1
|
Liu D, Lin S, Li Y, Zhou T, Hu K, Li Q. Network Pharmacology and Experimental Verification to Explore the Potential Mechanism of Yin-Huo-Tang for Lung Adenocarcinoma Recurrence. Drug Des Devel Ther 2022; 16:375-395. [PMID: 35210754 PMCID: PMC8860994 DOI: 10.2147/dddt.s343149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/05/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Yin-Huo-Tang (YHT) is a classic traditional Chinese prescription, used to prevent lung adenocarcinoma (LUAD) relapse by "nourishing yin and clearing heat". In this study, the mechanism of YHT in LUAD recurrence was investigated. METHODS Firstly, the bioactive compounds and targets of YHT, as well as related targets of LUAD recurrence, were collected from public databases. The protein-protein interaction network, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to find the pivotal compounds, hub genes, functional annotation and main pathways. Subsequently, RNA sequencing of recurrent tumor tissues from Lewis lung carcinoma mice treated with YHT was used to explore the main pathways. At the same time, pathways screened by network pharmacology and RNA sequencing analysis were considered the most important pathways. Finally, liquid chromatography mass spectrometry was used to validate the pivotal active ingredients. Molecular docking technology was performed to validate the binding association between the hub genes and the pivotal active ingredients. PCR and WB analysis were used to validate the main pathways. RESULTS There were 128 active compounds and 419 targets interacting with YHT and LUAD recurrence. Network analysis identified 4 pivotal compounds, 28 hub genes and 30 main pathways. Sphingolipid signaling pathway was the common main pathway in network pharmacology and RNA sequencing results. The hub gene related to the sphingolipid signaling pathway was S1PR5. Qualitative phytochemical analysis confirmed the presence of 3 pivotal compounds, namely stigmasterol, nootkatone and ergotamine. The molecular docking verified that the pivotal compounds could good affinity with S1PR5. The PCR and WB analysis verified YHT suppressed Lewis lung cancer cells proliferation and migration by inhibiting the sphingolipid signaling pathway. CONCLUSION The potential mechanism and therapeutic effect of YHT against the recurrence of LUAD may be ascribed to inhibition of the sphingolipid signaling pathway.
Collapse
Affiliation(s)
- Dianna Liu
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100071, People’s Republic of China
| | - Shicheng Lin
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yuan Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Tian Zhou
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100071, People’s Republic of China
| | - Kaiwen Hu
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100071, People’s Republic of China
| | - Quanwang Li
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100071, People’s Republic of China
| |
Collapse
|
2
|
Yi X, Yan Y, Li L, Zhou R, Shen X, Huang Y. Combination of mitochondria impairment and inflammation blockade to combat metastasis. J Control Release 2021; 341:753-768. [PMID: 34915072 DOI: 10.1016/j.jconrel.2021.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022]
Abstract
Targeted induction of mitochondria impairment has emerged as a promising strategy for anti-metastasis therapy. However, problems such as limited mitochondria targeting efficiency, undesired drug leakage and insufficient drug release inside mitochondria remain crucial challenges for mitochondria-targeting therapy. Here, we constructed an N-(2-hydroxypropyl) methacrylamide (HPMA) polymer based cationic system that could target to mitochondria and facilitate on demand drug release in response to excessive mitochondrial reactive oxygen species. Whereas, this drug delivery system is still challenged by limitations of (1) in vivo application, and (2) inflammatory tumor microenvironment (TME). On one aspect, to prolong blood circulation and increase tumor targeting, we designed a nanocomposite (PDT-NCs) that assembled from the cationic HPMA polymer and anionic hyaluronic acid via electrostatic interaction. On another aspect, a celecoxib loaded liposome (Lip-Cel) was further fabricated to alleviate inflammation in TME by downregulating various metastasis-associated factors. Ultimately, PDT-NCs and Lip-Cel led to a drastic improvement in the suppression of primary tumor growth and distant lung metastasis. Our work provided a generalizable approach of mitochondria dysfunction and inflammation blockade to combat metastatic tumors.
