells directly promotes Th17 cell development that, in turn, creates a self-sustaining loop and a pro-invasive phenotype, favoring transforming growth factor β (TGF-β), interleukin-23 (IL-23), and SOCS2 gene transcription. In bone marrow biopsies from AML patients, immunohistochemistry shows a direct correlation between ZEB1 and Th17. Also, the analysis of ZEB1 expression in larger datasets identifies two distinct AML groups, ZEB1high and ZEB1low, each with specific immunological and molecular traits. ZEB1high patients exhibit increased IL-17, SOCS2, and TGF-β pathways and a negative association with overall survival. This unveils ZEB1's dual role in AML, entwining pro-tumoral and immune regulatory capacities in AML blasts.
Collapse
Affiliation(s)
- Barbara Bassani
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, Human Pathology Section, School of Medicine, University of Palermo, 90133 Palermo, Italy
| | - Antonio Fiorino
- Predictive Medicine: Molecular Bases of Genetic Risk Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Marilena Ciciarello
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza," Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Annamaria Piva
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Arman Mandegar Khorasani
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Daniele Lecis
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | - Eugenio Fonzi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori," Meldola, Forlì-Cesena, Italy
| | - Laura Botti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Paola Portararo
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Massimo Costanza
- Neuro-Oncology Unit, Department of Clinical Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marta Brambilla
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giorgia Colombo
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Juerg Schwaller
- University Children's Hospital Basel & Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Maurilio Ponzoni
- IRCCS Ospedale S. Raffaele, University Vita-Salute San Raffaele, Milan, Italy
| | - Fabio Ciceri
- IRCCS Ospedale S. Raffaele, University Vita-Salute San Raffaele, Milan, Italy
| | - Niccolò Bolli
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Antonio Curti
- Department of Experimental, Diagnostic and Specialty Medicine - DIMES, Institute of Hematology "Seràgnoli," Bologna, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, Human Pathology Section, School of Medicine, University of Palermo, 90133 Palermo, Italy; IFOM-ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Mario P Colombo
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy.
| | - Sabina Sangaletti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy.
| |
Collapse
|
5
|
Cui H, Wang N, Li H, Bian Y, Wen W, Kong X, Wang F. The dynamic shifts of IL-10-producing Th17 and IL-17-producing Treg in health and disease: a crosstalk between ancient "Yin-Yang" theory and modern immunology. Cell Commun Signal 2024; 22:99. [PMID: 38317142 PMCID: PMC10845554 DOI: 10.1186/s12964-024-01505-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/28/2024] [Indexed: 02/07/2024] Open
Abstract
The changes in T regulatory cell (Treg) and T helper cell (Th) 17 ratios holds paramount importance in ensuring internal homeostasis and disease progression. Recently, novel subsets of Treg and Th17, namely IL-17-producing Treg and IL-10-producing Th17 have been identified. IL-17-producing Treg and IL-10-producing Th17 are widely considered as the intermediates during Treg/Th17 transformation. These "bi-functional" cells exhibit plasticity and have been demonstrated with important roles in multiple physiological functions and disease processes. Yin and Yang represent opposing aspects of phenomena according to the ancient Chinese philosophy "Yin-Yang" theory. Furthermore, Yin can transform into Yang, and vice versa, under specific conditions. This theory has been widely used to describe the contrasting functions of immune cells and molecules. Therefore, immune-activating populations (Th17, M1 macrophage, etc.) and immune overreaction (inflammation, autoimmunity) can be considered Yang, while immunosuppressive populations (Treg, M2 macrophage, etc.) and immunosuppression (tumor, immunodeficiency) can be considered Yin. However, another important connotation of "Yin-Yang" theory, the conversion between Yin and Yang, has been rarely documented in immune studies. The discovery of IL-17-producing Treg and IL-10-producing Th17 enriches the meaning of "Yin-Yang" theory and further promotes the relationship between ancient "Yin-Yang" theory and modern immunology. Besides, illustrating the functions of IL-17-producing Treg and IL-10-producing Th17 and mechanisms governing their differentiation provides valuable insights into the mechanisms underlying the dynamically changing statement of immune statement in health and diseases.
