1
|
Zhao B, Guo Y, Sun R, Zhang L, Yang L, Mei X, Zhang L, Huang J. Quadrivalent hemagglutinin and adhesion expressed on Saccharomyces cerevisiae induce protective immunity against Mycoplasma gallisepticum infection and improve gut microbiota. Microb Pathog 2024; 187:106511. [PMID: 38168552 DOI: 10.1016/j.micpath.2023.106511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Mycoplasma gallisepticum (MG) infection causes infectious respiratory diseases in poultry, causing economic losses to the poultry industry. Therefore, this study aims to develop a safe, convenient, and effective multivalent recombinant Saccharomyces cerevisiae vaccine candidate and to explore its potential for oral immunization as a subunit vaccine. Mycoplasma gallisepticum Cytadhesin (MGC) and variable lipoprotein and hemagglutinin (vlhA) are associated with the pathogenesis of MG. In this study, a quadrivalent recombinant Saccharomyces cerevisiae (ST1814G-MG) displaying on MGC2, MGC3, VLH5, and VLH3, proteins was innovatively constructed, and its protective efficiency was evaluated in birds. The results showed that oral immunization with ST1814G-MG stimulates specific antibodies in chickens, reshapes the composition of the gut microbiota, reduces the Mycoplasma loading and pulmonary disease injury in the lungs. In addition, we found that oral ST1814G-MG had better protection against MG infection than an inactivated vaccine, and co-administration with the inactivated vaccine was even more effective. The results suggest that ST1814G-MG is a potentially safer and effective agent for controlling MG infection.
Collapse
Affiliation(s)
- Baiping Zhao
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Yanyu Guo
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Ruiqi Sun
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Liu Yang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Xuefeng Mei
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Lei Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
2
|
Jacques C, Marchand F, Chatelais M, Brulefert A, Floris I. Understanding the Mode of Action of a Micro-Immunotherapy Formulation: Pre-Clinical Evidence from the Study of 2LEBV ® Active Ingredients. Life (Basel) 2024; 14:102. [PMID: 38255717 PMCID: PMC10821216 DOI: 10.3390/life14010102] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is often kept silent and asymptomatic; however, its reactivation induces a chronic and/or recurrent infection that is associated with numerous diseases, including cancer and inflammation-related disorders. As no specific treatment is currently available, the immune factors-based micro-immunotherapy (MI) medicine 2LEBV® could be considered a valuable therapeutic option to sustain the immune system in EBV reactivation. METHODS The present work aimed to investigate, for the first time, the effect of 2LEBV® in several in vitro models of uninfected immune-related cells. RESULTS 2LEBV® displayed phagocytosis-enhancing capabilities in granulocytes. In human peripheral blood mononuclear cells (PBMCs), it increased the intra- and extra-cellular expression of interleukin (IL)-2. Moreover, it modulated the secretion of other cytokines, increasing IL-4, IL-6, and tumor necrosis factor-α levels or lowering other cytokines levels such as IL-9. Finally, 2LEBV® reduced the expression of human leukocyte antigen (HLA)-II in endothelial cells and macrophages. CONCLUSIONS Although these data are still preliminary and the chosen models do not consider the underlying EBV-reactivation mechanisms, they still provide a better understanding of the mechanisms of action of 2LEBV®, both at functional and molecular levels. Furthermore, they open perspectives regarding the potential targets of 2LEBV® in its employment as a therapeutic intervention for EBV-associated diseases.