Collapse
Affiliation(s)
- Xiaoli Yi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, China
| | - Yue Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, China
| | - Rui Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, China
| | - Xinran Shen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, China.
| |
Collapse
|
3
|
Yang Y, Li N, Wang TM, Di L. Natural Products with Activity against Lung Cancer: A Review Focusing on the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms221910827. [PMID: 34639167 PMCID: PMC8509218 DOI: 10.3390/ijms221910827] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the most prevalent malignancies worldwide. Despite the undeniable progress in lung cancer research made over the past decade, it is still the leading cause of cancer-related deaths and continues to challenge scientists and researchers engaged in searching for therapeutics and drugs. The tumor microenvironment (TME) is recognized as one of the major hallmarks of epithelial cancers, including the majority of lung cancers, and is associated with tumorigenesis, progression, invasion, and metastasis. Targeting of the TME has received increasing attention in recent years. Natural products have historically made substantial contributions to pharmacotherapy, especially for cancer. In this review, we emphasize the role of the TME and summarize the experimental proof demonstrating the antitumor effects and underlying mechanisms of natural products that target the TME. We also review the effects of natural products used in combination with anticancer agents. Moreover, we highlight nanotechnology and other materials used to enhance the effects of natural products. Overall, our hope is that this review of these natural products will encourage more thoughts and ideas on therapeutic development to benefit lung cancer patients.
Collapse
Affiliation(s)
| | - Ning Li
- Correspondence: (N.L.); (L.D.); Tel.: +86-551-6516-1115 (N.L.)
| | | | - Lei Di
- Correspondence: (N.L.); (L.D.); Tel.: +86-551-6516-1115 (N.L.)
| |
Collapse
|
4
|
Zeng Q, Luo C, Cho J, Lai D, Shen X, Zhang X, Zhou W. Tryptanthrin exerts anti-breast cancer effects both in vitro and in vivo through modulating the inflammatory tumor microenvironment. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:245-266. [PMID: 33151167 DOI: 10.2478/acph-2021-0020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/21/2020] [Indexed: 01/19/2023]
Abstract
Tryptanthrin is an indole quinazoline alkaloid from the indigo-bearing plants, such as Isatis indigotica Fort. Typically, this natural compound shows a variety of pharmacological activities such as antitumor, antibacterial, anti-inflammatory and antioxidant effects. This study was conducted to assess the antitumor activity of tryptanthrin in breast cancer models both in vitro and in vivo, and to explore the important role of the inflammatory tumor microenvironment (TME) in the antitumor effects of tryptanthrin. Human breast adenocarcinoma MCF-7 cells were used to assess the antitumor effect of tryptanthrin in vitro. MTT assay and colony formation assay were carried out to monitor the antiproliferative effect of tryptanthrin (1.56~50.0 μmol L-1) on inhibiting the proliferation and colony formation of MCF-7 cells, respectively. The migration and invasion of MCF-7 cells were evaluated by wound healing assay and Transwell chamber assay, respectively. Moreover, the 4T1 murine breast cancer model was established to examine the pharmacological activity of tryptanthrin, and three groups with different doses of tryptanthrin (25, 50 and 100 mg kg-1) were set in study. Additionally, tumor volumes and organ coefficients were measured and calculated. After two weeks of tryptanthrin treatment, samples from serum, tumor tissue and different organs from tumor-bearing mice were collected, and the enzyme-linked immunosorbent assay (ELISA) was performed to assess the regulation of inflammatory molecules in mouse serum. Additionally, pathological examinations of tumor tissues and organs from mice were evaluated through hematoxylin and eosin (H&E) staining. The expression of inflammatory proteins in tumor tissues was measured by immunohistochemistry (IHC) and Western blotting. Tryptanthrin inhibited the proliferation, migration and invasion of MCF-7 cells, up-regulated the protein level of E-cadherin, and down-regulated those of MMP-2 and Snail, as suggested by the MCF-7 cell experiment. According to the results from in vivo experiment, tryptanthrin was effective in inhibiting tumor growth, and it showed favorable safety without inducing the fluctuations of body mass and organ coefficient (p > 0.05). In addition, tryptanthrin also suppressed the expression levels of NOS1, COX-2 and NF-κB in mouse tumor tissues, and regulated those of IL-2, IL-10 and TNF-α in the serum of tumor cells-transplanted mice. Tryptanthrin exerted its anti-breast cancer activities through modulating the inflammatory TME both in vitro and in vivo.