Collapse
Affiliation(s)
- Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Ning Wang
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Hanzhou Li
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuhong Bian
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Weibo Wen
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fudi Wang
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Flynn PA, Long MD, Kosaka Y, Mulkey JS, Coy JL, Agarwal A, Lind EF. Leukemic mutation FLT3-ITD is retained in dendritic cells and disrupts their homeostasis leading to expanded Th17 frequency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558512. [PMID: 37781631 PMCID: PMC10541139 DOI: 10.1101/2023.09.19.558512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Dendritic cells (DC) are mediators of adaptive immune responses to pathogens and tumors. DC development is determined by signaling through the receptor tyrosine kinase Fms-like tyrosine kinase 3 (FLT3) in bone marrow myeloid progenitors. Recently the naming conventions for DC phenotypes have been updated to distinguish between "Conventional" DCs (cDCs) and plasmacytoid DCs (pDCs). Activating mutations of FLT3, including Internal Tandem Duplication (FLT3-ITD), are associated with poor prognosis for leukemia patients. To date, there is little information on the effects of FLT3-ITD in DC biology. We examined the cDC phenotype and frequency in bone marrow aspirates from patients with acute myeloid leukemia (AML) to understand the changes to cDCs associated with FLT3-ITD. When compared to healthy donor (HD) we found that a subset of FLT3-ITD+ AML patient samples have overrepresented populations of cDCs and disrupted phenotypes. Using a mouse model of FLT3-ITD+ AML, we found that cDCs were increased in percentage and number compared to control wild-type (WT) mice. Single cell RNA-seq identified FLT3-ITD+ cDCs as skewed towards a cDC2 T-bet - phenotype, previously shown to promote Th17 T cells. We assessed the phenotypes of CD4+ T cells in the AML mice and found significant enrichment of both Treg and Th17 CD4+ T cells. Furthermore, co-culture of AML mouse- derived DCs and naïve OT-II cells preferentially skewed T cells into a Th17 phenotype. Together, our data suggests that FLT3-ITD+ leukemia-associated cDCs polarize CD4+ T cells into Th17 subsets, a population that has been shown to be negatively associated with survival in solid tumor contexts. This illustrates the complex tumor microenvironment of AML and highlights the need for further investigation into the effects of FLT3-ITD mutations on DC phenotypes.
Collapse
|
7
|
Wang Y, Tang X, Zhu Y, Yang XX, Liu B. Role of interleukins in acute myeloid leukemia. Leuk Lymphoma 2023; 64:1400-1413. [PMID: 37259867 DOI: 10.1080/10428194.2023.2218508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with strong heterogeneity. Immune disorders are a feature of various malignancies, including AML. Interleukins (ILs) and other cytokines participate in a series of biological processes of immune disorders in the microenvironment, and serve as a bridge for communication between various cellular components in the immune system. The role of ILs in AML is complex and pleiotropic. It can not only play an anti-AML role by enhancing anti-leukemia immunity and directly inducing AML cell apoptosis, but also promote the growth, proliferation and drug resistance of AML. These properties of ILs can be used to explore their potential efficacy in disease monitoring, prognosis assessment, and development of new treatment strategies for AML. This review aims to clarify some of the complex roles of ILs in AML and their clinical applications.
Collapse
Affiliation(s)
- Yin Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yu Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao-Xiao Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Bei Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Hematology, The First Affiliated Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Kang X, Jiang H, Peng X, Tang B, Wei S. The impact of blood Transfusion on T Helper Cells and Cytokines in Transfusion-Refractory Patients: a Prospective Study. Indian J Hematol Blood Transfus 2023; 39:132-140. [PMID: 36699442 PMCID: PMC9868220 DOI: 10.1007/s12288-022-01559-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 07/08/2022] [Indexed: 01/28/2023] Open
Abstract
Red blood cell (RBC) transfusion can increase patients' hemoglobin levels and improve hypoxia. The factors affecting the transfusion efficacy include immune and nonimmune factors. The objective of this study was to explore the impact of blood transfusion on T helper (Th) cell ratios and levels of serum cytokines in RBC transfusion-refractory patients. In this prospective study, anemic patients receiving RBC transfusion were enrolled. Peripheral venous blood samples were extracted from patients before RBC transfusion and within 24 h after transfusion. Th cell ratios and levels of serum cytokines were detected by flow cytometry. Differences in Th cell ratios and levels of serum cytokines (IL-2, IL-4, IL-6, IL-10, TNF-α and IFN-γ) between pretransfusion and posttransfusion were compared. A total of 47 patients agreed to participate in this study. They were grouped according to incremental Hb levels, 20 (42.55%) patients were divided into the RBC transfusion refractory group, while 27 (57.45%) patients were in the validity group. The expected Hb increment was defined by a panel of Chinese experts. In RBC transfusion-refractory patients, Th1 and Th2 cell ratios increased while levels of serum IL-2 and IL-10 decreased after transfusion. In RBC transfusion validity patients, there were no significant changes in Th cell ratios or levels of serum cytokines between pretransfusion and posttransfusion. We found that Th1 and Th2 cell ratios increased while serum IL-2 and IL-10 levels decreased after transfusion in RBC-refractory patients.
