1
|
Drewa J, Lazar-Juszczak K, Adamowicz J, Juszczak K. Periprostatic Adipose Tissue as a Contributor to Prostate Cancer Pathogenesis: A Narrative Review. Cancers (Basel) 2025; 17:372. [PMID: 39941741 PMCID: PMC11816168 DOI: 10.3390/cancers17030372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Periprostatic adipose tissue (PPAT) contributes to the pathogenesis of prostate cancer. The purpose of this study was to review and summarize the literature on the role of PPAT in prostate cancer pathogenesis. Moreover, we evaluated the clinical implication of PPAT in patients with prostate cancer. We performed a scoping literature review of PubMed from January 2002 to November 2024. Search terms included "periprostatic adipose tissue", "adipokines", and "prostate cancer". Secondary search involved reference lists of eligible articles. The key criterion was to identify studies that included PPAT, adipokines, and their role in prostate cancer biology and clinical features. In total 225 publications were selected for inclusion in this review. The studies contained in publications allowed us to summarize the data on the pathogenesis of PPAT as a contributor to prostate cancer biology and its aggressiveness. The review also presents new research directions for PPAT as a new target for the treatment of prostate cancer. Based on the current review, it can be stated that PPAT plays an important role in prostate cancer pathogenesis. Moreover, PPAT seems to be a promising target point when it comes to finding new therapies in patients with more aggressive and/or advanced stages of prostate cancer.
Collapse
Affiliation(s)
- Julia Drewa
- Department of Urology and Andrology, Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland
| | - Katarzyna Lazar-Juszczak
- Primary Health Care Clinic of the Ujastek Medical Center, 31-752 Cracow, Poland
- Krakow University of Health Promotion, 31-158 Cracow, Poland
| | - Jan Adamowicz
- Department of Urology and Andrology, Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland
| | - Kajetan Juszczak
- Department of Urology and Andrology, Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland
| |
Collapse
|
2
|
Zhang X, Liu Z, Li Z, Qi L, Huang T, Li F, Li M, Wang Y, Ma Z, Gao Y. Ferroptosis pathways: Unveiling the neuroprotective power of cistache deserticola phenylethanoid glycosides. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118465. [PMID: 38944360 DOI: 10.1016/j.jep.2024.118465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cistanche deserticola is a kind of parasitic plant living in the roots of desert trees. It is a rare Chinese medicine, which has the effect of tonifying kidney Yang, benefiting essence and blood and moistening the intestinal tract. Cistache deserticola phenylethanoid glycoside (PGS), an active component found in Cistanche deserticola Ma, have potential kidney tonifying, intellectual enhancing, and neuroprotective effects. Cistanche total glycoside capsule has been marketed to treat vascular dementia disease. AIM OF THE STUDY To identify the potential renal, intellectual enhancing and neuroprotective effects of PGS and explore the exact targets and mechanisms of PGS. MATERIALS AND METHODS This study systematically investigated the four types of pathways leading to ferroptosis through transcriptome, metabolome, ultrastructure and molecular biology techniques and explored the molecular mechanism by which multiple PGS targets and pathways synergistically exert neuroprotective effects on hypoxia. RESULTS PGS alleviated learning and memory dysfunction and pathological injury in mice exposed to hypobaric hypoxia by attenuating hypobaric hypoxia-induced hippocampal histopathological damage, impairing blood‒brain barrier integrity, increasing oxidative stress levels, and increasing the expression of cognitive proteins. PGS reduced the formation of lipid peroxides and improved ferroptosis by upregulating the GPX-4/SCL7A311 axis and downregulating the ACSL4/LPCAT3/LOX axis. PGS also reduced ferroptosis by facilitating cellular Fe2+ efflux and regulating mitochondrial Fe2+ transport and effectively antagonized cell ferroptosis induced by erastin (a ferroptosis inducer). CONCLUSIONS This study demonstrated the mechanism by which PGS prevents hypobaric hypoxic nerve injury through four types of ferroptosis pathways, achieved neuroprotective effects and alleviated learning and memory dysfunction in hypobaric hypoxia mice. This study provides a theoretical basis for the development and application of PGS.
Collapse
Affiliation(s)
- Xianxie Zhang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Zuoxu Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Zhihui Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Ling Qi
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Tianke Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Fang Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Maoxing Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Yuguang Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Zengchun Ma
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Yue Gao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China.
| |
Collapse
|
3
|
Greco F, Mallio CA. Radiomics and Radiogenomics Toward Personalized Management of Clear Cell Renal Cell Carcinoma: The Importance of FOXM1. Acad Radiol 2024; 31:3647-3649. [PMID: 39097509 DOI: 10.1016/j.acra.2024.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Affiliation(s)
- Federico Greco
- Department of Radiology, Cittadella della Salute, Azienda Sanitaria Locale di Lecce, Piazza Filippo Bottazzi, 2, 73100 Lecce, Italy; Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy.
| | - Carlo Augusto Mallio
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| |
Collapse
|
4
|
Batool M, Cai CL, Aranda JV, Hand I, Beharry KD. Early versus late caffeine and/or non-steroidal anti-inflammatory drugs (NSAIDS) for prevention of intermittent hypoxia-induced neuroinflammation in the neonatal rat. Int J Dev Neurosci 2024; 84:227-250. [PMID: 38459740 DOI: 10.1002/jdn.10321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/17/2024] [Accepted: 02/13/2024] [Indexed: 03/10/2024] Open
Abstract
Preterm infants often experience frequent intermittent hypoxia (IH) episodes which are associated with neuroinflammation. We tested the hypotheses that early caffeine and/or non-steroidal inflammatory drugs (NSAIDs) confer superior therapeutic benefits for protection against IH-induced neuroinflammation than late treatment. Newborn rats were exposed to IH or hyperoxia (50% O2) from birth (P0) to P14. For early treatment, the pups were administered: 1) daily caffeine (Caff) citrate (Cafcit, 20 mg/kg IP loading on P0, followed by 5 mg/kg from P1-P14); 2) ketorolac (Keto) topical ocular solution in both eyes from P0 to P14; 3) ibuprofen (Ibu, Neoprofen, 10 mg/kg loading dose on P0 followed by 5 mg/kg/day on P1 and P2); 4) Caff+Keto co-treatment; 5) Caff+Ibu co-treatment; or 6) equivalent volume saline (Sal). On P14, animals were placed in room air (RA) with no further treatment until P21. For late treatment, pups were exposed from P0 to P14, then placed in RA during which they received similar treatments from P15-P21 (Sal, Caff, and/or Keto), or P15-P17 (Ibu). RA controls were similarly treated. At P21, whole brains were assessed for histopathology, apoptosis, myelination, and biomarkers of inflammation. IH caused significant brain injury and hemorrhage, inflammation, reduced myelination, and apoptosis. Early treatment with Caff alone or in combination with NSAIDs conferred better neuroprotection against IH-induced damage than late treatment. Early postnatal treatment during a critical time of brain development, may be preferable for the prevention of IH-induced brain injury in preterm infants.
Collapse
Affiliation(s)
- Myra Batool
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Charles L Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Ophthalmology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Ivan Hand
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, New York City Health & Hospitals/Kings County, Brooklyn, NY, USA
| | - Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Ophthalmology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
5
|
Muazzez A, Shimi G, Balam FH, Ghorbani A, Zand H. Different Effects of Obesity and Fasting on the Expression of Type 3 Deiodinase and Thyroid Hormone Receptors in the Liver and Visceral Adipose Tissue of C57BL/6 Male Mice. Indian J Endocrinol Metab 2024; 28:320-326. [PMID: 39086565 PMCID: PMC11288515 DOI: 10.4103/ijem.ijem_400_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Energy status can alter thyroid hormone signalling in different tissues. Little is known about the effect of fasting on the local thyroid hormone metabolism under high-fat diet (HFD)-induced obesity. We aimed to investigate the fasting effect on deiodinase type 3 (DIO3) and thyroid hormone receptors (TRs) expression in liver and visceral adipose tissue (VAT) of HFD-induced obese mice. Methods The 30 male C57BL/6 mice were divided into three groups (n = 10/group): control (CON) group, obese (OB) group, and fasted obese (OBF) group. Materials In a 14-week study, the expression levels of DIO3 and TRs in the liver and VAT of mice were measured by real-time polymerase chain reaction. Gene expression results were shown as fold changes defined by 2-ΔΔct. Comparison between groups was performed by using one-way-ANOVA or Kruskal-Wallis ANOVA test. Results In the liver, there was a significantly lower expression of DIO3 and higher expression of TRs in obese fasted mice compared to obese mice. Compared to the lean mice, OBF mice had significantly lower expression of DIO3 and higher expression of TRβ. In the VAT, mRNA expression of DIO3 was significantly increased in OBF and OB groups compared to the CON group. There were no significant differences in the mRNA expression of TRs between groups. Conclusion Our findings suggest that fasting may be more effective in improving thyroid hormone metabolism in the liver rather than the VAT of obese mice.