Collapse
Affiliation(s)
- Qingfang Zeng
- School of Pharmacy, Key Laboratory of Optimal, Utilizaiton of Natural Medicine Resources, Guizhou Medical University, Guiyang550025 Guizhou, China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang550025 Guizhou, China
| | - Cairong Luo
- School of Pharmacy, Key Laboratory of Optimal, Utilizaiton of Natural Medicine Resources, Guizhou Medical University, Guiyang550025 Guizhou, China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang550025 Guizhou, China
| | - Junlae Cho
- Faculty of Medicine and Life Science, The University of Sydney, NSW, 2006, Australia
| | - Donna Lai
- Faculty of Medicine and Life Science, The University of Sydney, NSW, 2006, Australia
| | - Xiangchun Shen
- School of Pharmacy, Key Laboratory of Optimal, Utilizaiton of Natural Medicine Resources, Guizhou Medical University, Guiyang550025 Guizhou, China
| | - Xiaoyan Zhang
- School of Pharmacy, Key Laboratory of Optimal, Utilizaiton of Natural Medicine Resources, Guizhou Medical University, Guiyang550025 Guizhou, China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang550025 Guizhou, China
| | - Wei Zhou
- School of Pharmacy, Key Laboratory of Optimal, Utilizaiton of Natural Medicine Resources, Guizhou Medical University, Guiyang550025 Guizhou, China
| |
Collapse
|
5
|
Recent Advances in Anti-Metastatic Approaches of Herbal Medicines in 5 Major Cancers: From Traditional Medicine to Modern Drug Discovery. Antioxidants (Basel) 2021; 10:antiox10040527. [PMID: 33801741 PMCID: PMC8065873 DOI: 10.3390/antiox10040527] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 01/13/2023] Open
Abstract
Metastasis is the main cause of cancer-related death. Despite its high fatality, a comprehensive study that covers anti-metastasis of herbal medicines has not yet been conducted. The aim of this study is to investigate and assess the anti-metastatic efficacies of herbal medicines in the five major cancers, including lung, colorectal, gastric, liver, and breast cancers. We collected articles published within five years using PubMed, Google Scholar, and Web of Science with "cancer metastasis" and "herbal medicine" as keywords. Correspondingly, 16 lung cancer, 23 colorectal cancer, 10 gastric cancer, 10 liver cancer, and 18 breast cancer studies were systematically reviewed. The herbal medicines attenuated metastatic potential targeting various mechanisms such as epithelial mesenchymal transition (EMT), reactive oxygen species (ROS), and angiogenesis. Specifically, the drugs regulated metastasis related factors such as matrix metalloproteinase (MMP), serine-threonine protein kinase/extracellular regulated protein kinase (AKT/ERK), angiogenic factors, and chemokines. Overall, the present study is the first review, comprehensively investigating the anti-metastasis effect of herbal medicines on five major cancers, providing the experimental models, doses and durations, and mechanisms. Herbal medicines could be a potent candidate for anti-metastatic drugs.
Collapse
|
6
|
Fernández LP, Gómez de Cedrón M, Ramírez de Molina A. Alterations of Lipid Metabolism in Cancer: Implications in Prognosis and Treatment. Front Oncol 2020; 10:577420. [PMID: 33194695 PMCID: PMC7655926 DOI: 10.3389/fonc.2020.577420] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023] Open
Abstract
Cancer remains the second leading cause of mortality worldwide. In the course of this multistage and multifactorial disease, a set of alterations takes place, with genetic and environmental factors modulating tumorigenesis and disease progression. Metabolic alterations of tumors are well-recognized and are considered as one of the hallmarks of cancer. Cancer cells adapt their metabolic competences in order to efficiently supply their novel demands of energy to sustain cell proliferation and metastasis. At present, there is a growing interest in understanding the metabolic switch that occurs during tumorigenesis. Together with the Warburg effect and the increased glutaminolysis, lipid metabolism has emerged as essential for tumor development and progression. Indeed, several investigations have demonstrated the consequences of lipid metabolism alterations in cell migration, invasion, and angiogenesis, three basic steps occurring during metastasis. In addition, obesity and associated metabolic alterations have been shown to augment the risk of cancer and to worsen its prognosis. Consequently, an extensive collection of tumorigenic steps has been shown to be modulated by lipid metabolism, not only affecting the growth of primary tumors, but also mediating progression and metastasis. Besides, key enzymes involved in lipid-metabolic pathways have been associated with cancer survival and have been proposed as prognosis biomarkers of cancer. In this review, we will analyze the impact of obesity and related tumor microenviroment alterations as modifiable risk factors in cancer, focusing on the lipid alterations co-occurring during tumorigenesis. The value of precision technologies and its application to target lipid metabolism in cancer will also be discussed. The degree to which lipid alterations, together with current therapies and intake of specific dietary components, affect risk of cancer is now under investigation, and innovative therapeutic or preventive applications must be explored.