Collapse
Affiliation(s)
- Xiaozhen Kang
- Department of Blood Transfusion, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde, 352100 China
| | - Huangzhou Jiang
- Department of Blood Transfusion, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde, 352100 China
| | - Xianxiang Peng
- Department of Blood Transfusion, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde, 352100 China
| | - Baojia Tang
- Department of Blood Transfusion, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde, 352100 China
| | - Shouzhong Wei
- Department of Blood Transfusion, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde, 352100 China
| |
Collapse
|
9
|
Luciano M, Krenn PW, Horejs-Hoeck J. The cytokine network in acute myeloid leukemia. Front Immunol 2022; 13:1000996. [PMID: 36248849 PMCID: PMC9554002 DOI: 10.3389/fimmu.2022.1000996] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous malignancy of the blood and bone marrow, characterized by clonal expansion of myeloid stem and progenitor cells and rapid disease progression. Chemotherapy has been the first-line treatment for AML for more than 30 years. Application of recent high-throughput next-generation sequencing technologies has revealed significant molecular heterogeneity to AML, which in turn has motivated efforts to develop new, targeted therapies. However, due to the high complexity of this disease, including multiple driver mutations and the coexistence of multiple competing tumorigenic clones, the successful incorporation of these new agents into clinical practice remains challenging. These continuing difficulties call for the identification of innovative therapeutic approaches that are effective for a larger cohort of AML patients. Recent studies suggest that chronic immune stimulation and aberrant cytokine signaling act as triggers for AML initiation and progression, facets of the disease which might be exploited as promising targets in AML treatment. However, despite the greater appreciation of cytokine profiles in AML, the exact functions of cytokines in AML pathogenesis are not fully understood. Therefore, unravelling the molecular basis of the complex cytokine networks in AML is a prerequisite to develop new therapeutic alternatives based on targeting cytokines and their receptors.
Collapse
Affiliation(s)
- Michela Luciano
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Peter W. Krenn
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
10
|
Changes of Cell Adhesion Molecules and T Cell Subset Populations in Acute Myeloid Leukemia Patients Undergoing Intravenous Administration of Cytarabine Supplemented with Idarubicin. J CHEM-NY 2022. [DOI: 10.1155/2022/5507328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective. The present study aimed at investigating the efficacy and safety of intravenous administration of cytarabine supplemented with idarubicin in treating acute myeloid leukemia (AML) patients undergoing first attack and its effects on serum levels of cell adhesion molecules, cytokines in response to inflammation, and T cell subset populations in acute myeloid leukemia (AML) patients undergoing first attack. Methods. A total of 88 AML patients eligible for inclusion and exclusion criteria participated in the study and were randomly assigned into the control group (n = 44) in which the patients received intravenous administration of cytarabine and daunorubicin and the study group (n = 44) in which the patients received intravenous administration of cytarabine and idarubicin. Clinical response, incidence of adverse reactions, and quality of life 3 months after therapy were evaluated. Soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), IL-10, and IL-35 were measured by ELISA methods. Phenotypic characteristics of T cell subsets including CD4+, CD8+, CD4+IL-10 Tregs, and CD4+CD25+CD127−Foxp3+ Tregs were analyzed by flow cytometry. Results. The clinical response rate of the study group was better than that of the control group (65.91% vs. 45.45%) (
). After treatment, the study group revealed significantly lower levels of sICAM-1, sVCAM-1, IL-10, and IL-35, a lower proportion of Tregs, a higher rate of CD4+/CD8+ T cells, along with increased scores of the Karnofsky Performance Scale (KPS) compared with the control group (
). The incidence rate of adverse reactions in the study group was lower than that in the control group (34.09% vs. 61.36%) (
). Conclusion. These findings demonstrate that intravenous administration of cytarabine supplemented with idarubicin can improve the immune function and quality of life of AML patients, and this combination drug therapy is effective and safe for AML.