Collapse
Affiliation(s)
- Alireza Muazzez
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Shimi
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farinaz H. Balam
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Ghorbani
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Zand
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Trejo-Solís C, Castillo-Rodríguez RA, Serrano-García N, Silva-Adaya D, Vargas-Cruz S, Chávez-Cortéz EG, Gallardo-Pérez JC, Zavala-Vega S, Cruz-Salgado A, Magaña-Maldonado R. Metabolic Roles of HIF1, c-Myc, and p53 in Glioma Cells. Metabolites 2024; 14:249. [PMID: 38786726 PMCID: PMC11122955 DOI: 10.3390/metabo14050249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/25/2024] Open
Abstract
The metabolic reprogramming that promotes tumorigenesis in glioblastoma is induced by dynamic alterations in the hypoxic tumor microenvironment, as well as in transcriptional and signaling networks, which result in changes in global genetic expression. The signaling pathways PI3K/AKT/mTOR and RAS/RAF/MEK/ERK stimulate cell metabolism, either directly or indirectly, by modulating the transcriptional factors p53, HIF1, and c-Myc. The overexpression of HIF1 and c-Myc, master regulators of cellular metabolism, is a key contributor to the synthesis of bioenergetic molecules that mediate glioma cell transformation, proliferation, survival, migration, and invasion by modifying the transcription levels of key gene groups involved in metabolism. Meanwhile, the tumor-suppressing protein p53, which negatively regulates HIF1 and c-Myc, is often lost in glioblastoma. Alterations in this triad of transcriptional factors induce a metabolic shift in glioma cells that allows them to adapt and survive changes such as mutations, hypoxia, acidosis, the presence of reactive oxygen species, and nutrient deprivation, by modulating the activity and expression of signaling molecules, enzymes, metabolites, transporters, and regulators involved in glycolysis and glutamine metabolism, the pentose phosphate cycle, the tricarboxylic acid cycle, and oxidative phosphorylation, as well as the synthesis and degradation of fatty acids and nucleic acids. This review summarizes our current knowledge on the role of HIF1, c-Myc, and p53 in the genic regulatory network for metabolism in glioma cells, as well as potential therapeutic inhibitors of these factors.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | | | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Ciudad de Mexico 14330, Mexico
| | - Salvador Vargas-Cruz
- Departamento de Cirugía, Hospital Ángeles del Pedregal, Camino a Sta. Teresa, Ciudad de Mexico 10700, Mexico;
| | | | - Juan Carlos Gallardo-Pérez
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de Mexico 14080, Mexico;
| | - Sergio Zavala-Vega
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| |
Collapse
|
7
|
Greco F, D’Andrea V, Beomonte Zobel B, Mallio CA. Radiogenomics and Texture Analysis to Detect von Hippel-Lindau (VHL) Mutation in Clear Cell Renal Cell Carcinoma. Curr Issues Mol Biol 2024; 46:3236-3250. [PMID: 38666933 PMCID: PMC11049152 DOI: 10.3390/cimb46040203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Radiogenomics, a burgeoning field in biomedical research, explores the correlation between imaging features and genomic data, aiming to link macroscopic manifestations with molecular characteristics. In this review, we examine existing radiogenomics literature in clear cell renal cell carcinoma (ccRCC), the predominant renal cancer, and von Hippel-Lindau (VHL) gene mutation, the most frequent genetic mutation in ccRCC. A thorough examination of the literature was conducted through searches on the PubMed, Medline, Cochrane Library, Google Scholar, and Web of Science databases. Inclusion criteria encompassed articles published in English between 2014 and 2022, resulting in 10 articles meeting the criteria out of 39 initially retrieved articles. Most of these studies applied computed tomography (CT) images obtained from open source and institutional databases. This literature review investigates the role of radiogenomics, with and without texture analysis, in predicting VHL gene mutation in ccRCC patients. Radiogenomics leverages imaging modalities such as CT and magnetic resonance imaging (MRI), to analyze macroscopic features and establish connections with molecular elements, providing insights into tumor heterogeneity and biological behavior. The investigations explored diverse mutations, with a specific focus on VHL mutation, and applied CT imaging features for radiogenomic analysis. Moreover, radiomics and machine learning techniques were employed to predict VHL gene mutations based on CT features, demonstrating promising results. Additional studies delved into the relationship between VHL mutation and body composition, revealing significant associations with adipose tissue distribution. The review concludes by highlighting the potential role of radiogenomics in guiding targeted and selective therapies.
Collapse
Affiliation(s)
- Federico Greco
- Department of Radiology, Cittadella Della Salute Azienda Sanitaria Locale di Lecce, Piazza Filippo Bottazzi 2, 73100 Lecce, Italy
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy; (V.D.); (B.B.Z.); (C.A.M.)
| | - Valerio D’Andrea
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy; (V.D.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
| | - Bruno Beomonte Zobel
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy; (V.D.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
| | - Carlo Augusto Mallio
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy; (V.D.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
| |
Collapse
|
8
|
Engin A. Adipose Tissue Hypoxia in Obesity: Clinical Reappraisal of Hypoxia Hypothesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:329-356. [PMID: 39287857 DOI: 10.1007/978-3-031-63657-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obese subjects exhibit lower adipose tissue oxygen consumption in accordance with the lower adipose tissue blood flow. Thereby, compared to lean subjects, obese individuals have almost half lower capillary density and more than half lower vascular endothelial growth factor (VEGF). The VEGF expression together with hypoxia-inducible transcription factor-1 alpha (HIF-1α) activity also requires phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR)-mediated signaling. Especially HIF-1α is an important signaling molecule for hypoxia to induce the inflammatory responses. Hypoxia contributes to several biological functions, such as angiogenesis, cell proliferation, apoptosis, inflammation, and insulin resistance (IR). Pathogenesis of obesity-related comorbidities is attributed to intermittent hypoxia (IH), which is mostly observed in visceral obesity. Proinflammatory phenotype of the adipose tissue is a crucial link between IH and the development of IR. Inhibition of adaptive unfolded protein response (UPR) in hypoxia increases β cell death. Moreover, deletion of HIF-1α worsens β cell function. Oxidative stress, as well as the release of proinflammatory cytokines/adipokines in obesity, is proportional to the severity of IH. Reactive oxygen species (ROS) generation at mitochondria is responsible for propagation of the hypoxic signal; however, mitochondrial ROS production is required for hypoxic HIF-1α protein stabilization. Alterations in oxygen availability of adipose tissue directly affect the macrophage polarization and are responsible for the dysregulated adipocytokines production in obesity. Hypoxia both inhibits adipocyte differentiation from preadipocytes and macrophage migration from the hypoxic adipose tissue. Upon reaching a hypertrophic threshold beyond the adipocyte fat loading capacity, excess extracellular matrix (ECM) components are deposited, causing fibrosis. HIF-1α initiates the whole pathological process of fibrosis and inflammation in the obese adipose tissue. In addition to stressed adipocytes, hypoxia contributes to immune cell migration and activation which further aggravates adipose tissue fibrosis. Therefore, targeting HIF-1α might be an efficient way to suppress hypoxia-induced pathological changes in the ECM. The fibrosis score of adipose tissue correlates negatively with the body mass index and metabolic parameters. Inducers of browning/beiging adipocytes and adipokines, as well as modulations of matrix remodeling enzyme inhibitors, and associated gene regulators, are potential pharmacological targets for treating obesity.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
9
|
Chen Y, Xu X, Wang Y, Zhang Y, Zhou T, Jiang W, Wang Z, Chang J, Liu S, Chen R, Shan J, Wang J, Wang Y, Li C, Li X. Hypoxia-induced SKA3 promoted cholangiocarcinoma progression and chemoresistance by enhancing fatty acid synthesis via the regulation of PAR-dependent HIF-1a deubiquitylation. J Exp Clin Cancer Res 2023; 42:265. [PMID: 37821935 PMCID: PMC10565972 DOI: 10.1186/s13046-023-02842-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Spindle and kinetochore-associated complex subunit 3 (SKA3) plays an important role in cell proliferation by regulating the separation of chromosomes and their division into daughter cells. Previous studies demonstrated that SKA3 was strongly implicated in tumor development and progression. However, the roles of SKA3 in cholangiocarcinoma (CCA) and the underlying mechanisms remain unclear. METHODS Next-generation sequencing (NGS) was performed with paired CCA tissues and normal adjacent tissues (NATs). SKA3 was chose to be the target gene because of its remarkably upregulation and unknown function in cholangiocarcinoma in TCGA datasets, GSE107943 datasets and our sequencing results. RT-PCR and immunohistochemistry staining were used to detect the expression of SKA3 in paired CCA tissues and normal adjacent tissues. The SKA3 knockdown and overexpression cell line were constructed by small interfering RNA and lentivirus vector transfection. The effect of SKA3 on the proliferation of cholangiocarcinoma under hypoxic conditions was detected by experiments in vitro and in vivo. RNA-seq was used to find out the differentially expressed pathways in cholangiocarcinoma proliferation under hypoxia regulated by SKA3. IP/MS analysis and Western blot assays were used to explore the specific mechanism of SKA3 in regulating the expression of HIF-1a under hypoxia. RESULTS SKA3 was up-regulated in NGS, TCGA and GSE107943 databases and was associated with poor prognosis. Functional experiments in vitro and in vivo showed that hypoxia-induced SKA3 promoted cholangiocarcinoma cell proliferation. RNA-sequencing was performed and verified that SKA3 enhanced fatty acid synthesis by up-regulating the expression of key fatty acid synthase, thus promoting cholangiocarcinoma cell proliferation under hypoxic conditions. Further studies indicated that under hypoxic conditions, SKA3 recruited PARP1 to bind to HIF-1a, thus enhancing the poly ADP-ribosylation (PARylation) of HIF-1a. This PARylation enhanced the binding between HIF-1a and USP7, which triggered the deubiquitylation of HIF-1a under hypoxic conditions. Additionally, PARP1 and HIF-1a were upregulated in CCA and promoted CCA cell proliferation. SKA3 promoted CCA cell proliferation and fatty acid synthesis via the PARP1/HIF-1a axis under hypoxic conditions. High SKA3 and HIF-1a expression levels were associated with poor prognosis after surgery. CONCLUSION Hypoxia-induced SKA3 promoted CCA progression by enhancing fatty acid synthesis via the regulation of PARylation-dependent HIF-1a deubiquitylation. Furthermore, increased SKA3 level enhanced chemotherapy-resistance to gemcitabine-based regimen under hypoxic conditions. SKA3 and HIF-1a could be potential oncogenes and significant biomarkers for the analysis of CCA patient prognosis.