Collapse
Affiliation(s)
- Lara P Fernández
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Marta Gómez de Cedrón
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Ana Ramírez de Molina
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| |
Collapse
|
7
|
Antiangiogenesis Roles of Exosomes with Fei-Liu-Ping Ointment Treatment are Involved in the Lung Carcinoma with the Lewis Xenograft Mouse Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9418593. [PMID: 32308722 PMCID: PMC7142396 DOI: 10.1155/2020/9418593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 11/24/2022]
Abstract
Exosomes display efficient biocompatibility and represent valuable vehicles for drug or effective material delivery in a tumour-therapeutic approach. Following treatment with Fei-Liu-Ping (FLP) ointment, a traditional Chinese herbal formula, which is used for treating lung cancer patients, could inhibit lung carcinoma growth in clinical and animal studies. In the present study, the values of VEGF and PDGF, which were closely related to angiogenesis, were estimated in serum and carcinoma tissue exosomes to unveil the FLP effects on angiogenesis. The common inflammatory factors of IL-6, IL-1β, TNF-α, and TGF-β in serum exosomes were also detected with the Lewis xenograft model. Methods. Male C57BL/6 mice were randomly divided into four groups, namely, normal, model, cyclophosphamide (CTX), and FLP treatment groups. Histological structures were observed and imaged by H&E. CD31 expressions in tumour tissues were detected by immunofluorescence (IF) and western blot (WB). VEGF, PDGF, and PDGFR levels in exosomes, serum, tumour, and lung tissues were detected by enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC), and WB, respectively. IL-6, IL-1β, TNF-α, and TGF-β levels in exosomes were measured by multiplex immunoassay panels. Results. The results showed that FLP had tumour growth inhibition rate (39.31%). CD31 protein expression was obviously decreased in tumour tissues of CTX- and FLP-treated MO mice, compared to that of MO mice (P < 0.05 or P < 0.001). VEGF, PDGF, and PDGFR expression levels with FLP treatment were downregulated in exosomes, serum, tumour, and lung tissues compared to model group (P < 0.05 or P < 0.01). The expressions of IL-6, IL-1β, and TNF-α were downregulated in exosomes compared to the model group (P < 0.05 or P < 0.01). Conclusions. This study suggested that FLP had the ability of inhibiting tumourigenesis in a Lewis lung xenograft mouse model, whose therapeutic mechanisms might relate with the downregulation of angiogenesis factor and tumour inflammatory cytokines levels.
Collapse
|
8
|
Chao W, Deng JS, Li PY, Kuo YH, Huang GJ. Inotilone from Inonotus linteus suppresses lung cancer metastasis in vitro and in vivo through ROS-mediated PI3K/AKT/MAPK signaling pathways. Sci Rep 2019; 9:2344. [PMID: 30787353 PMCID: PMC6382761 DOI: 10.1038/s41598-019-38959-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
Metastasis is one of the main causes of mortality in cancer patients. Inotilone, a major component of Inonotus linteus, is a traditional Chinese medical herb. In this study, MTT results showed that inotilone had no obvious cytotoxicity. Animal model results revealed that inotilone suppressed cancer metastatic efficacy. Serum results showed that inotilone reduced the activity of matrix metalloproteinase (MMP)-2 and -9 and tumor necrosis factor alpha (TNF-α) activity as well as NO content. Additionally, inotilone affected MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-2 protein expression and improved the activity of the antioxidant enzymes in the lung tissues of LLC-bearing mice. In addition, cell experimental results showed that inotilone reduced the activity of MMP-2/-9 and inhibited the ability for cellular migration and invasion. Inotilone decreased interleukin (IL)-8 expression in A549 cells. Western blot results revealed that inotilone affected the protein expression of MMPs, nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, anti-oxidant enzymes, mitogen activated protein kinase (MAPK), focal adhesion kinase (FAK), phosphoinositide-3 kinase (PI3K)-AKT, and nuclear factor (NF)κB. Therefore, we propose that inotilone is a potential therapeutic candidate against metastatic lung cancer cells.