Collapse
|
11
|
Jimbu L, Mesaros O, Neaga A, Nanut AM, Tomuleasa C, Dima D, Bocsan C, Zdrenghea M. The Potential Advantage of Targeting Both PD-L1/PD-L2/PD-1 and IL-10-IL-10R Pathways in Acute Myeloid Leukemia. Pharmaceuticals (Basel) 2021; 14:1105. [PMID: 34832887 PMCID: PMC8620891 DOI: 10.3390/ph14111105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 12/30/2022] Open
Abstract
Tumor cells promote the suppression of host anti-tumor type 1 T cell responses by various mechanisms, including the upregulation of surface inhibitory molecules such as programmed death ligand (PD-L)-1, and the production of immunosuppressive cytokines such as interleukin-10 (IL-10). There are over 2000 trials investigating PD-L1 and/or its receptor programmed-death 1 (PD-1) blockade in cancer, leading to the approval of PD-1 or PD-L1 inhibitors in several types of solid cancers and in hematological malignancies. The available data suggest that the molecule PD-L1 on antigen-presenting cells suppresses type 1 T cell immune responses such as cytotoxicity, and that the cytokine IL-10, in addition to downregulating immune responses, increases the expression of inhibitory molecule PD-L1. We hypothesize that the manipulation of both the co-inhibitory network (with anti-PD-L1 blocking antibodies) and suppressor network (with anti-IL-10 blocking antibodies) is an attractive immunotherapeutic intervention for acute myeloid leukemia (AML) patients ineligible for standard treatment with chemotherapy and hematopoietic stem cell transplantation, and with less severe adverse reactions. The proposed combination of these two immunotherapies represents a new approach that can be readily translated into the clinic to improve the therapeutic efficacy of AML disease treatment.
Collapse
Affiliation(s)
- Laura Jimbu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (A.N.); (A.M.N.); (C.T.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania;
| | - Oana Mesaros
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (A.N.); (A.M.N.); (C.T.); (M.Z.)
- “Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, 19-21 Croitorilor Str., 400162 Cluj-Napoca, Romania
| | - Alexandra Neaga
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (A.N.); (A.M.N.); (C.T.); (M.Z.)
| | - Ana Maria Nanut
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (A.N.); (A.M.N.); (C.T.); (M.Z.)
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (A.N.); (A.M.N.); (C.T.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania;
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania;
| | - Corina Bocsan
- Department of Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania;
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (A.N.); (A.M.N.); (C.T.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania;
| |
Collapse
|
12
|
Mázló A, Kovács R, Miltner N, Tóth M, Veréb Z, Szabó K, Bacskai I, Pázmándi K, Apáti Á, Bíró T, Bene K, Rajnavölgyi É, Bácsi A. MSC-like cells increase ability of monocyte-derived dendritic cells to polarize IL-17-/IL-10-producing T cells via CTLA-4. iScience 2021; 24:102312. [PMID: 33855282 PMCID: PMC8027231 DOI: 10.1016/j.isci.2021.102312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/17/2021] [Accepted: 03/11/2021] [Indexed: 11/30/2022] Open
Abstract
Mesenchymal stromal cell-like (MSCl) cells generated from human embryonic stem cells are considered to be an eligible cell line to model the immunomodulatory behavior of mesenchymal stromal cells (MSCs) in vitro. Dendritic cells (DCs) are essential players in the maintenance and restoration of the sensitive balance between tolerance and immunity. Here, the effects of MSCl cells on the in vitro differentiation of human monocytes into DCs were investigated. MSCl cells promote the differentiation of CTLA-4 expressing DCs via the production of all-trans retinoic acid (ATRA) functioning as a ligand of RARα, a key nuclear receptor in DC development. These semi-matured DCs exhibit an ability to activate allogeneic, naive T cells and polarize them into IL-10 + IL-17 + double-positive T helper cells in a CTLA-4-dependent manner. Mapping the molecular mechanisms of MSC-mediated indirect modulation of DC differentiation may help to expand MSCs' clinical application in cell-free therapies. Mesenchymal stromal cell-like cells alter moDC differentiation via RARα activation Mesenchymal stromal cell-like cells express genes known to play role in ATRA synthesis MoDCs, differentiated in the presence of MSCl-derived factors, express CTLA-4 CTLA-4+ moDCs are able to induce polarization of IL-10- and IL-17-producing helper T cells
Collapse
Affiliation(s)
- Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary.,Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary.,MTA-DE Cell Biology and Signaling Research Group of the Hungarian Academy of Sciences, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Ramóna Kovács
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary.,Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Noémi Miltner
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Márta Tóth
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary.,Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Research Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Csongrád-Csanád County 6720, Hungary.,Research Institute of Translational Biomedicine, Department of Dermatology and Allergology, University of Szeged, Szeged, Csongrád-Csanád County 6720, Hungary
| | - Krisztina Szabó
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Ildikó Bacskai