Collapse
Affiliation(s)
- Yananlan Chen
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Xiao Xu
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Yirui Wang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Yaodong Zhang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Tao Zhou
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Wangjie Jiang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Ziyi Wang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Jiang Chang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Shuochen Liu
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Ruixiang Chen
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Jijun Shan
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Jifei Wang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Yuming Wang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Changxian Li
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.
- Key Laoratory for Liver Transplantation, NHC Key Laboratory of Living Donor Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing Medical University), Nanjing, Jiangsu Province, China.
| | - Xiangcheng Li
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.
- Key Laoratory for Liver Transplantation, NHC Key Laboratory of Living Donor Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing Medical University), Nanjing, Jiangsu Province, China.
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
10
|
Nguyen TTM, Nguyen TH, Kim HS, Dao TTP, Moon Y, Seo M, Kang S, Mai VH, An YJ, Jung CR, Kim JM, Park S. GPX8 regulates clear cell renal cell carcinoma tumorigenesis through promoting lipogenesis by NNMT. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:42. [PMID: 36750850 PMCID: PMC9903620 DOI: 10.1186/s13046-023-02607-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC), with its hallmark phenotype of high cytosolic lipid content, is considered a metabolic cancer. Despite the implication of this lipid-rich phenotype in ccRCC tumorigenesis, the roles and regulators of de novo lipid synthesis (DNL) in ccRCC remain largely unexplained. METHODS Our bioinformatic screening focused on ccRCC-lipid phenotypes identified glutathione peroxidase 8 (GPX8), as a clinically relevant upstream regulator of DNL. GPX8 genetic silencing was performed with CRISPR-Cas9 or shRNA in ccRCC cell lines to dissect its roles. Untargeted metabolomics, RNA-seq analyses, and other biochemical assays (e.g., lipid droplets staining, fatty acid uptake, cell proliferation, xenograft, etc.) were carried out to investigate the GPX8's involvement in lipid metabolism and tumorigenesis in ccRCC. The lipid metabolic function of GPX8 and its downstream were also measured by isotope-tracing-based DNL flux measurement. RESULTS GPX8 knockout or downregulation substantially reduced lipid droplet levels (independent of lipid uptake), fatty acid de novo synthesis, triglyceride esterification in vitro, and tumor growth in vivo. The downstream regulator was identified as nicotinamide N-methyltransferase (NNMT): its knockdown phenocopied, and its expression rescued, GPX8 silencing both in vitro and in vivo. Mechanically, GPX8 regulated NNMT via IL6-STAT3 signaling, and blocking this axis suppressed ccRCC survival by activating AMPK. Notably, neither the GPX8-NNMT axis nor the DNL flux was affected by the von Hippel Lindau (VHL) status, the conventional regulator of ccRCC high lipid content. CONCLUSIONS Taken together, our findings unravel the roles of the VHL-independent GPX8-NNMT axis in ccRCC lipid metabolism as related to the phenotypes and growth of ccRCC, which may be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Tin Tin Manh Nguyen
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Thi Ha Nguyen
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Han Sun Kim
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Thien T. P. Dao
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Yechan Moon
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Munjun Seo
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sunmi Kang
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Van-Hieu Mai
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea ,grid.444808.40000 0001 2037 434XMolecular Biology Department, School of Medicine, Vietnam National University, Ho Chi Minh City, 70000 Vietnam
| | - Yong Jin An
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Cho-Rok Jung
- grid.249967.70000 0004 0636 3099Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea ,grid.412786.e0000 0004 1791 8264Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Jin-Mo Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sunghyouk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
11
|
Amine ZE, Mauger JF, Imbeault P. CYP1A1, VEGFA and Adipokine Responses of Human Adipocytes Co-exposed to PCB126 and Hypoxia. Cells 2022; 11:cells11152282. [PMID: 35892579 PMCID: PMC9331964 DOI: 10.3390/cells11152282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
It is increasingly recognized that hypoxia may develop in adipose tissue as its mass expands. Adipose tissue is also the main reservoir of lipophilic pollutants, including polychlorinated biphenyls (PCBs). Both hypoxia and PCBs have been shown to alter adipose tissue functions. The signaling pathways induced by hypoxia and pollutants may crosstalk, as they share a common transcription factor: aryl hydrocarbon receptor nuclear translocator (ARNT). Whether hypoxia and PCBs crosstalk and affect adipokine secretion in human adipocytes remains to be explored. Using primary human adipocytes acutely co-exposed to different levels of hypoxia (24 h) and PCB126 (48 h), we observed that hypoxia significantly inhibits the PCB126 induction of cytochrome P450 (CYP1A1) transcription in a dose-response manner, and that Acriflavine (ACF)—an HIF1α inhibitor—partially restores the PCB126 induction of CYP1A1 under hypoxia. On the other hand, exposure to PCB126 did not affect the transcription of the vascular endothelial growth factor-A (VEGFA) under hypoxia. Exposure to hypoxia increased leptin and interleukin-6 (IL-6), and decreased adiponectin levels dose-dependently, while PCB126 increased IL-6 and IL-8 secretion in a dose-dependent manner. Co-exposure to PCB126 and hypoxia did not alter the adipokine secretion pattern observed under hypoxia and PCB126 exposure alone. In conclusion, our results indicate that (1) hypoxia inhibits PCB126-induced CYP1A1 expression at least partly through ARNT-dependent means, suggesting that hypoxia could affect PCB metabolism and toxicity in adipose tissue, and (2) hypoxia and PCB126 affect leptin, adiponectin, IL-6 and IL-8 secretion differently, with no apparent crosstalk between the two factors.
Collapse
Affiliation(s)
- Zeinab El Amine
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Z.E.A.); (J.-F.M.)
| | - Jean-François Mauger
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Z.E.A.); (J.-F.M.)
| | - Pascal Imbeault
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Z.E.A.); (J.-F.M.)