Collapse
Affiliation(s)
- Wei Chao
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, 404, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jeng-Shyan Deng
- Department of Health and Nutrition Biotechnology, College of Medical and Health Science, Asia University, Taichung, 413, Taiwan
| | - Pei-Ying Li
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - Yueh-Hsiung Kuo
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Guan-Jhong Huang
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
9
|
Yifei Tongluo, a Chinese Herbal Formula, Suppresses Tumor Growth and Metastasis and Exerts Immunomodulatory Effect in Lewis Lung Carcinoma Mice. Molecules 2019; 24:molecules24040731. [PMID: 30781674 PMCID: PMC6412651 DOI: 10.3390/molecules24040731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/26/2019] [Accepted: 02/13/2019] [Indexed: 01/21/2023] Open
Abstract
This study was aimed to investigate the anti-tumor, anti-metastasis and immunomodulatory effects of Yifei Tongluo (YFTL), a Chinese herbal formula, in Lewis lung carcinoma mice and to explore the underlying mechanisms. LLC cells were inoculated subcutaneously in C57BL/6 mice to establish the Lewis lung carcinoma model. We observed that YFTL effectively inhibited tumor growth and prolonged the overall survival of tumor-bearing mice. Additionally, YFTL treatment resulted in a significantly decreased number of surface lung metastatic lesions compared with the model control group. Meanwhile, TUNEL staining confirmed that the tumors from YFTL-treated mice exhibited a markedly higher apoptotic index. The results suggest that Akt and mitogen-activated protein kinase (MAPKs) pathways may be involved in YFTL-induced apoptosis. The results show that YFTL also inhibited the vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMP)-2, MMP-9, N-cadherin, and Vimentin expression, but increased E-cadherin expression. Mechanistic studies indicated that YFTL could suppress the angiogenesis and the epithelial-mesenchymal transition (EMT) of the tumor through Akt/ERK1/2 and TGFβ1/Smad2 pathways. In addition, YFTL also showed immunomodulatory activities in improving the immunosuppressive state of tumor-bearing mice. Therefore, our findings could support the development of YFTL as a potential antineoplastic agent and a potentially useful anti-metastatic agent for lung carcinoma therapy.
Collapse
|
10
|
Ellethy AT. Potential antitumor activity of nonsteroidal anti-inflammatory drugs against Ehrlich ascites carcinoma in experimental animals. Int J Health Sci (Qassim) 2019; 13:11-17. [PMID: 31501647 PMCID: PMC6728131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES Although there is evidence that nonsteroidal anti-inflammatory drugs (NSAID) (e.g., celecoxib [Cxb]) can reduce the occurrence of cancer, the precise mechanism remains under study. The current study aimed to investigate the possible antitumor activity of a selective cyclooxygenase-2 inhibitor on solid tumors, its effect on antioxidant status, and ability to prevent angiogenesis. MATERIALS AND METHODS Solid carcinomas were induced in female Swiss albino mice. Fifty adult female mice were randomly selected and categorized into five groups. The effects of Cxb on hepatic oxidative parameters and the serum level of vascular endothelial growth factors (VEGF) were investigated in parallel to liver histopathological examinations. Biochemical measurements of hepatic malondialdehyde, superoxide dismutase (SOD) activity, hepatic catalase (CAT) activity, and reduced glutathione (GSH) were estimated in liver homogenates prepared from mice in each study group. RESULTS The induction of solid tumors in female albino mice was associated with a significant elevation in hepatic lipid peroxidation, whereas the activity of antioxidant enzyme NSAID and CAT was significantly decreased. The level of reduced GSH was decreased. Serum levels of VEGF were significantly increased in tumor-bearing mice compared with normal control mice. These changes were ameliorated when mice were treated with Cxb either before or after the induction of tumors. Antioxidant enzymes were significantly increased, and the serum level of VEGF was significantly reduced compared with the levels in tumor-bearing mice. CONCLUSION Cxb exerts antitumor activity through antioxidative and antiangiogenic activities.
Collapse
Affiliation(s)
- Abousree Taha Ellethy
- Department of Oral and Medical Basic Sciences, College of Dentistry, Qassim University, Kingdom of Saudi Arabia,Address for correspondence: Abousree Taha Ellethy, Department of Oral and Medical Basic Sciences, College of Dentistry, Qassim University, Kingdom of Saudi Arabia. Tel.: 00966546536633. E-mail:
| |
Collapse
|
11
|
Cao N, Ma X, Guo Z, Zheng Y, Geng S, Meng M, Du Z, Lin H, Duan Y, Du G. Oral kanglaite injection (KLTI) attenuates the lung cancer-promoting effect of high-fat diet (HFD)-induced obesity. Oncotarget 2018; 7:61093-61106. [PMID: 27528218 PMCID: PMC5308638 DOI: 10.18632/oncotarget.11212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 07/30/2016] [Indexed: 12/17/2022] Open
Abstract
Obesity is a risk factor for cancer and cancer-related mortality, however, its role in lung cancer progression remains controversial. This study aimed to assess whether high-fat diet (HFD)-induced obesity promotes lung cancer progression and whether the promotion can be decreased by Kanglaite injection (KLTI). In vivo, HFD-induced overweight or obesity increases the lung carcinoma incidence and multiplicity in a urethane-induced lung carcinogenic model and cancer-related mortality in a LLC allograft model by increasing oxidative stress and cellular signaling molecules including JAK, STAT3, Akt, mTOR, NF-κB and cyclin D1. These changes resulted in increases in vascular disruption and the lung water content, thereby promoting lung epithelial proliferation and the epithelial-mesenchymal transition (EMT) during carcinogenesis. Chronic KLTI treatment substantially prevented the weight gain resulting from HFD consumption, thereby reversing the metabolic dysfunction-related physiological changes and reducing susceptibility to lung carcinogenesis. In vitro, KLTI significantly suppressed the proliferation and induced apoptosis and differentiation in 3T3-L1 preadipocyte cells and attenuated endothelial cell permeability in HUVECs. Our study indicates that there is a potential relationship between obesity and lung cancer. This is the first study to show that obesity can directly accelerate carcinogen-induced lung cancer progression and that KLTI can decrease the lung cancer-promoting effect of HFD-induced obesity.