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Ágota Apáti
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117 Hungary
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Krisztián Bene
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Éva Rajnavölgyi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| |
Collapse
|
13
|
Menzner AK, Rottmar T, Voelkl S, Bosch JJ, Mougiakakos D, Mackensen A, Resheq YJ. Hydrogen-Peroxide Synthesis and LDL-Uptake Controls Immunosuppressive Properties in Monocyte-Derived Dendritic Cells. Cancers (Basel) 2021; 13:461. [PMID: 33530408 PMCID: PMC7865547 DOI: 10.3390/cancers13030461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIMS Induction of myeloid-derived suppressor cells (MDSC) is a critical step in immune cell evasion by different cancer types, including liver cancer. In the liver, hepatic stromal cells orchestrate induction of MDSCs, employing a mechanism dependent on hydrogen peroxide (H2O2) depletion. However, the effects on monocyte-derived dendritic cells (moDCs) are unknown. METHODS Monocytes from healthy donors were differentiated to moDCs in the presence of extracellular enzymatic H2O2-depletion (hereinafter CAT-DCs), and studied phenotypically and functionally. To elucidate the underlying molecular mechanisms, we analyzed H2O2- and LDL-metabolism as they are interconnected in monocyte-driven phagocytosis. RESULTS CAT-DCs were of an immature DC phenotype, particularly characterized by impaired expression of the costimulatory molecules CD80/86. Moreover, CAT-DCs were able to suppress T-cells using indoleamine 2,3-dioxygenase (IDO), and induced IL10/IL17-secreting T-cells-a subtype reported to exert immunosuppression in acute myeloid leukemia. CAT-DCs also displayed significantly increased NADPH-oxidase-driven H2O2-production, enhancing low-density lipoprotein (LDL)-uptake. Blocking LDL-uptake restored maturation, and attenuated the immunosuppressive properties of CAT-DCs. DISCUSSION Here, we report a novel axis between H2O2- and LDL-metabolism controlling tolerogenic properties in moDCs. Given that moDCs are pivotal in tumor-rejection, and lipid-accumulation is associated with tumor-immune-escape, LDL-metabolism appears to play an important role in tumor-immunology.
Collapse
Affiliation(s)
- Ann-Katrin Menzner
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen Nuremberg, Ulmenweg 18, 91054 Erlangen, Germany; (A.-K.M.); (T.R.); (S.V.); (J.J.B.); (D.M.); (A.M.)
| | - Tanja Rottmar
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen Nuremberg, Ulmenweg 18, 91054 Erlangen, Germany; (A.-K.M.); (T.R.); (S.V.); (J.J.B.); (D.M.); (A.M.)
| | - Simon Voelkl
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen Nuremberg, Ulmenweg 18, 91054 Erlangen, Germany; (A.-K.M.); (T.R.); (S.V.); (J.J.B.); (D.M.); (A.M.)
| | - Jacobus J. Bosch
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen Nuremberg, Ulmenweg 18, 91054 Erlangen, Germany; (A.-K.M.); (T.R.); (S.V.); (J.J.B.); (D.M.); (A.M.)
- Clinical Research Center Hannover, MH Hannover, Feodor-Lynen-Straße 15, 30625 Hannover, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen Nuremberg, Ulmenweg 18, 91054 Erlangen, Germany; (A.-K.M.); (T.R.); (S.V.); (J.J.B.); (D.M.); (A.M.)
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen Nuremberg, Ulmenweg 18, 91054 Erlangen, Germany; (A.-K.M.); (T.R.); (S.V.); (J.J.B.); (D.M.); (A.M.)
| | - Yazid J. Resheq
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen Nuremberg, Ulmenweg 18, 91054 Erlangen, Germany; (A.-K.M.); (T.R.); (S.V.); (J.J.B.); (D.M.); (A.M.)
| |
Collapse
|
14
|
Cerboni S, Gehrmann U, Preite S, Mitra S. Cytokine-regulated Th17 plasticity in human health and diseases. Immunology 2020; 163:3-18. [PMID: 33064842 DOI: 10.1111/imm.13280] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Upon activation, naïve CD4+ T helper (Th) cells differentiate into distinct Th effector cell lineages depending on the local cytokine environment. However, these polarized Th cells can also adapt their function and phenotype depending on the changing cytokine environment, demonstrating functional plasticity. Here, Th17 cells, which play a critical role in host protection from extracellular pathogens and in autoimmune disorders, are of particular interest. While being able to shift phenotype within their lineage, Th17 cells can also acquire characteristics of Th1, Th2, T follicular helper (Tfh) or regulatory T cells. Th17 cell identity is determined by a spectrum of extracellular signals, including cytokines, which are critical orchestrators of cellular immune responses. Cytokine induces changes in epigenetic, transcriptional, translational and metabolomic parameters. How these signals are integrated to determine Th17 plasticity is not well defined, yet this is a crucial point of investigation as it represents a potential target to treat autoimmune and inflammatory diseases. The goal of this review was to discuss how cytokines regulate intracellular networks, focusing on the regulation of lineage-specific transcription factors, chromatin remodelling and metabolism, to control human Th17 cell plasticity. We discuss the importance of Th17 plasticity in autoimmunity and cancer and present current strategies and challenges in targeting pathogenic Th17 cells with cytokine-based approaches, considering human genetic variants associated with altered Th17 differentiation. Finally, we discuss how modulating Th17 plasticity rather than targeting the Th17 lineage as a whole might preserve its essential immune function while purging its adverse effects.