- Institut du Savoir Montfort, Hôpital Montfort, Ottawa, ON K1K 0T2, Canada
- Correspondence: ; Tel.: +1-(613)-562-5800-(7290)
| |
Collapse
|
12
|
O'Brien KA, McNally BD, Sowton AP, Murgia A, Armitage J, Thomas LW, Krause FN, Maddalena LA, Francis I, Kavanagh S, Williams DP, Ashcroft M, Griffin JL, Lyon JJ, Murray AJ. Enhanced hepatic respiratory capacity and altered lipid metabolism support metabolic homeostasis during short-term hypoxic stress. BMC Biol 2021; 19:265. [PMID: 34911556 PMCID: PMC8675474 DOI: 10.1186/s12915-021-01192-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Tissue hypoxia is a key feature of several endemic hepatic diseases, including alcoholic and non-alcoholic fatty liver disease, and organ failure. Hypoxia imposes a severe metabolic challenge on the liver, potentially disrupting its capacity to carry out essential functions including fuel storage and the integration of lipid metabolism at the whole-body level. Mitochondrial respiratory function is understood to be critical in mediating the hepatic hypoxic response, yet the time-dependent nature of this response and the role of the respiratory chain in this remain unclear. RESULTS Here, we report that hepatic respiratory capacity is enhanced following short-term exposure to hypoxia (2 days, 10% O2) and is associated with increased abundance of the respiratory chain supercomplex III2+IV and increased cardiolipin levels. Suppression of this enhanced respiratory capacity, achieved via mild inhibition of mitochondrial complex III, disrupted metabolic homeostasis. Hypoxic exposure for 2 days led to accumulation of plasma and hepatic long chain acyl-carnitines. This was observed alongside depletion of hepatic triacylglycerol species with total chain lengths of 39-53 carbons, containing palmitic, palmitoleic, stearic, and oleic acids, which are associated with de novo lipogenesis. The changes to hepatic respiratory capacity and lipid metabolism following 2 days hypoxic exposure were transient, becoming resolved after 14 days in line with systemic acclimation to hypoxia and elevated circulating haemoglobin concentrations. CONCLUSIONS The liver maintains metabolic homeostasis in response to shorter term hypoxic exposure through transient enhancement of respiratory chain capacity and alterations to lipid metabolism. These findings may have implications in understanding and treating hepatic pathologies associated with hypoxia.
Collapse
Affiliation(s)
- Katie A O'Brien
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.
| | - Ben D McNally
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Sanger Building Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Alice P Sowton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Antonio Murgia
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Sanger Building Tennis Court Road, Cambridge, CB2 1GA, UK
| | - James Armitage
- Global Investigative Safety, GlaxoSmithKline R&D, Park Road, Ware, Hertfordshire, SG12 0DP, UK
| | - Luke W Thomas
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
| | - Fynn N Krause
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Sanger Building Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Lucas A Maddalena
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
| | - Ian Francis
- Ultrastructure and Cellular Bioimaging, GlaxoSmithKline R&D, Park Road, Ware, Hertfordshire, SG12 0DP, UK
| | - Stefan Kavanagh
- Oncology Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, CB2 OAA, Cambridge, UK
| | - Dominic P Williams
- Functional and Mechanistic Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, CB2 OAA, Cambridge, UK
| | - Margaret Ashcroft
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Sanger Building Tennis Court Road, Cambridge, CB2 1GA, UK
- Section of Biomolecular Medicine, Department of Digestion, Metabolism and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Jonathan J Lyon
- Global Investigative Safety, GlaxoSmithKline R&D, Park Road, Ware, Hertfordshire, SG12 0DP, UK
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.
| |
Collapse
|
13
|
Santiago-Fernández C, Martín-Reyes F, Tome M, Gutierrez-Repiso C, Fernandez-Garcia D, Ocaña-Wilhelmi L, Rivas-Becerra J, Tatzber F, Pursch E, Tinahones FJ, García-Fuentes E, Garrido-Sánchez L. Oxidized LDL Increase the Proinflammatory Profile of Human Visceral Adipocytes Produced by Hypoxia. Biomedicines 2021; 9:biomedicines9111715. [PMID: 34829944 PMCID: PMC8615639 DOI: 10.3390/biomedicines9111715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Little is known about the effects of hypoxia on scavenger receptors (SRs) levels in adipocytes. We analyzed the effect of morbid obesity and hypoxia on SRs and inflammation markers in human visceral adipocytes and whether ox-LDL modify the inflammatory profile produced by hypoxia. Methods: We studied in 17 non-obese and 20 subjects with morbid obesity (MO) the mRNA expression of HIF-1α, SRs (LOX-1, MSR1, CL-P1 and CXCL16), IL6 and TNFα in visceral adipocytes and the effect of hypoxia with or without ox-LDL on visceral in vitro-differentiated adipocytes (VDA). Results: HIF-1α, TNFα, IL6, LOX-1, MSR1 and CXCL16 expression in adipocytes was increased in MO when compared with those in non-obese subjects (p < 0.05). The expression of most of the inflammatory markers and SRs gene correlated with HIF-1α. In VDA, hypoxia increased TNFα, IL6, MSR1, CXCL16 and CL-P1 (p < 0.05) in non-obese subjects, and TNFα, IL6, MSR1 and CXCL16 (p < 0.05) in MO. Silencing HIF-1α prevented the increase of TNFα, IL6, LOX-1, MSR1, CL-P1 and CXCL16 expression (p < 0.05). The combination of hypoxia and ox-LDL produced higher TNFα expression (p = 0.041). Conclusions: Morbid obesity and hypoxia increased SRs and inflammatory markers in visceral adipocytes. In a hypoxic state, ox-LDL increased the proinflammatory response of visceral adipocytes to hypoxia.
Collapse
Affiliation(s)
- Concepción Santiago-Fernández
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA)/Universidad de Málaga, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (C.S.-F.); (F.M.-R.)
| | - Flores Martín-Reyes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA)/Universidad de Málaga, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (C.S.-F.); (F.M.-R.)
| | - Monica Tome
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario, 29010 Málaga, Spain;
| | - Carolina Gutierrez-Repiso
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA)/Universidad de Málaga, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (C.G.-R.); (D.F.-G.); (L.G.-S.)
| | - Diego Fernandez-Garcia
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA)/Universidad de Málaga, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (C.G.-R.); (D.F.-G.); (L.G.-S.)
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, 29010 Málaga, Spain
| | - Luis Ocaña-Wilhelmi
- Unidad de Gestión Clínica de Cirugía General y Digestiva, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain;
| | - Jose Rivas-Becerra
- Unidad de Gestión Clínica de Cirugía General, Digestiva y Trasplantes, Hospital Regional Universitario, 29010 Málaga, Spain;
| | - Franz Tatzber
- Otto Loewi Research Center, Division of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria;
| | - Edith Pursch
- Institute of Biochemical Engineering, University of Applied Sciences Technikum-Wien, 1200 Vienna, Austria;
| | - Francisco J. Tinahones
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA)/Universidad de Málaga, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (C.G.-R.); (D.F.-G.); (L.G.-S.)
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, 29010 Málaga, Spain
- Correspondence: (F.J.T.); (E.G.-F.)
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA)/Universidad de Málaga, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (C.S.-F.); (F.M.-R.)
- CIBER Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto Salud Carlos III, 29010 Málaga, Spain
- Correspondence: (F.J.T.); (E.G.-F.)
| | - Lourdes Garrido-Sánchez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA)/Universidad de Málaga, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (C.G.-R.); (D.F.-G.); (L.G.-S.)
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, 29010 Málaga, Spain
| |
Collapse
|
14
|
Liu X, Shen J, Zong J, Liu J, Jin Y. Beta-Sitosterol Promotes Milk Protein and Fat Syntheses-Related Genes in Bovine Mammary Epithelial Cells. Animals (Basel) 2021; 11:ani11113238. [PMID: 34827970 PMCID: PMC8614283 DOI: 10.3390/ani11113238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The levels of milk fats and proteins are important indexes used to evaluate milk quality. Generally, feed additives are used to improve milk quality. This study aimed to investigate the effect of β-sitosterol on milk fat and protein gene expression in bovine mammary epithelial cells. β-sitosterol increased the β-casein levels in bovine mammary epithelial cells and promoted the expression of milk fat and protein synthesis-related genes, suggesting the use of β-sitosterol as a potential feed additive to improve milk quality in dairy cows. Abstract β-sitosterol, a phytosterol with multiple biological activities, has been used in the pharmaceutical industry. However, there are only a few reports on the use of β-sitosterol in improving milk synthesis in dairy cows. This study aimed to investigate the effects of β-sitosterol on milk fat and protein syntheses in bovine mammary epithelial cells (MAC-T) and its regulatory mechanism. MAC-T cells were treated with different concentrations (0.01, 0.1, 1, 5, 10, 20, 30, or 40 μM) of β-sitosterol, and the expression levels of milk protein and fat synthesis-related genes and proteins were analyzed. β-sitosterol at 0.1, 1, and 10 μM concentrations promoted the mRNA and protein expression of β-casein. β-sitosterol (0.1, 1, 10 μM) increased the mRNA and protein expression levels of signal transducer activator of transcription 5 (STAT5), mammalian target of rapamycin (mTOR), and ribosomal protein S6 kinase beta-1 (S6K1) of the JAK2/STAT5 and mTOR signaling pathways. It also stimulated the milk fat synthesis-related factors, including sterol regulatory element-binding protein 1 (SREBP1), peroxisome proliferator-activated receptor-gamma (PPARγ), acetyl-CoA carboxylase (ACC), lipoprotein lipase (LPL), and stearyl CoA desaturase (SCD). β-sitosterol (0.1, 1, 10 μM) also significantly increased the expression of growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis and hypoxia-inducible factor-1α (HIF-1α)-related genes. Notably, the compound inhibited the expression of the negative regulator, the suppressor of cytokine signaling 2 (SOCS2) at the two lower concentrations (0.1, 1 μM), but significantly promoted the expression at the highest concentration (30 μM). These results highlight the role of β-sitosterol at concentrations ranging from 0.1 to 10 μM in improving milk protein and fat syntheses, regulating milk quality. Therefore, β-sitosterol can be used as a potential feed additive to improve milk quality in dairy cows.