Collapse
Affiliation(s)
- Ning Cao
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Xiaofang Ma
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Zhenzhen Guo
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Yaqiu Zheng
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Shengnan Geng
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Mingjing Meng
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Zhenhua Du
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Haihong Lin
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Yongjian Duan
- Department of Oncology, The First Hospital Affiliated to Henan University, Kaifeng, Henan Province 475001, China
| | - Gangjun Du
- Institute of Pharmacy, Pharmacy College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| |
Collapse
|
12
|
Li TM, Yu YH, Tsai FJ, Cheng CF, Wu YC, Ho TJ, Liu X, Tsang H, Lin TH, Liao CC, Huang SM, Li JP, Lin JC, Lin CC, Liang WM, Lin YJ. Characteristics of Chinese herbal medicine usage and its effect on survival of lung cancer patients in Taiwan. JOURNAL OF ETHNOPHARMACOLOGY 2018; 213:92-100. [PMID: 29100936 DOI: 10.1016/j.jep.2017.10.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 05/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Taiwan, lung cancer remains one of the deadliest cancers. Survival of lung cancer patients remains low, ranging from 6% to 18%. Studies have shown that Chinese herbal medicine (CHM) can be used to induce cell apoptosis and exhibit anti-inflammatoryanti-inflammatory activities in cancer cells. AIM OF THE STUDY This study aimed to investigate the frequencies and patterns of CHM treatment for lung cancer patients and the effect of CHM on their survival probability in Taiwan. MATERIALS AND METHODS We identified 6939 lung cancer patients (ICD-9-CM: 162). We allocated 264 CHM users and 528 CHM-non users, matched for age, gender, duration, and regular treatment. Chi-square test, conditional multivariable logistic regression, Kaplan-Meier method, and the log-rank test were used in this study. RESULTS The CHM group was characterized by a longer follow up time and more cases of hyperlipidemia and liver cirrhosis. This group exhibited a lower mortality hazard ratio (0.48, 95% confidence interval [0.39-0.61], p < 0.001), after adjusting for comorbidities. The trend was also observed that the cumulative survival probability was higher in CHM than in non-CHM users (p < 0.0001, log rank test). Analysis of their CHM prescription pattern revealed that Bu-Zhong-Yi-Qi-Tang (BZYQT), Xiang-Sha-Liu-Jun-Zi-Tang (XSLJZT), and Bai-He-Gu-Jin-Tang (BHGJT); and Bei-Mu (BM), Xing-Ren (XR) and Ge-Gen (GG) were found to be the top three formulas and herbs, respectively. Among them, BM was the core CHM of the major cluster, and Jie-Geng (JG) and Mai-Men-Dong-Tang (MMDT) were important CHMs by CHM network analysis. CONCLUSION The use of CHM as an adjunctive therapy may reduce the mortality hazard ratio of lung cancer patients. The investigation of their comprehensive CHM prescription patterns might be useful in future large-scale, randomized clinical investigations of agent effectiveness, safety, and potential interactions with conventional treatments for lung cancer patients.
Collapse
Affiliation(s)
- Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yang-Hao Yu
- Divisions of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Asia University, Taichung, Taiwan
| | - Chi-Fung Cheng
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Yang-Chang Wu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tsung-Jung Ho
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Xiang Liu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hsinyi Tsang
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ju-Pi Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Rheumatism Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chien Lin
- Department of Cosmetic Science, Providence University, Taichung, Taiwan
| | - Wen-Miin Liang
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan.