Collapse
Affiliation(s)
- Silvia Cerboni
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ulf Gehrmann
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Silvia Preite
- Bioscience, In vivo, Research and Early Development, Respiratory & Immunology (R&I, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Suman Mitra
- CNRS, INSERM, CHU Lille, Institut pour la Recherche contre le Cancer de Lille, UMR9020 - UMR-S 1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Univ. Lille, Lille, France
| |
Collapse
|
15
|
Li Z, Philip M, Ferrell PB. Alterations of T-cell-mediated immunity in acute myeloid leukemia. Oncogene 2020; 39:3611-3619. [PMID: 32127646 PMCID: PMC7234277 DOI: 10.1038/s41388-020-1239-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 01/02/2023]
Abstract
Acute myeloid leukemia (AML) is a systemic, heterogeneous hematologic malignancy with poor overall survival. While some malignancies have seen improvements in clinical outcomes with immunotherapy, success of these agents in AML remains elusive. Despite limited progress, stem cell transplantation and donor lymphocyte infusions show that modulation of the immune system can improve overall survival of AML patients. Understanding the causes of immune evasion and disease progression will identify potential immune-mediated targets in AML. This review explores immunosuppressive mechanisms that alter T-cell-mediated immunity in AML.
Collapse
Affiliation(s)
- Zhuoyan Li
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary Philip
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P. Brent Ferrell
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
16
|
De Matteis S, Molinari C, Abbati G, Rossi T, Napolitano R, Ghetti M, Di Rorà AGL, Musuraca G, Lucchesi A, Rigolin GM, Cuneo A, Calistri D, Fattori PP, Bonafè M, Martinelli G. Immunosuppressive Treg cells acquire the phenotype of effector-T cells in chronic lymphocytic leukemia patients. J Transl Med 2018; 16:172. [PMID: 29925389 PMCID: PMC6011245 DOI: 10.1186/s12967-018-1545-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/12/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND In chronic lymphocytic leukemia (CLL) disease onset and progression are influenced by the behavior of specific CD4+ T cell subsets, such as T regulatory cells (Tregs). Here, we focused on the phenotypic and functional characterization of Tregs in CLL patients to improve our understanding of the putative mechanism by which these cells combine immunosuppressive and effector-like properties. METHODS Peripheral blood mononuclear cells were isolated from newly diagnosed CLL patients (n = 25) and healthy volunteers (n = 25). The phenotypic and functional characterization of Tregs and their subsets was assessed by flow cytometry. In vitro analysis of TH1, TH2, TH17 and Tregs cytokines was evaluated by IFN-γ, IL-4, IL-17A and IL-10 secretion assays. The transcriptional profiling of 84 genes panel was evaluated by RT2 Profiler PCR Array. Statistical analysis was carried out using exact non parametric Mann-Whitney U test. RESULTS In all CLL samples, we found a significant increase in the frequency of IL-10-secreting Tregs and Tregs subsets, a significant rise of TH2 IL-4+ and TH17 IL-17A+ cells, and a higher percentage of IFN-γ/IL-10 and IL-4/IL-10 double-releasing CD4+ T cells. In addition, we also observed the up-regulation of innate immunity genes and the down-regulation of adaptive immunity ones. CONCLUSIONS Our data show that Tregs switch towards an effector-like phenotype in CLL patients. This multifaceted behavior is accompanied by an altered cytokine profiling and transcriptional program of immune genes, leading to a dysfunction in immune response in the peripheral blood environment of CLL patients.