Collapse
|
15
|
Maissan P, Mooij EJ, Barberis M. Sirtuins-Mediated System-Level Regulation of Mammalian Tissues at the Interface between Metabolism and Cell Cycle: A Systematic Review. BIOLOGY 2021; 10:194. [PMID: 33806509 PMCID: PMC7999230 DOI: 10.3390/biology10030194] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Sirtuins are a family of highly conserved NAD+-dependent proteins and this dependency links Sirtuins directly to metabolism. Sirtuins' activity has been shown to extend the lifespan of several organisms and mainly through the post-translational modification of their many target proteins, with deacetylation being the most common modification. The seven mammalian Sirtuins, SIRT1 through SIRT7, have been implicated in regulating physiological responses to metabolism and stress by acting as nutrient sensors, linking environmental and nutrient signals to mammalian metabolic homeostasis. Furthermore, mammalian Sirtuins have been implicated in playing major roles in mammalian pathophysiological conditions such as inflammation, obesity and cancer. Mammalian Sirtuins are expressed heterogeneously among different organs and tissues, and the same holds true for their substrates. Thus, the function of mammalian Sirtuins together with their substrates is expected to vary among tissues. Any therapy depending on Sirtuins could therefore have different local as well as systemic effects. Here, an introduction to processes relevant for the actions of Sirtuins, such as metabolism and cell cycle, will be followed by reasoning on the system-level function of Sirtuins and their substrates in different mammalian tissues. Their involvement in the healthy metabolism and metabolic disorders will be reviewed and critically discussed.
Collapse
Affiliation(s)
- Parcival Maissan
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Eva J. Mooij
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| |
Collapse
|
16
|
Herrero-Aguayo V, Jiménez-Vacas JM, Sáez-Martínez P, Gómez-Gómez E, López-Cánovas JL, Garrido-Sánchez L, Herrera-Martínez AD, García-Bermejo L, Macías-González M, López-Miranda J, Castaño JP, Gahete MD, Luque RM. Influence of Obesity in the miRNome: miR-4454, a Key Regulator of Insulin Response Via Splicing Modulation in Prostate. J Clin Endocrinol Metab 2021; 106:e469-e484. [PMID: 32841353 DOI: 10.1210/clinem/dgaa580] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 12/12/2022]
Abstract
CONTEXT Obesity is a major health problem associated with severe comorbidities, including type 2 diabetes and cancer, wherein microRNAs (miRNAs) might be useful as diagnostic/prognostic tools or therapeutic targets. OBJECTIVE To explore the differential expression pattern of miRNAs in obesity and their putative role in obesity-related comorbidities such as insulin resistance. METHODS An Affymetrix-miRNA array was performed in plasma samples from normoweight (n = 4/body mass index < 25) and obese subjects (n = 4/body mass index > 30). The main changes were validated in 2 independent cohorts (n = 221/n = 18). Additionally, in silico approaches were performed and in vitro assays applied in tissue samples and prostate (RWPE-1) and liver (HepG2) cell-lines. RESULTS A total of 26 microRNAs were altered (P < 0.01) in plasma of obese subjects compared to controls using the Affymetrix-miRNA array. Validation in ampler cohorts revealed that miR-4454 levels were consistently higher in obesity, associated with insulin-resistance (Homeostatic Model Assessment of Insulin Resistance/insulin) and modulated by medical (metformin/statins) and surgical (bariatric surgery) strategies. miR-4454 was highly expressed in prostate and liver tissues and its expression was increased in prostate and liver cells by insulin. In vitro, overexpression of miR-4454 in prostate cells resulted in decreased expression levels of INSR, GLUT4, and phosphorylation of AMPK/AKT/ERK, as well as in altered expression of key spliceosome components (ESRP1/ESRP2/RBM45/RNU2) and insulin-receptor splicing variants. CONCLUSIONS Obesity was associated to an alteration of the plasmatic miRNA landscape, wherein miR-4454 levels were higher, associated with insulin-resistance and modulated by obesity-controlling interventions. Insulin regulated miR-4454, which, in turn may impair the cellular response to insulin, in a cell type-dependent manner (i.e., prostate gland), by modulating the splicing process.
Collapse
Affiliation(s)
- Vicente Herrero-Aguayo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Prudencio Sáez-Martínez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Urology Service, HURS/IMIBIC, Córdoba, Spain
| | - Juan L López-Cánovas
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Lourdes Garrido-Sánchez
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
- Unidad de Gestión Clínica y Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Complejo Hospitalario de Málaga (Virgen de la Victoria), Universidad de Málaga, Málaga, Spain
| | - Aura D Herrera-Martínez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Service of Endocrinology and Nutrition, Córdoba, Spain
| | | | - Manuel Macías-González
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
- Unidad de Gestión Clínica y Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Complejo Hospitalario de Málaga (Virgen de la Victoria), Universidad de Málaga, Málaga, Spain
| | - José López-Miranda
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Lipids and Atherosclerosis Unit, Reina Sofia University Hospital, Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| |
Collapse
|
17
|
Relationship between visceral adipose tissue and genetic mutations (VHL and KDM5C) in clear cell renal cell carcinoma. Radiol Med 2021; 126:645-651. [PMID: 33400184 DOI: 10.1007/s11547-020-01310-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The sequencing of the renal cell carcinoma (RCC) genome has detected several mutations with prognostic meaning. The association between visceral adipose tissue (VAT) and clear cell renal cell carcinoma (ccRCC) is well known. The relationship among abdominal adipose tissue distribution and ccRCC-VHL and KDM5C genetic mutations is, to the knowledge of the authors, not known. METHODS In this retrospective study, we enrolled 97 Caucasian male patients divided into three groups: the control group (n = 35), the ccRCC-VHL group (n = 52) composed of ccRCC patients with VHL mutations and ccRCC-KDM5C group (n = 10) composed of ccRCC patients with KDM5C mutation. Total adipose tissue (TAT) area, VAT area and subcutaneous adipose tissue (SAT) area were measured in the groups. VAT/SAT ratio was calculated for each subject. RESULTS Statistically significant differences between ccRCC-KDM5C group and ccRCC-VHL group were obtained for TAT area (p < 0.05), VAT area (p < 0.05) and VAT/SAT ratio (p < 0.05); between ccRCC-VHL group and control group for TAT area (p < 0.001) and VAT area (p < 0.01); and between ccRCC-KDM5C group and control group for TAT area (p < 0.0001), VAT area (p < 0.0001) and SAT area (p < 0.01). CONCLUSIONS This study demonstrates for the first time an increased amount of TAT, especially VAT, in the ccRCC-VHL and ccRCC-KDM5C groups. The effect was greater for the ccRCC-KDM5C group.
Collapse
|
18
|
Göttgens EL, van den Heuvel CNAM, de Jong MC, Kaanders JHAM, Leenders WPJ, Ansems M, Bussink J, Span PN. ACLY (ATP Citrate Lyase) Mediates Radioresistance in Head and Neck Squamous Cell Carcinomas and is a Novel Predictive Radiotherapy Biomarker. Cancers (Basel) 2019; 11:cancers11121971. [PMID: 31817870 PMCID: PMC6966650 DOI: 10.3390/cancers11121971] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is an important treatment modality of head and neck squamous cell carcinomas (HNSCC). Multiple links have been described between the metabolic activity of tumors and their clinical outcome. Here we test the hypothesis that metabolic features determine radiosensitivity, explaining the relationship between metabolism and clinical outcome. Radiosensitivity of 14 human HNSCC cell lines was determined using colony forming assays and the expression profile of approximately 200 metabolic and cancer-related genes was generated using targeted RNA sequencing by single molecule molecular inversion probes. Results: Correlation between radiosensitivity data and expression profiles yielded 18 genes associated with radiosensitivity or radioresistance, of which adenosine triphosphate (ATP) citrate lyase (ACLY) was of particular interest. Pharmacological inhibition of ACLY caused an impairment of DNA damage repair, specifically homologous recombination, and lead to radiosensitization in HNSCC cell lines. Examination of a The Cancer Genome Atlas (TCGA) cohort of HNSCC patients revealed that high expression of ACLY was predictive for radiotherapy failure, as it was only associated with poor overall survival in patients who received radiotherapy (hazard ratio of 2.00, 95% CI: 1.12–3.55; p = 0.0184). These data were further validated in an independent cohort of HNSCC patients treated with chemoradiation. Furthermore, patients with poor locoregional control after radiotherapy have significantly higher nuclear ACLY protein levels. Together, we here show that ACLY affects DNA damage repair, and is a predictive factor for radiotherapy outcome in HNSCC.