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
13
|
Chao W, Deng JS, Li PY, Liang YC, Huang GJ. 3,4-Dihydroxybenzalactone Suppresses Human Non-Small Cell Lung Carcinoma Cells Metastasis via Suppression of Epithelial to Mesenchymal Transition, ROS-Mediated PI3K/AKT/MAPK/MMP and NFκB Signaling Pathways. Molecules 2017; 22:molecules22040537. [PMID: 28350337 PMCID: PMC6154291 DOI: 10.3390/molecules22040537] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 12/19/2022] Open
Abstract
3,4-Dihydroxybenzalactone (DBL) was isolated from Phellinus linteus (PL), which is a folk medicine possessing various physiological effects. In this study, we used highly metastatic A549 cells to investigate efficacy of DBL inhibition of cancer metastasis and possible mechanisms. The results revealed DBL inhibited migratory and invasive abilities of cancer cells at noncytotoxic concentrations. We found DBL suppressed enzymatic activities, protein expression, and RNA levels of matrix metalloproteinase (MMP)-2 and MMP-9. Western blot results showed DBL decreased phosphoinositide 3-kinase (PI3K)/AKT, phosphorylation status of mitogen-activated protein kinases (MAPKs), and focal adhesion kinase (FAK)/paxillin, which correlated with cell migratory ability. DBL also affected epithelial to mesenchymal transition (EMT)-related biomarkers. In addition, DBL enhanced cytoprotective effects through elevated antioxidant enzymes including heme oxygenase 1 (HO-1), catalase, glutathione peroxidase (GPx), and superoxide dismutase (SOD). Moreover, DBL influenced the nuclear translocation of nuclear factor κB (NFκB), nuclear factor erythroid 2-related factor 2 (Nrf2), Snail, and Slug in A549 cells. Taken together, these results suggested that treatment with DBL may act as a potential candidate to inhibit lung cancer metastasis by inhibiting MMP-2 and -9 via affecting PI3K/AKT, MAPKs, FAK/paxillin, EMT/Snail and Slug, Nrf2/antioxidant enzymes, and NFκB signaling pathways.
Collapse
Affiliation(s)
- Wei Chao
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| | - Jeng-Shyan Deng
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 404, Taiwan.
| | - Pei-Ying Li
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan.
| | - Yu-Chia Liang
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| | - Guan-Jhong Huang
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
14
|
Liu YH, Weng YP, Lin HY, Tang SW, Chen CJ, Liang CJ, Ku CY, Lin JY. Aqueous extract of Polygonum bistorta modulates proteostasis by ROS-induced ER stress in human hepatoma cells. Sci Rep 2017; 7:41437. [PMID: 28134285 PMCID: PMC5278379 DOI: 10.1038/srep41437] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/16/2016] [Indexed: 01/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains the leading cause of cancer mortality with limited therapeutic targets. The endoplasmic reticulum (ER) plays a pivotal role in maintaining proteostasis in normal cells. However, alterations in proteostasis are often found in cancer cells, making it a potential target for therapy. Polygonum bistorta is used in traditional Chinese medicine owing to its anticancer activities, but the molecular and pharmacological mechanisms remain unclear. Using hepatoma cells as a model system, this study demonstrated that P. bistorta aqueous extract (PB) stimulated ER stress by increasing autophagosomes but by blocking degradation, followed by the accumulation of ubiquitinated proteins and cell apoptosis. In addition, an autophagy inhibitor did not enhance ubiquitinated protein accumulation whereas a reactive oxygen species (ROS) scavenger diminished both ubiquitinated protein accumulation and ligand-stimulated epidermal growth factor receptor (EGFR) expression, suggesting that ROS generation by PB may be upstream of PB-triggered cell death. Nevertheless, PB-exerted proteostasis impairment resulted in cytoskeletal changes, impairment of cell adhesion and motility, and inhibition of cell cycle progression. Oral administration of PB delayed tumour growth in a xenograft model without significant body weight loss. These findings indicate that PB may be a potential new alternative or complementary medicine for HCC.