Collapse
Affiliation(s)
- Camille Jacques
- Pre-Clinical Research Department, Labo’Life France, Pescalis-Les Magnys, 79320 Moncoutant-sur-Sevre, France;
| | - Flora Marchand
- ProfileHIT, 7 rue du Buisson, 44680 Sainte-Pazanne, France; (F.M.); (M.C.)
| | - Mathias Chatelais
- ProfileHIT, 7 rue du Buisson, 44680 Sainte-Pazanne, France; (F.M.); (M.C.)
| | - Adrien Brulefert
- QIMA Life Sciences, 1 bis rue des Plantes—CS 50011, 86160 Gençay, France;
| | - Ilaria Floris
- Pre-Clinical Research Department, Labo’Life France, Pescalis-Les Magnys, 79320 Moncoutant-sur-Sevre, France;
| |
Collapse
|
3
|
Espin-Rivera AM, Meza-Aparicio FU, Reyna-Flores F, Burguete-Garcia AI, Guzman-Olea E, Bermudez-Morales VH. Interferon-tau (IFN-τ) Has Antiproliferative Effects, Induces Apoptosis, and Inhibits Tumor Growth in a Triple-negative Breast Cancer Murine Tumor Model. In Vivo 2023; 37:2517-2523. [PMID: 37905606 PMCID: PMC10621435 DOI: 10.21873/invivo.13359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND/AIM Resistant triple-negative breast cancer (TNBC) is a subtype of this disease that is resistant to conventional chemotherapy agents. IFN-τ is a cytokine that has recently been shown to have immunoregulatory and antitumor effects. The present study aimed to examine the antiproliferative and apoptosis effects of IFN-τ in breast cancer cells and the antitumor effect in a murine tumor model of TNBC. MATERIALS AND METHODS Murine breast cancer 4T1 cells were cultured and treated with ovine IFN-τ and through MTT and Caspase-Glo 3/7 assays, viability and cell death were determined. In addition, the antitumor effect of IFN-τ was determined in a murine tumor model of TNBC. RESULTS Ovine IFN-τ showed a concentration-dependent antiproliferative effect on 4T1 murine breast cancer cells. Also, treatment of 4T1 cells with IFN-τ induced the activation of caspase 3 and 7, which is indicative of apoptotic cell death. Moreover, we detected an increase in the expression of type I interferon receptor (IFNAR1/2) in cells treated with IFN-. The intratumoral application of IFN-τ in mice inhibited tumor growth compared to the control non-treated group, and the effect was associated with the increased expression of GM-CSF. CONCLUSION Ovine IFN-τ may be an effective immunotherapeutic cytokine for the treatment of TNBC.
Collapse
Affiliation(s)
- Alina Mariana Espin-Rivera
- Division of Chronic Infection and Cancer, Research Center of Infectious Diseases, National Institute of Public Health, Cuernavaca, México
| | - Francisco Uriel Meza-Aparicio
- Division of Chronic Infection and Cancer, Research Center of Infectious Diseases, National Institute of Public Health, Cuernavaca, México
| | - Fernando Reyna-Flores
- Division of Chronic Infection and Cancer, Research Center of Infectious Diseases, National Institute of Public Health, Cuernavaca, México
| | - Ana Isabel Burguete-Garcia
- Division of Chronic Infection and Cancer, Research Center of Infectious Diseases, National Institute of Public Health, Cuernavaca, México
| | - Eduardo Guzman-Olea
- Catedratico Consejo Nacional de Ciencia y Tecnología (CONACYT), Institute of Health Sciences, Autonomous University of Hidalgo State, Hidalgo, México
| | - Victor Hugo Bermudez-Morales
- Division of Chronic Infection and Cancer, Research Center of Infectious Diseases, National Institute of Public Health, Cuernavaca, México;
| |
Collapse
|
4
|
Zheng L, Zhang L, Tan F, Wang C, Lv X, Bai R, Huo N, Zheng M. Prevention and control of chicken coccidiosis construction of recombinant Lactococcus lactis expressing chicken IL-4 and IL-2 fusion protein and its immune synergistic effect on chicken coccidia live vaccine. Poult Sci 2023; 102:102530. [PMID: 36805402 PMCID: PMC9969317 DOI: 10.1016/j.psj.2023.102530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/21/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Intestinal mucosa injury and loss of weight gain are unavoidable while using live vaccine strain to prevent chicken coccidiosis. In this study, recombinant Lactococcus lactis NZ3900/pNZ8149-IL-4-IL-2, expressing the fusion protein of chicken IL-4 and IL-2, was constructed using food-grade NICE expression system, trying to develop a possible oral immune adjuvant to enhance the immune effect of the live vaccine against chicken coccidiosis and