Collapse
Affiliation(s)
- Eva-Leonne Göttgens
- Radiotherapy and OncoImmunology laboratory, Department of Radiation Oncology, Radboud university medical center, 6525 GA Nijmegen, The Netherlands (M.A.); (J.B.)
- Correspondence:
| | - Corina NAM van den Heuvel
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Monique C de Jong
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1006 CX Amsterdam, The Netherlands;
| | - Johannes HAM Kaanders
- Radiotherapy and OncoImmunology laboratory, Department of Radiation Oncology, Radboud university medical center, 6525 GA Nijmegen, The Netherlands (M.A.); (J.B.)
| | - William PJ Leenders
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Marleen Ansems
- Radiotherapy and OncoImmunology laboratory, Department of Radiation Oncology, Radboud university medical center, 6525 GA Nijmegen, The Netherlands (M.A.); (J.B.)
| | - Johan Bussink
- Radiotherapy and OncoImmunology laboratory, Department of Radiation Oncology, Radboud university medical center, 6525 GA Nijmegen, The Netherlands (M.A.); (J.B.)
| | - Paul N Span
- Radiotherapy and OncoImmunology laboratory, Department of Radiation Oncology, Radboud university medical center, 6525 GA Nijmegen, The Netherlands (M.A.); (J.B.)
| |
Collapse
|
19
|
In vitro model of chronological aging of adipocytes: Interrelationships with hypoxia and oxidation. Exp Gerontol 2019; 121:81-90. [DOI: 10.1016/j.exger.2019.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/07/2023]
|
20
|
Santiago-Fernández C, Pérez-Belmonte LM, Millán-Gómez M, Moreno-Santos I, Carrasco-Chinchilla F, Ruiz-Salas A, Morcillo-Hidalgo L, Melero JM, Garrido-Sánchez L, Jiménez-Navarro M. Overexpression of scavenger receptor and infiltration of macrophage in epicardial adipose tissue of patients with ischemic heart disease and diabetes. J Transl Med 2019; 17:95. [PMID: 30894181 PMCID: PMC6425581 DOI: 10.1186/s12967-019-1842-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/11/2019] [Indexed: 12/20/2022] Open
Abstract
Background Oxidized low-density lipoproteins and scavenger receptors (SRs) play an important role in the formation and development of atherosclerotic plaques. However, little is known about their presence in epicardial adipose tissue (EAT). The objective of the study was to evaluate the mRNA expression of different SRs in EAT of patients with ischemic heart disease (IHD), stratifying by diabetes status and its association with clinical and biochemical variables. Methods We analyzed the mRNA expression of SRs (LOX-1, MSR1, CXCL16, CD36 and CL-P1) and macrophage markers (CD68, CD11c and CD206) in EAT from 45 patients with IHD (23 with type 2 diabetes mellitus (T2DM) and 22 without T2DM) and 23 controls without IHD or T2DM. Results LOX-1, CL-P1, CD68 and CD11c mRNA expression were significantly higher in diabetic patients with IHD when compared with those without T2DM and control patients. MSR1, CXCL16, CD36 and CD206 showed no significant differences. In IHD patients, LOX-1 (OR 2.9; 95% CI 1.6–6.7; P = 0.019) and CD68 mRNA expression (OR 1.7; 95% CI 0.98–4.5; P = 0.049) were identified as independent risk factors associated with T2DM. Glucose and glycated hemoglobin were also shown to be risk factors. Conclusions SRs mRNA expression is found in EAT. LOX-1 and CD68 and were higher in IHD patients with T2DM and were identified as a cardiovascular risk factor of T2DM. This study suggests the importance of EAT in coronary atherosclerosis among patients with T2DM.
Collapse
Affiliation(s)
- Concepción Santiago-Fernández
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, Campus de Teatinos s/n, 29010, Malaga, Spain.,Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Malaga, Spain
| | - Luis M Pérez-Belmonte
- Unidad de Gestión Clínica Área del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga (UMA), Campus Universitario de Teatinos, s/n., Malaga, Spain. .,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Malaga, Spain.
| | - Mercedes Millán-Gómez
- Unidad de Gestión Clínica Área del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga (UMA), Campus Universitario de Teatinos, s/n., Malaga, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Malaga, Spain
| | - Inmaculada Moreno-Santos
- Unidad de Gestión Clínica Área del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga (UMA), Campus Universitario de Teatinos, s/n., Malaga, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Malaga, Spain
| | - Fernando Carrasco-Chinchilla
- Unidad de Gestión Clínica Área del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga (UMA), Campus Universitario de Teatinos, s/n., Malaga, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Malaga, Spain
| | - Amalio Ruiz-Salas
- Unidad de Gestión Clínica Área del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga (UMA), Campus Universitario de Teatinos, s/n., Malaga, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Malaga, Spain
| | - Luis Morcillo-Hidalgo
- Unidad de Gestión Clínica Área del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga (UMA), Campus Universitario de Teatinos, s/n., Malaga, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Malaga, Spain
| | - José M Melero
- Unidad de Gestión Clínica Área del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga (UMA), Campus Universitario de Teatinos, s/n., Malaga, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Malaga, Spain
| | - Lourdes Garrido-Sánchez
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, Campus de Teatinos s/n, 29010, Malaga, Spain. .,Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Malaga, Spain.
| | - Manuel Jiménez-Navarro
- Unidad de Gestión Clínica Área del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga (UMA), Campus Universitario de Teatinos, s/n., Malaga, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Malaga, Spain
| |
Collapse
|
21
|
Gentile AM, Lhamyani S, Coín-Aragüez L, Clemente-Postigo M, Oliva Olivera W, Romero-Zerbo SY, García-Serrano S, García-Escobar E, Zayed H, Doblado E, Bermúdez-Silva FJ, Murri M, Tinahones FJ, El Bekay R. miR-20b, miR-296, and Let-7f Expression in Human Adipose Tissue is Related to Obesity and Type 2 Diabetes. Obesity (Silver Spring) 2019; 27:245-254. [PMID: 30597763 DOI: 10.1002/oby.22363] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/03/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE This study aimed to analyze the potential association of different microRNA (miRNA) molecules with both type 2 diabetes (T2D) and obesity and determine their target genes. METHODS Quantitative PCR was used to analyze the miR-20b, miR-296, and Let-7f levels in human visceral and subcutaneous adipose tissues (ATs) in relation to obesity and T2D, miRTarBase 4.0 was used for validation of target genes, and the Protein Analysis Through Evolutionary Relationships (PANTHER) Classification System and the Database for Annotation, Visualization and Integrated Discovery (DAVID) were used to annotate the biological processes of the predicted targets. RESULTS In AT, miR-20b, miR-296, and Let-7f levels were significantly different between normoglycemic subjects and those with T2D. In visceral adipose tissue, miRNA levels were higher in normoglycemic/obesity samples than in T2D/obesity samples. miR-20b-miR-296 and Let-7f target genes that showed significant differences in both ATs in relation to obesity and T2D were CDKN1A, CX3CL1, HIF1A, PPP2R1B, STAT3, and VEGFA. These genes are known to be principally involved in the vascular endothelial growth factor (VEGF) and WNT pathways. CONCLUSIONS This study provides experimental evidence of the possible correlation between AT miR-20b-miR-296-Let-7f with obesity and T2D, which might involve vascular endothelial growth factor and WNT-dependent pathways that are regulated by six different genes, suggesting a novel signaling pathway that could be important for understanding the mechanisms underlying the AT dysfunction associated with obesity and T2D.