Collapse
Affiliation(s)
- Yu-Huei Liu
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, 404, Taiwan.,Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, 404, Taiwan
| | - Yui-Ping Weng
- Graduate Institute of Biological Science and Technology, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan.,Department of Biological Science and Technology, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan
| | - Hsuan-Yuan Lin
- Department of Life Science, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Sai-Wen Tang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, 404, Taiwan
| | - Chi-Jung Liang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Chung-Yu Ku
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Jung-Yaw Lin
- Department of Life Science, National Taiwan Normal University, Taipei, 116, Taiwan.,Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| |
Collapse
|
15
|
Zheng H, He S, Liu R, Xu X, Xu T, Chen S, Guo Q, Gao Y, Hua B. Chinese patent medicine Fei-Liu-Ping ointment as an adjunctive treatment for non-small cell lung cancer: protocol for a systematic review. BMJ Open 2017; 7:e015045. [PMID: 28093444 PMCID: PMC5253522 DOI: 10.1136/bmjopen-2016-015045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION Fei-Liu-Ping ointment has been widely applied as adjunctive drug in the treatment of non-small cell lung cancer (NSCLC). However, there has been no systematic review of research findings regarding the efficacy of this treatment. Here, we provide a protocol for assessing the effectiveness and safety of Fei-Liu-Ping ointment in the treatment of NSCLC. METHODS AND ANALYSIS The electronic databases to be searched will include MEDLINE (PubMed), Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library, Excerpt Medica Database (EMBASE), China National Knowledge Infrastructure (CNKI), China Scientific Journal Database (VIP), Wanfang Database and Chinese Biomedical Literature Database (CBM). Papers in English or Chinese published from inception to 2016 will be included without any restrictions. We will conduct a meta-analysis of randomised controlled trial if possible. The therapeutic effects according to the standard for treatment of solid tumours by the WHO and the quality of life as evaluated by Karnofsky score and weight will be applied as the primary outcomes. We will also evaluate the data synthesis and risk of bias using Review Manager 5.3 software. DISSEMINATION The results of this review will offer implications for the use of Fei-Liu-Ping ointment as an adjunctive treatment for NSCLC. This knowledge will inform recommendations by surgeons and researchers who are interested in the treatment of NSCLC. The results of this systematic review will be disseminated through presentation at a conference and publication of the data in a peer-reviewed journal. TRIAL REGISTRATION NUMBER PROSPERO CRD42016036911.
Collapse
Affiliation(s)
- Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shulin He
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Rui Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyao Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Tao Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuntai Chen
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Qiujun Guo
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yebo Gao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
He XR, Han SY, Li PP. Recent highlights of Chinese medicine for advanced lung cancer. Chin J Integr Med 2016; 23:323-330. [PMID: 28028718 DOI: 10.1007/s11655-016-2736-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Indexed: 12/19/2022]
Abstract
Owing to its unique superiority in improving quality of life and prolonging survival time among advanced lung cancer patients, Chinese medicine (CM) has, in recent years, received increased attentions worldwide. We utilized a bibliometric statistical method based on MEDLINE/GoPubMed to conduct a comprehensive analysis of the current application status of CM in lung cancer, by including annual and accumulated publications, origin distribution of countries and journals, and keywords with a higher frequency score. Then the relevant clinical trials and mechanistic studies were systematically summarized within the field according to research types. We have raised potential problems and provided potentially useful reference information that could guide similar studies in the future. The basic experimental results are highly consistent with clinical trials, leading us to conclude that CM can offer better overall therapeutic benefits when used in combination with routine Western medicine for patients with advanced lung cancer.
Collapse
Affiliation(s)
- Xi-Ran He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Traditional Chinese and Western Medicine, Peking University School of Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Shu-Yan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Traditional Chinese and Western Medicine, Peking University School of Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Ping-Ping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Traditional Chinese and Western Medicine, Peking University School of Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
17
|
NK Cell-Dependent Growth Inhibition of Lewis Lung Cancer by Yu-Ping-Feng, an Ancient Chinese Herbal Formula. Mediators Inflamm 2016; 2016:3541283. [PMID: 27034590 PMCID: PMC4789500 DOI: 10.1155/2016/3541283] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/03/2016] [Indexed: 12/15/2022] Open
Abstract
Little is known about Yu-Ping-Feng (YPF), a typical Chinese herbal decoction, for its antitumor efficacy in non-small-cell lung cancer (NSCLC). Here, we found that YPF significantly inhibited the growth of Lewis lung cancer, prolonged the survival of tumor-bearing mice, promoted NK cell tumor infiltration, increased the population of NK cells in spleen, and enhanced NK cell-mediated killing activity. The growth suppression of tumors by YPF was significantly reversed by the depletion of NK cells. Furthermore, we found that YPF significantly downregulated the expression of TGF-β, indoleamine 2,3-dioxygenase, and IL-10 in tumor microenvironment. These results demonstrated that YPF has a NK cell-dependent inhibitory effect on Lewis lung cancer.
Collapse
|