minimize its adverse effects. Chickens were given different doses of recombinant L. lactis together with the live vaccine, then experimently attacked with coccidia virulent strains. Results showed that weight gains of co-immunization groups, given both 1 × 109 or 1 × 1010 CFU recombinant L. lactis and the live vaccine, were significantly higher than the vaccine-only group (P<0.05), while intestinal lesion scores of duodenum, jejunum, and cecum were significantly lower than the vaccine-only group (P<0.05), so was the oocyst shedding. The anticoccidial indexes (ACI) of the co-immunized groups given 1 × 109 and 1 × 1010 CFU recombinant L. lactis were 187.85 and 193.33, respectively, higher than 174.61 of the vaccine-only group. In addition, chickens in co-immunization groups gained more body weight than the vaccine-only group before being challenged with the virulent strains (P<0.05). All the results indicated that the constructed recombinant L. lactis NZ3900/ pNZ8149-IL-4-IL-2 exhibited an immune synergistic function to coccidiosis live vaccine, and could alleviate its adverse effect affecting weight gain. The application of the recombinant L. lactis showed the potency to lift the anticoccidial efficiency of the live vaccine from a medium level to a high level.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nairui Huo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | | |
Collapse
|
5
|
Huang A, Groer C, Lu R, Forrest ML, Griffin JD, Berkland CJ. Glatiramer Acetate Complexed with CpG as Intratumoral Immunotherapy in Combination with Anti-PD-1. Mol Pharm 2022; 19:4357-4369. [DOI: 10.1021/acs.molpharmaceut.2c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aric Huang
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Chad Groer
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
- HylaPharm, LLC, Lawrence, Kansas 66047, United States
| | - Ruolin Lu
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - M. Laird Forrest
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
- HylaPharm, LLC, Lawrence, Kansas 66047, United States
| | | | - Cory J. Berkland
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
- Kinimmune, Inc., Saint Louis, Missouri 63141, United States
| |
Collapse
|
6
|
Wang Q, Wang Y, Qiao W, Xu B, Liu Y, Zhang X, Li W, Zhao J, Liu M, Zhang Y, Chen D, Huang C, Jin R. The effect of serum IL-2 levels on the prognosis of primary biliary cholangitis-related liver failure and the preliminary exploration of its mechanism. Front Immunol 2022; 13:995223. [PMID: 36159788 PMCID: PMC9493093 DOI: 10.3389/fimmu.2022.995223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/19/2022] [Indexed: 11/19/2022] Open
Abstract
Background In primary biliary cholangitis (PBC), the levels of serum IL-2 were involved in liver inflammation and immune changes. This study aimed to investigate the prognostic significance of serum IL-2 combined with total bilirubin (TBIL) in liver failure and cytokine changes during the disease. Methods A total of 160 PBC patients treated with UDCA were included. Parameters at admission were collected, and the COX regression model was used to predict independent risk factors associated with PBC disease progression. We identified the optimal cut-off values and prognosis effects of serum IL-2 and TBIL based on the time-dependent receiver operating characteristic (ROC) curve. We also analyzed the incidence of liver failure with Kaplan-Meier survival analysis. In addition, the changes of cytokines (mainly IL-2) in liver tissues and blood samples from 11 patients with end-stage PBC liver failure and five healthy controls were examined. Results Age, IL-2, ALB, γ-GT, ALP, TBIL, Hb, TBA, WBC, and PLT, as well as anti-Sp100, were found to be independent risk factors in PBC patients with liver failure. Patients with decreased serum IL-2 levels and increased TBIL levels have a significantly higher incidence of liver failure and a worse prognosis. Patients with advanced PBC liver failure after liver transplantation exhibited a significant decrease in levels of serum IL-2 and a relatively immunosuppressed status. Conclusions The combination of serum IL-2 and TBIL can be a predictor of the progression of liver failure in patients with primary biliary cholangitis, and it is likely to be related to the expression of GM-CSF and G-CSF.