Collapse
Affiliation(s)
- Adriana-Mariel Gentile
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, Universidad de Málaga, Campus Teatinos s/n - 29010, Málaga, Spain
| | - Said Lhamyani
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, Universidad de Málaga, Campus Teatinos s/n - 29010, Málaga, Spain
| | - Leticia Coín-Aragüez
- Unidad de Gestión Clinica de Endocrinologia y Nutricion, Instituto de Investigacion Biomedica de Malaga (IBIMA), Hospital Universitario Virgen de la Victoria, CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Málaga, Spain
| | - Mercedes Clemente-Postigo
- Unidad de Gestión Clinica de Endocrinologia y Nutricion, Instituto de Investigacion Biomedica de Malaga (IBIMA), Hospital Universitario Virgen de la Victoria, CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Málaga, Spain
| | - Wilfredo Oliva Olivera
- Unidad de Gestión Clinica de Endocrinologia y Nutricion, Instituto de Investigacion Biomedica de Malaga (IBIMA), Hospital Universitario Virgen de la Victoria, CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Málaga, Spain
| | - Silvana-Yanina Romero-Zerbo
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain
| | - Sara García-Serrano
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain
| | - Eva García-Escobar
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Esther Doblado
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, Universidad de Málaga, Campus Teatinos s/n - 29010, Málaga, Spain
| | - Francisco-Javier Bermúdez-Silva
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain
| | - Mora Murri
- Unidad de Gestión Clinica de Endocrinologia y Nutricion, Instituto de Investigacion Biomedica de Malaga (IBIMA), Hospital Universitario Virgen de la Victoria, CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Málaga, Spain
| | - Francisco J Tinahones
- Unidad de Gestión Clinica de Endocrinologia y Nutricion, Instituto de Investigacion Biomedica de Malaga (IBIMA), Hospital Universitario Virgen de la Victoria, CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Málaga, Spain
| | - Rajaa El Bekay
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Institute of Health Carlos III, Málaga, Spain
| |
Collapse
|
22
|
Marcus JM, Andrabi SA. SIRT3 Regulation Under Cellular Stress: Making Sense of the Ups and Downs. Front Neurosci 2018; 12:799. [PMID: 30450031 PMCID: PMC6224517 DOI: 10.3389/fnins.2018.00799] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022] Open
Abstract
Sirtuin 3 (SIRT3) is an NAD+ dependent deacetylase that resides primarily in mitochondria and functions to maintain mitochondrial homeostasis under stress. SIRT3 expression has been observed to change under a number of different stresses in multiple tissues and model systems. Inconsistencies in the literature with regards to how and when SIRT3 protein levels change indicates that the mechanism of SIRT3 regulation is multi-faceted. Alterations in SIRT3 have been observed in experimental models of cellular stress, however, the effect these changes have on mitochondrial health remain unknown. Neurons are highly dependent on proper mitochondrial function for their survival. SIRT3 dynamics and function have been studied using models of genotoxic, metabolic, and oxidative stresses, although it remains unclear how SIRT3 is being regulated under these conditions. A closer look into SIRT3 regulation under stress conditions in various model systems will help incorporate the many SIRT3 regulatory mechanisms at play in disease states. In this review, we describe the observations that have been made about SIRT3 protein modulation under basic stress conditions. We then point out consistencies and contradictions in these observations and what they mean. Lastly, we present the observations made in the complicated neuronal stress of stroke. We hope that this review will help consolidate the ambiguous SIRT3 literature and provide a framework for investigation of SIRT3 regulation during stress response.
Collapse
Affiliation(s)
- Joshua M Marcus
- Departments of Pharmacology and Toxicology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shaida A Andrabi
- Departments of Pharmacology and Toxicology, The University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
23
|
Abstract
The mammalian Sirtuins (SIRT1-7) are an evolutionarily conserved family of NAD+-dependent deacylase and mono-ADP-ribosyltransferase. Sirtuins display distinct subcellular localizations and functions and are involved in cell survival, senescence, metabolism and genome stability. Among the mammalian Sirtuins, SIRT1 and SIRT6 have been thoroughly investigated and have prominent metabolic regulatory roles. Moreover, SIRT1 and SIRT6 have been implicated in obesity, insulin resistance, type 2 diabetes mellitus (T2DM), fatty liver disease and cardiovascular diseases. However, the roles of other Sirtuins are not fully understood. Recent studies have shown that these Sirtuins also play important roles in inflammation, mitochondrial dysfunction, and energy metabolism. Insulin resistance is the critical pathological trait of obesity and metabolic syndrome as well as the core defect in T2DM. Accumulating clinical and experimental animal evidence suggests the potential roles of the remaining Sirtuins in the regulation of insulin resistance through diverse biological mechanisms. In this review, we summarize recent advances in the understanding of the functions of Sirtuins in various insulin resistance-associated physiological processes, including inflammation, mitochondrial dysfunction, the insulin signaling pathway, glucose, and lipid metabolism. In addition, we highlight the important gaps that must be addressed in this field.
Collapse
Affiliation(s)
- Shuang Zhou
- Internal Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xiaoqiang Tang
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Hou-Zao Chen ;
| |
Collapse
|
24
|
Lee HJ, Jung YH, Choi GE, Ko SH, Lee SJ, Lee SH, Han HJ. BNIP3 induction by hypoxia stimulates FASN-dependent free fatty acid production enhancing therapeutic potential of umbilical cord blood-derived human mesenchymal stem cells. Redox Biol 2017; 13:426-443. [PMID: 28704726 PMCID: PMC5508529 DOI: 10.1016/j.redox.2017.07.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 02/08/2023] Open
Abstract
Mitophagy under hypoxia is an important factor for maintaining and regulating stem cell functions. We previously demonstrated that fatty acid synthase (FASN) induced by hypoxia is a critical lipid metabolic factor determining the therapeutic efficacy of umbilical cord blood-derived human mesenchymal stem cells (UCB-hMSCs). Therefore, we investigated the mechanism of a major mitophagy regulator controlling lipid metabolism and therapeutic potential of UCB-hMSCs. This study revealed that Bcl2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3)-dependent mitophagy is important for reducing mitochondrial reactive oxygen species accumulation, anti-apoptosis, and migration under hypoxia. And, BNIP3 expression was regulated by CREB binding protein-mediated transcriptional actions of HIF-1α and FOXO3. Silencing of BNIP3 suppressed free fatty acid (FFA) synthesis regulated by SREBP1/FASN pathway, which is involved in UCB-hMSC apoptosis via caspases cleavage and migration via cofilin-1-mediated F-actin reorganization in hypoxia. Moreover, reduced mouse skin wound-healing capacity of UCB-hMSC with hypoxia pretreatment by BNIP3 silencing was recovered by palmitic acid. Collectively, our findings suggest that BNIP3-mediated mitophagy under hypoxia leads to FASN-induced FFA synthesis, which is critical for therapeutic potential of UCB-hMSCs with hypoxia pretreatment. BNIP3 induction by hypoxia mainly controls mitophagy and mitochondrial ROS production in UCB-hMSCs. BNIP3 silencing impairs UCB-hMSC functions such as survival, migration and free fatty acid production under hypoxia. BNIP3 silencing suppresses SREBP1/FASN-mediated free fatty acid production via ROS regulation under hypoxia. BNIP3 silencing decreased skin wound healing potential of hypoxia-pretreated UCB-hMSCs. Palmitic acid addition recovers decreased therapeutic potential of UCB-hMSCs by BNIP3 silencing.
Collapse
Affiliation(s)
- Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Gee Euhn Choi
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - So Hee Ko
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Sei-Jung Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea; Departments of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 330-930, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
25
|
Growth hormone-releasing hormone is produced by adipocytes and regulates lipolysis through growth hormone receptor. Int J Obes (Lond) 2017. [PMID: 28626214 DOI: 10.1038/ijo.2017.145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Growth hormone-releasing hormone (GHRH) has a crucial role in growth hormone (GH) secretion, but little is known about its production by adipocytes and its involvement in adipocyte metabolism. OBJECTIVES To determine whether GHRH and its receptor (GHRH-R) are present in human adipocytes and to study their levels in obesity. Also, to analyze the effects of GHRH on human adipocyte differentiation and lipolysis. METHODS GHRH/GHRH-R and GH/GH-R mRNA expression levels were analyzed in human mature adipocytes from non-obese and morbidly obese subjects. Human mesenchymal stem cells (HMSC) were differentiated to adipocytes with GHRH (10-14-10-8 M). Adipocyte differentiation, lipolysis and gene expression were measured and the effect of GH-R silencing was determined. RESULTS Mature adipocytes from morbidly obese subjects showed a higher expression of GHRH and GH-R, and a lower expression of GHRH-R and GH than non-obese subjects (P<0.05). A total of 10-14-10-10 M GHRH induced an inhibition of lipid accumulation and PPAR-γ expression (P<0.05), and an increase in glycerol release and HSL expression (P<0.05) in human differentiated adipocytes. A total of 10-12-10-8 M GHRH decreased GHRH-R expression in human differentiated adipocytes (P<0.05). A total of 10-10-10-8 M GHRH increased GH and GH-R expression in human differentiated adipocytes (P<0.05). The effects of GHRH at 10-10 M on adipocyte differentiation and lipolysis were blocked when GH-R expression was silenced. CONCLUSIONS GHRH and GHRH-R are expressed in human adipocytes and are negatively associated. GHRH at low doses may exert an anti-obesity effect by inhibiting HMSC differentiation in adipocytes and by increasing adipocyte lipolysis in an autocrine or paracrine pathway. These effects are mediated by GH and GH-R.