Collapse
MESH Headings
- Adaptive Immunity
- Aged
- Aged, 80 and over
- Candida albicans/physiology
- Cytokines/metabolism
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Humans
- Immunity, Innate
- Immunosuppressive Agents/immunology
- Interferon-gamma/metabolism
- Interleukin-23/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Lymphocyte Subsets/immunology
- Male
- Middle Aged
- Phenotype
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Serena De Matteis
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014 Meldola, Italy
| | - Chiara Molinari
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014 Meldola, Italy
| | - Giulia Abbati
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014 Meldola, Italy
| | - Tania Rossi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014 Meldola, Italy
| | - Roberta Napolitano
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014 Meldola, Italy
| | - Martina Ghetti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014 Meldola, Italy
| | - Andrea Ghelli Luserna Di Rorà
- Institute of Hematology “L. e A. Seragnoli”, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Gerardo Musuraca
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Alessandro Lucchesi
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Gian Matteo Rigolin
- Department of Medical Sciences, University of Ferrara-Arcispedale Sant’Anna, Ferrara, Italy
| | - Antonio Cuneo
- Department of Medical Sciences, University of Ferrara-Arcispedale Sant’Anna, Ferrara, Italy
| | - Daniele Calistri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014 Meldola, Italy
| | - Pier Paolo Fattori
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Massimiliano Bonafè
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014 Meldola, Italy
- Department of Experimental, Diagnostic & Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Giovanni Martinelli
- Scientific Directorate, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
17
|
Almeida RDS, Ramos AMDL, Luna CF, Pedrosa F, Donadi EA, Lucena-Silva N. Cytokines and soluble HLA-G levels in bone marrow stroma and their association with the survival rate of patients exhibiting childhood T-cell acute lymphoblastic leukemia. Cytokine 2018; 102:94-101. [DOI: 10.1016/j.cyto.2017.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/07/2017] [Accepted: 07/19/2017] [Indexed: 12/27/2022]
|
18
|
Goswami M, Prince G, Biancotto A, Moir S, Kardava L, Santich BH, Cheung F, Kotliarov Y, Chen J, Shi R, Zhou H, Golding H, Manischewitz J, King L, Kunz LM, Noonan K, Borrello IM, Smith BD, Hourigan CS. Impaired B cell immunity in acute myeloid leukemia patients after chemotherapy. J Transl Med 2017; 15:155. [PMID: 28693586 PMCID: PMC5504716 DOI: 10.1186/s12967-017-1252-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/21/2017] [Indexed: 12/31/2022] Open
Abstract
Background Changes in adaptive immune cells after chemotherapy in adult acute myeloid leukemia (AML) may have implications for the success of immunotherapy. This study was designed to determine the functional capacity of the immune system in adult patients with AML who have completed chemotherapy and are potential candidates for immunotherapy. Methods We used the response to seasonal influenza vaccination as a surrogate for the robustness of the immune system in 10 AML patients in a complete remission post-chemotherapy and performed genetic, phenotypic, and functional characterization of adaptive immune cell subsets. Results Only 2 patients generated protective titers in response to vaccination, and a majority of patients had abnormal frequencies of transitional and memory B-cells. B-cell receptor sequencing showed a B-cell repertoire with little evidence of somatic hypermutation in most patients. Conversely, frequencies of T-cell populations were similar to those seen in healthy controls, and cytotoxic T-cells demonstrated antigen-specific activity after vaccination. Effector T-cells had increased PD-1 expression in AML patients least removed from chemotherapy. Conclusion Our results suggest that while some aspects of cellular immunity recover quickly, humoral immunity is incompletely reconstituted in the year following intensive cytotoxic chemotherapy for AML. The observed B-cell abnormalities may explain the poor response to vaccination often seen in AML patients after chemotherapy. Furthermore, the uncoupled recovery of B-cell and T-cell immunity and increased PD-1 expression shortly after chemotherapy might have implications for the success of several modalities of immunotherapy. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1252-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meghali Goswami
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive Room 10CRC 5-5216, Bethesda, MD, 20814-1476, USA.