Collapse
Affiliation(s)
- Qi Wang
- Beijing Institute of Hepatology, Beijing You ‘an Hospital, Capital Medical University, Beijing, China
| | - Yang Wang
- Beijing Institute of Hepatology, Beijing You ‘an Hospital, Capital Medical University, Beijing, China
| | - Wenying Qiao
- Beijing Institute of Hepatology, Beijing You ‘an Hospital, Capital Medical University, Beijing, China
| | - Bin Xu
- Second Department of Liver Disease Center, Beijing You ‘an Hospital, Capital Medical University, Beijing, China
| | - Yanmin Liu
- Second Department of Liver Disease Center, Beijing You ‘an Hospital, Capital Medical University, Beijing, China
| | - Xiaodan Zhang
- Second Department of Liver Disease Center, Beijing You ‘an Hospital, Capital Medical University, Beijing, China
| | - Wenjuan Li
- Second Department of Liver Disease Center, Beijing You ‘an Hospital, Capital Medical University, Beijing, China
| | - Juan Zhao
- Second Department of Liver Disease Center, Beijing You ‘an Hospital, Capital Medical University, Beijing, China
| | - Mengcheng Liu
- Beijing Institute of Hepatology, Beijing You ‘an Hospital, Capital Medical University, Beijing, China
| | - Yang Zhang
- Beijing Institute of Hepatology, Beijing You ‘an Hospital, Capital Medical University, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing You ‘an Hospital, Capital Medical University, Beijing, China
- *Correspondence: Dexi Chen, ; Chunyang Huang, ; Ronghua Jin,
| | - Chunyang Huang
- Second Department of Liver Disease Center, Beijing You ‘an Hospital, Capital Medical University, Beijing, China
- *Correspondence: Dexi Chen, ; Chunyang Huang, ; Ronghua Jin,
| | - Ronghua Jin
- National Center For Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Dexi Chen, ; Chunyang Huang, ; Ronghua Jin,
| |
Collapse
|
7
|
Roles for macrophage-polarizing interleukins in cancer immunity and immunotherapy. Cell Oncol (Dordr) 2022; 45:333-353. [PMID: 35587857 DOI: 10.1007/s13402-022-00667-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Macrophages are the most abundant and one of the most critical cells of tumor immunity. They provide a bridge between innate and adaptive immunity through releasing cytokines into the tumor microenvironment (TME). A number of interleukin (IL) cytokine family members is involved in shaping the final phenotype of macrophages toward either a classically-activated pro-inflammatory M1 state with anti-tumor activity or an alternatively-activated anti-inflammatory M2 state with pro-tumor activity. Shaping TME macrophages toward the M1 phenotype or recovering this phenotypic state may offer a promising therapeutic approach in patients with cancer. Here, we focus on the impact of macrophage-polarizing ILs on immune cells and IL-mediated cellular cross-interactions within the TME. The key aim of this review is to define therapeutic schedules for addressing ILs in cancer immunotherapy based on their multi-directional impacts in such a milieu. Gathering more knowledge on this area is also important for defining adverse effects related to cytokine therapy and addressing them for reinforcing the efficacy of immunotherapy against cancer.