Collapse
|
26
|
Thorn C, Knight B, Pastel E, McCulloch L, Patel B, Shore A, Kos K. Adipose tissue is influenced by hypoxia of obstructive sleep apnea syndrome independent of obesity. DIABETES & METABOLISM 2017; 43:240-247. [DOI: 10.1016/j.diabet.2016.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/07/2016] [Accepted: 12/01/2016] [Indexed: 12/15/2022]
|
27
|
Camsari C, Folger JK, McGee D, Bursian SJ, Wang H, Knott JG, Smith GW. Effects of Periconception Cadmium and Mercury Co-Administration to Mice on Indices of Chronic Diseases in Male Offspring at Maturity. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:643-650. [PMID: 27814245 PMCID: PMC5381999 DOI: 10.1289/ehp481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Long-term exposure to the heavy metals cadmium (Cd) and mercury (Hg) is known to increase the risk of chronic diseases. However, to our knowledge, exposure to Cd and Hg beginning at the periconception period has not been studied to date. OBJECTIVE We examined the effect of Cd and Hg that were co-administered during early development on indices of chronic diseases in adult male mice. METHODS Adult female CD1 mice were subcutaneously administered a combination of cadmium chloride (CdCl2) and methylmercury (II) chloride (CH3HgCl) (0, 0.125, 0.5, or 2.0 mg/kg body weight each) 4 days before and 4 days after conception (8 days total). Indices of anxiety-like behavior, glucose homeostasis, endocrine and molecular markers of insulin resistance, and organ weights were examined in adult male offspring. RESULTS Increased anxiety-like behavior, impaired glucose homeostasis, and higher body weight and abdominal adipose tissue weight were observed in male offspring of treated females compared with controls. Significantly increased serum leptin and insulin concentrations and impaired insulin tolerance in the male offspring of dams treated with 2.0 mg/kg body weight of Cd and Hg suggested insulin resistance. Altered mRNA abundance for genes associated with glucose and lipid homeostasis (GLUT4, IRS1, FASN, ACACA, FATP2, CD36, and G6PC) in liver and abdominal adipose tissues as well as increased IRS1 phosphorylation in liver (Ser 307) provided further evidence of insulin resistance. CONCLUSIONS Results suggest that the co-administration of Cd and Hg to female mice during the early development of their offspring (the periconception period) was associated with anxiety-like behavior, altered glucose metabolism, and insulin resistance in male offspring at adulthood.
Collapse
Affiliation(s)
- Cagri Camsari
- Laboratory of Mammalian Reproductive Biology and Genomics,
- Department of Animal Science,
| | - Joseph K. Folger
- Laboratory of Mammalian Reproductive Biology and Genomics,
- Department of Animal Science,
| | - Devin McGee
- Laboratory of Mammalian Reproductive Biology and Genomics,
- Department of Animal Science,
| | | | | | - Jason G. Knott
- Department of Animal Science,
- Developmental Epigenetics Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - George W. Smith
- Laboratory of Mammalian Reproductive Biology and Genomics,
- Department of Animal Science,
| |
Collapse
|
28
|
Adipose Tissue Hypoxia in Obesity and Its Impact on Preadipocytes and Macrophages: Hypoxia Hypothesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:305-326. [PMID: 28585205 DOI: 10.1007/978-3-319-48382-5_13] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obese subjects exhibit lower adipose tissue oxygen consumption in accordance with the lower adipose tissue blood flow. Thus, compared with lean subjects, obese subjects have 44% lower capillary density and 58% lower vascular endothelial growth factor (VEGF). The VEGF expression together with hypoxia-inducible transcription factor-1 (HIF-1) activity also requires phosphatidylinositol 3-kinase (PI3K)- and target of rapamycin (TOR)-mediated signaling. HIF-1alpha is an important signaling molecule for hypoxia to induce the inflammatory responses. Hypoxia affects a number of biological functions, such as angiogenesis, cell proliferation, apoptosis, inflammation and insulin resistance. Additionally, reactive oxygen radical (ROS) generation at mitochondria is responsible for propagation of the hypoxic signal. Actually mitochondrial ROS (mtROS) production, but not oxygen consumption is required for hypoxic HIF-1alpha protein stabilization. Adipocyte mitochondrial oxidative capacity is reduced in obese compared with non-obese adults. In this respect, mitochondrial dysfunction of adipocyte is associated with the overall adiposity. Furthermore, hypoxia also inhibits macrophage migration from the hypoxic adipose tissue. Alterations in oxygen availability of adipose tissue directly affect the macrophage polarization and are responsible from dysregulated adipocytokines production in obesity. Hypoxia also inhibits adipocyte differentiation from preadipocytes. In addition to stressed adipocytes, hypoxia contributes to immune cell immigration and activation which further aggravates adipose tissue fibrosis. Fibrosis is initiated in response to adipocyte hypertrophy in obesity.
Collapse
|
29
|
Effects of acute hypoxia on human adipose tissue lipoprotein lipase activity and lipolysis. J Transl Med 2016; 14:212. [PMID: 27421877 PMCID: PMC4947333 DOI: 10.1186/s12967-016-0965-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/29/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Adipose tissue regulates postprandial lipid metabolism by storing dietary fat through lipoprotein lipase-mediated hydrolysis of exogenous triglycerides, and by inhibiting delivery of endogenous non-esterified fatty acid to nonadipose tissues. Animal studies show that acute hypoxia, a model of obstructive sleep apnea, reduces adipose tissue lipoprotein lipase activity and increases non-esterified fatty acid release, adversely affecting postprandial lipemia. These observations remain to be tested in humans. METHODS We used differentiated human preadipocytes exposed to acute hypoxia as well as adipose tissue biopsies obtained from 10 healthy men exposed for 6 h to either normoxia or intermittent hypoxia following an isocaloric high-fat meal. RESULTS In differentiated preadipocytes, acute hypoxia induced a 6-fold reduction in lipoprotein lipase activity. In humans, the rise in postprandial triglyceride levels did not differ between normoxia and intermittent hypoxia. Non-esterified fatty acid levels were higher during intermittent hypoxia session. Intermittent hypoxia did not affect subcutaneous abdominal adipose tissue lipoprotein lipase activity. No differences were observed in lipolytic responses of isolated subcutaneous abdominal adipocytes between normoxia and intermittent hypoxia sessions. CONCLUSIONS Acute hypoxia strongly inhibits lipoprotein lipase activity in differentiated human preadipocytes. Acute intermittent hypoxia increases circulating plasma non-esterified fatty acid in young healthy men, but does not seem to affect postprandial triglyceride levels, nor subcutaneous abdominal adipose tissue lipoprotein lipase activity and adipocyte lipolysis.
Collapse
|
30
|
Gileles-Hillel A, Kheirandish-Gozal L, Gozal D. Biological plausibility linking sleep apnoea and metabolic dysfunction. Nat Rev Endocrinol 2016; 12:290-8. [PMID: 26939978 DOI: 10.1038/nrendo.2016.22] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Obstructive sleep apnoea (OSA) is a very common disorder that affects 10-25% of the general population. In the past two decades, OSA has emerged as a cardiometabolic risk factor in both paediatric and adult populations. OSA-induced metabolic perturbations include dyslipidaemia, atherogenesis, liver dysfunction and abnormal glucose metabolism. The mainstay of treatment for OSA is adenotonsillectomy in children and continuous positive airway pressure therapy in adults. Although these therapies are effective at resolving the sleep-disordered breathing component of OSA, they do not always produce beneficial effects on metabolic function. Thus, a deeper understanding of the underlying mechanisms by which OSA influences metabolic dysfunction might yield improved therapeutic approaches and outcomes. In this Review, we summarize the evidence obtained from animal models and studies of patients with OSA of potential mechanistic pathways linking the hallmarks of OSA (intermittent hypoxia and sleep fragmentation) with metabolic dysfunction. Special emphasis is given to adipose tissue dysfunction induced by sleep apnoea, which bears a striking resemblance to adipose dysfunction resulting from obesity. In addition, important gaps in current knowledge and promising lines of future investigation are identified.
Collapse
Affiliation(s)
- Alex Gileles-Hillel
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Knapp Center for Biomedical Discovery, Room 4100, 900 East 57th Street, Mailbox 4, Chicago, Illinois 60637-1470, USA
| | - Leila Kheirandish-Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Knapp Center for Biomedical Discovery, Room 4100, 900 East 57th Street, Mailbox 4, Chicago, Illinois 60637-1470, USA
| | - David Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Knapp Center for Biomedical Discovery, Room 4100, 900 East 57th Street, Mailbox 4, Chicago, Illinois 60637-1470, USA
| |
Collapse
|