| | | | - Angelique Biancotto
- Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD, USA
| | - Susan Moir
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lela Kardava
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brian H Santich
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Foo Cheung
- Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD, USA
| | - Yuri Kotliarov
- Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD, USA
| | - Jinguo Chen
- Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD, USA
| | - Rongye Shi
- Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD, USA
| | - Huizhi Zhou
- Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD, USA
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Jody Manischewitz
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Lisa King
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Lauren M Kunz
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Christopher S Hourigan
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive Room 10CRC 5-5216, Bethesda, MD, 20814-1476, USA
| |
Collapse
|
19
|
Sharma N, Toor D. Interleukin-10: Role in increasing susceptibility and pathogenesis of rheumatic fever/rheumatic heart disease. Cytokine 2017; 90:169-176. [DOI: 10.1016/j.cyto.2016.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 12/19/2022]
|
20
|
Samten B, Fannin S, Sarva K, Yi N, Madiraju M, Rajagopalan M. Modulation of human T cell cytokines by the Mycobacterium tuberculosis -secreted protein Wag31. Tuberculosis (Edinb) 2016; 101S:S99-S104. [DOI: 10.1016/j.tube.2016.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Pleyer L, Valent P, Greil R. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis-Masters of Survival and Clonality? Int J Mol Sci 2016; 17:ijms17071009. [PMID: 27355944 PMCID: PMC4964385 DOI: 10.3390/ijms17071009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are malignant hematopoietic stem cell disorders that have the capacity to progress to acute myeloid leukemia (AML). Accumulating evidence suggests that the altered bone marrow (BM) microenvironment in general, and in particular the components of the stem cell niche, including mesenchymal stem cells (MSCs) and their progeny, play a pivotal role in the evolution and propagation of MDS. We here present an overview of the role of MSCs in the pathogenesis of MDS, with emphasis on cellular interactions in the BM microenvironment and related stem cell niche concepts. MSCs have potent immunomodulatory capacities and communicate with diverse immune cells, but also interact with various other cellular components of the microenvironment as well as with normal and leukemic stem and progenitor cells. Moreover, compared to normal MSCs, MSCs in MDS and AML often exhibit altered gene expression profiles, an aberrant phenotype, and abnormal functional properties. These alterations supposedly contribute to the “reprogramming” of the stem cell niche into a disease-permissive microenvironment where an altered immune system, abnormal stem cell niche interactions, and an impaired growth control lead to disease progression. The current article also reviews molecular targets that play a role in such cellular interactions and possibilities to interfere with abnormal stem cell niche interactions by using specific targeted drugs.
Collapse
Affiliation(s)
- Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
- Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute, 5020 Salzburg, Austria.
- 3rd Medical Department, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology & Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Richard Greil
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
- Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute, 5020 Salzburg, Austria.
- 3rd Medical Department, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| |
Collapse
|
22
|
Bi L, Wu J, Ye A, Wu J, Yu K, Zhang S, Han Y. Increased Th17 cells and IL-17A exist in patients with B cell acute lymphoblastic leukemia and promote proliferation and resistance to daunorubicin through activation of Akt signaling. J Transl Med 2016; 14:132. [PMID: 27176825 PMCID: PMC4866013 DOI: 10.1186/s12967-016-0894-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 05/04/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Immune regulation is crucial for the pathogenesis of B-cell acute lymphoblastic leukemia (B-ALL). It has been reported that Th17 cells as a newly identified subset of CD4(+) T cells are involved in the pathogenesis of several hematological disorders. However, the role of Th17 cells in the pathophysiology of B-ALL is still unclear. METHODS The frequencies of T cells were determined by flow cytometry in the peripheral blood and bone marrow of 44 newly diagnosed B-ALL patients and 25 age-matched healthy donors. The cell viability and apoptosis were determined by CCK-8 assay and Annexin V staining, respectively. Western blot was applied to identify the level of Akt and Stat3 phosphorylation. RESULTS We assessed and observed a significantly increased frequency of Th17 cells and a drastically decreased frequency of Th1 cells in peripheral blood mononuclear cells and bone marrow mononuclear cells from newly diagnosed B-ALL patients compared with healthy donors. Furthermore, increased levels of Th17-related cytokines including IL-17, IL-21, IL-23, IL-1β, and IL-6 were presented in between blood and marrow in B-ALL patients. Both IL-17A and IL-21, two Th17-secreted cytokines, induced the proliferation of B-ALL cell line Nalm-6 and patient B-ALL cells isolated from B-ALL patients, herein either cytokine led to the phosphorylation of Akt and Stat3. Additionally, IL-17A promoted resistance to daunorubicin via activation of Akt signaling and the PI3K/Akt inhibitor LY294002 or perifosine almost completely rescued daunorubicin-induced cell death in B-ALL cells. CONCLUSIONS Our findings suggest that elevated Th17 cells secrete IL-17A by which promotes the proliferation and resistance to daunorubicin in B-ALL cells through activation of Akt signaling. Th17 cells may represent a novel target to improve B-ALL immunotherapy.
Collapse
Affiliation(s)
- Laixi Bi
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Junqing Wu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Aifang Ye
- Laboratory of Internal Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Jianbo Wu
- Laboratory of Internal Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Shenghui Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China.
| | - Yixiang Han
- Laboratory of Internal Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China.
| |
Collapse
|