Collapse
|
8
|
Mortezaee K, Majidpoor J. (Im)maturity in Tumor Ecosystem. Front Oncol 2022; 11:813897. [PMID: 35145911 PMCID: PMC8821092 DOI: 10.3389/fonc.2021.813897] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023] Open
Abstract
Tumors have special features that make them distinct from their normal counterparts. Immature cells in a tumor mass and their critical contributions to the tumorigenesis will open new windows toward cancer therapy. Incomplete cellular development brings versatile and unique functionality in the cellular tumor ecosystem, such as what is seen for highly potential embryonic cells. There is evidence that maturation of certain types of cells in this ecosystem can recover the sensitivity of the tumor. Therefore, understanding more about the mechanisms that contributed to this immaturity will render new therapeutic approaches in cancer therapy. Targeting such mechanisms can be exploited as a supplementary to the current immunotherapeutic treatment schedules, such as immune checkpoint inhibitor (ICI) therapy. The key focus of this review is to discuss the impact of (im)maturity in cellular tumor ecosystems on cancer progression, focusing mainly on immaturity in the immune cell compartment of the tumor, as well as on the stemness of tumor cells.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
9
|
Sinaga DS, Ho SL, Lu CA, Yu SM, Huang LF. Knockdown expression of a MYB-related transcription factor gene, OsMYBS2, enhances production of recombinant proteins in rice suspension cells. PLANT METHODS 2021; 17:99. [PMID: 34560901 PMCID: PMC8464127 DOI: 10.1186/s13007-021-00799-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/12/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Transgenic plant suspension cells show economic potential for the production of valuable bioproducts. The sugar starvation-inducible rice αAmy3 promoter, together with its signal peptide, is widely applied to produce recombinant proteins in rice suspension cells. The OsMYBS2 transcription factor was shown recently to reduce activation of the αAmy3 promoter by competing for the binding site of the TA box of the αAmy3 promoter with the potent OsMYBS1 activator. In this study, rice suspension cells were genetically engineered to silence OsMYBS2 to enhance the production of recombinant proteins. RESULTS The mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) gene was controlled by the αAmy3 promoter and expressed in OsMYBS2-silenced transgenic rice suspension cells. Transcript levels of the endogenous αAmy3 and the transgene mGM-CSF were increased in the OsMYBS2-silenced suspension cells. The highest yield of recombinant mGM-CSF protein attained in the OsMYBS2-silenced transgenic suspension cells was 69.8 µg/mL, which is 2.5-fold that of non-silenced control cells. The yield of recombinant mGM-CSF was further increased to 118.8 µg/mL in cultured cells derived from homozygous F5 seeds, which was 5.1 times higher than that of the control suspension cell line. CONCLUSIONS Our results demonstrate that knockdown of the transcription factor gene OsMYBS2 increased the activity of the αAmy3 promoter and improved the yield of recombinant proteins secreted in rice cell suspension cultures.
Collapse
Affiliation(s)
- Desyanti Saulina Sinaga
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City, 320, Taiwan, ROC
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Shin-Lon Ho
- Department of Agronomy, National Chiayi University, Chiayi City, 600, Taiwan, ROC
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei City, 115, Taiwan, ROC
| | - Li-Fen Huang
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City, 320, Taiwan, ROC.
| |
Collapse
|
10
|
Yan H, Chen Y, Wang K, Yu L, Huang X, Li Q, Xie Y, Lin J, He Y, Yi X, Wang Y, Chen L, Ding Y, Li Y. Identification of immune landscape signatures associated with clinical and prognostic features of hepatocellular carcinoma. Aging (Albany NY) 2020; 12:19641-19659. [PMID: 33049716 PMCID: PMC7732284 DOI: 10.18632/aging.103977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/14/2020] [Indexed: 01/24/2023]
Abstract
While cancer immunotherapy has been remarkably successful in some malignancies, some cancers derive limited benefit from current immunotherapies. Here, we combined immune landscape signatures with hepatocellular carcinoma clinical and prognostic features to classify them into distinct subtypes. The immunogenomic profiles, stromal cell features and immune cell composition of the subtypes were then systematically analyzed. Two independent prognostic indexes were established based on 6 immune-related genes and 17 differentially expressed genes associated with stromal cell content. These indexes were significantly correlated with tumor mutation burden, deficient DNA mismatch repair and microsatellite instability. In addition, tumor-infiltrating lymphocytes, including activated NK cells, resting memory CD4 T-cells, eosinophils, and activated mast cells were significantly correlated with hepatocellular carcinoma survival. In conclusion, we have comprehensively described the immune landscape signatures and identified prognostic immune-associated biomarkers of hepatocellular carcinoma. Our findings highlight potential novel avenues for improving responses to immunotherapy.
Collapse
Affiliation(s)
- Hongmei Yan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuchuan Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kai Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lu Yu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xixin Huang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qianyu Li
- Medical Imaging Specialty, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yuwen Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiayu Lin
- Clinical Medicine Specialty, the First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yueyun He
- Medical Imaging Specialty, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xinyu Yi
- Clinical Medicine Specialty, the First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yanzhi Wang
- Medical Imaging Specialty, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Longhua Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yi Ding
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yiyi Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
11
|
Yan WL, Shen KY, Tien CY, Chen YA, Liu SJ. Recent progress in GM-CSF-based cancer immunotherapy. Immunotherapy 2017; 9:347-360. [PMID: 28303764 DOI: 10.2217/imt-2016-0141] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer immunotherapy is a growing field. GM-CSF, a potent cytokine promoting the differentiation of myeloid cells, can also be used as an immunostimulatory adjuvant to elicit antitumor immunity. Additionally, GM-CSF is essential for the differentiation of dendritic cells, which are responsible for processing and presenting tumor antigens for the priming of antitumor cytotoxic T lymphocytes. Some strategies have been developed for GM-CSF-based cancer immunotherapy in clinical practice: GM-CSF monotherapy, GM-CSF-secreting cancer cell vaccines, GM-CSF-fused tumor-associated antigen protein-based vaccines, GM-CSF-based DNA vaccines and GM-CSF combination therapy. GM-CSF also contributes to the regulation of immunosuppression in the tumor microenvironment. This review provides recommendations regarding GM-CSF-based cancer immunotherapy.
Collapse
Affiliation(s)
- Wan-Lun Yan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,National Institute of Infectious Diseases & Vaccinology, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Kuan-Yin Shen
- National Institute of Infectious Diseases & Vaccinology, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan.,Graduate Instituteof Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chun-Yuan Tien
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,National Institute of Infectious Diseases & Vaccinology, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Yu-An Chen
- Graduate Instituteof Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Shih-Jen Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,National Institute of Infectious Diseases & Vaccinology, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| |
Collapse
|
12
|
Wang CY, Hua R, Liu L, Zhan X, Chen S, Quan S, Chu QJ, Zhu YT. Immunotherapy against metastatic bladder cancer by combined administration of granulocyte macrophage-colony stimulating factor and interleukin-2 surface modified MB49 bladder cancer stem cells vaccine. Cancer Med 2017; 6:689-697. [PMID: 28205361 PMCID: PMC5345636 DOI: 10.1002/cam4.1023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 12/15/2022] Open
Abstract
In previous studies, it has been shown that the granulocyte macrophage‐colony stimulating factor (GM‐CSF) or interleukin‐2 (IL‐2) surface modified MB49 bladder cancer stem cells (MCSCs) vaccine could induce a specific antitumor immunity and against bladder cancer in mice model respectively. However, whether combined administration of GM‐CSF and IL‐2 could produce specific immune responses to cancer stem cells (CSCs) was uncertain. MCSCs were established and characterized. GM‐CSF and IL‐2 MCSCs vaccines were prepared and bioactivity was evaluated. The therapeutic, protective, specific, and memorial immune response animal experiments were designed. Tumor‐specific cytotoxic T lymphocytes assay, enzyme linked immunosorbent assay, flow cytometry assay were performed to indentify whether vaccine caused an antitumor immunity. Streptavidin (SA)‐GM‐CSF and SA‐IL‐2 MCSCs vaccines were prepared successfully. Such vaccines inhibited the volume of tumor and prolonged the survival of the mice in animal experiments. The express of IgG or IFN‐c, the portion of dendritic cells, CD8+ and CD4+ T cells were highest in the combined vaccines group than the SA‐GM‐CSF vaccine group, the SA‐IL‐2 vaccine group, the MCSCs group and the PBS group. The combined of GM‐CSF and IL‐2 vaccines could induce better antitumor immunity than a vaccine alone.
Collapse
Affiliation(s)
- Chun-Yan Wang
- Department of Neurology, TCM-Integrated Hospital, Southern Medical University, Guangzhou, China
| | - Rui Hua
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaomin Zhan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Simei Chen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Song Quan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qing-Jun Chu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong-Tong Zhu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|