1
|
Riitano G, Spinelli F, Manganelli V, Caissutti D, Capozzi A, Garufi C, Garofalo T, Misasi R, Sorice M, Conti F, Longo A, Alessandri C. Wnt signaling as a translational target in rheumatoid and psoriatic arthritis. J Transl Med 2025; 23:158. [PMID: 39905450 PMCID: PMC11796213 DOI: 10.1186/s12967-025-06174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/25/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) and Psoriatic arthritis (PsA) are chronic inflammatory diseases mainly affecting joints. RA primarily targets the synovial joints and is characterized by cartilage and bone erosion, whereas PsA is associated with skin and nail psoriasis and is characterized by erosive bone damage with an exuberant bone formation and soft tissue involvement. Recent evidence described the involvement of the Wnt pathway in the pathogenesis of these diseases. Thus, we aimed to analyze some components of Wnt signaling, i.e. DKK1, Wnt 5a and β-catenin, and their association with disease activity indices, investigating possible differences between the two diseases. METHODS Sera from 18 RA patients naïve for biological therapy, 18 PsA patients and 20 matched healthy donors (HD) were tested for DKK1 by ELISA, Wnt 5a and β-catenin by Immunoblotting. Values were correlated with CTX-1, detected by ELISA, and with disease activity indices: Disease Activity Score on 28 joints (DAS28-CRP) for RA and the Disease Activity in Psoriatic Arthritis (DAPSA) score for PsA. RESULTS This study highlights significant increase in DKK1, Wnt 5a, and β-catenin levels in RA and PsA patients compared to HD, with distinct patterns of correlation with disease activity indices. Indeed, in RA patients, DKK1 levels positively correlated with DAS28-CRP score, whereas in PsA patients, DKK1 levels negatively correlated with DAPSA score. Our findings showed a strong correlation between DKK1 and CTX-1 levels in RA patients, supporting the relationship between DKK1 levels and the presence of joint erosions. Furthermore, a significant positive correlation was found between β-catenin and IL-6 levels in RA, indicating that β-catenin may be involved in the inflammatory cascade. CONCLUSION This study compares the involvement of Wnt signaling in RA and PsA, suggesting that Wnt signaling may represent a possible mechanism of disease activity. In particular, it indicates that DKK1 levels are correlated with CTX-1, a marker of bone resorption, and with disease activity in RA patients. These findings underscore the importance of these biomarkers in the potential monitoring of patients, offering insights into disease mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Gloria Riitano
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, Rome, 00161, Italy
| | - Francesca Spinelli
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Valeria Manganelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, Rome, 00161, Italy
| | - Daniela Caissutti
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, Rome, 00161, Italy
| | - Antonella Capozzi
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, Rome, 00161, Italy
| | - Cristina Garufi
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, Rome, 00161, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, Rome, 00161, Italy.
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, Rome, 00161, Italy
| | - Fabrizio Conti
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Agostina Longo
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, Rome, 00161, Italy
| | - Cristiano Alessandri
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
2
|
Blenkinsopp HC, Seidler K, Barrow M. Microbial Imbalance and Intestinal Permeability in the Pathogenesis of Rheumatoid Arthritis: A Mechanism Review with a Focus on Bacterial Translocation, Citrullination, and Probiotic Intervention. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:59-76. [PMID: 37294082 DOI: 10.1080/27697061.2023.2211129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/01/2023] [Indexed: 06/10/2023]
Abstract
This review aims to investigate the role of intestinal permeability (IP) in rheumatoid arthritis (RA), following the hypotheses that leakage of intestinal microbes can influence increased citrullination of peptides leading to anti-citrullinated protein antibody (ACPA) production and inflammation in RA; and that leaked microbes can migrate to the peripheral joints, leading to immune responses and synovitis in peripheral joints. This review explored the evidence for the link between microbial dysbiosis and increased IP in the inflammatory state in RA, as well as the role of increased citrullination and bacterial translocation in the link between microbiota and immune responses in RA. Furthermore, this research aims to evaluate the potential effect of probiotics on RA symptoms and pathogenesis via proposed mechanisms, including the support of microbial balance and suppression of inflammatory factors in RA. A systematic literature search was conducted in three tranches (review, mechanism, intervention). 71 peer-reviewed papers met the inclusions criteria and are summarized in a narrative analysis. Primary studies were critically appraised, synthesized and their relevance to clinical practice evaluated. Evidence found in this mechanism review consistently supported intestinal dysbiosis and increased IP in arthritis. An altered intestinal microbiome was demonstrated in RA with specific microbes such as Collinsella and Eggerthella correlating with increased IP, mucosal inflammation, and immune responses. Hypercitrullination and ACPA production correlated with arthritic symptoms and intestinal microbes were shown to influence hypercitrullination. Some in vitro and animal studies demonstrated a link between leakage of microbes and bacterial translocation, but further research is needed to elucidate the link between IP and citrullination. Probiotic intervention studies evidenced reductions in inflammatory markers IL-6 and TNFα, associated with proliferation of synovial tissue and pain perception in RA joint inflammation. Despite some conflict in the literature, probiotics may present a promising nutritional intervention in the suppression of both, disease activity and inflammatory markers.Key teaching pointsThere is evidence for a dysbiotic profile of the RA gut with specific RA-associated microbes.Increased intestinal permeability and leakage of PAD enzyme facilitates citrullination of peptides.Hypercitrullination and ACPA production correlate to arthritic signs.Microbial leakage and translocation plays a role in the pathogenesis of RA.Probiotics (e.g. L. Casei 01) may reduce inflammation and ameliorate RA symptoms.
Collapse
Affiliation(s)
- Holly C Blenkinsopp
- The Centre for Nutritional Education and Lifestyle Management (CNELM), Wokingham, UK
| | - Karin Seidler
- The Centre for Nutritional Education and Lifestyle Management (CNELM), Wokingham, UK
| | - Michelle Barrow
- The Centre for Nutritional Education and Lifestyle Management (CNELM), Wokingham, UK
| |
Collapse
|
3
|
Bendriss G, MacDonald R, McVeigh C. Microbial Reprogramming in Obsessive-Compulsive Disorders: A Review of Gut-Brain Communication and Emerging Evidence. Int J Mol Sci 2023; 24:11978. [PMID: 37569349 PMCID: PMC10419219 DOI: 10.3390/ijms241511978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating mental health disorder characterized by intrusive thoughts (obsessions) and repetitive behaviors (compulsions). Dysbiosis, an imbalance in the gut microbial composition, has been associated with various health conditions, including mental health disorders, autism, and inflammatory diseases. While the exact mechanisms underlying OCD remain unclear, this review presents a growing body of evidence suggesting a potential link between dysbiosis and the multifaceted etiology of OCD, interacting with genetic, neurobiological, immunological, and environmental factors. This review highlights the emerging evidence implicating the gut microbiota in the pathophysiology of OCD and its potential as a target for novel therapeutic approaches. We propose a model that positions dysbiosis as the central unifying element in the neurochemical, immunological, genetic, and environmental factors leading to OCD. The potential and challenges of microbial reprogramming strategies, such as probiotics and fecal transplants in OCD therapeutics, are discussed. This review raises awareness of the importance of adopting a holistic approach that considers the interplay between the gut and the brain to develop interventions that account for the multifaceted nature of OCD and contribute to the advancement of more personalized approaches.
Collapse
|
4
|
Tripathy A, Swain N, Padhan P, Raghav SK, Gupta B. Lactobacillus rhamnosus reduces CD8 +T cell mediated inflammation in patients with rheumatoid arthritis. Immunobiology 2023; 228:152415. [PMID: 37356231 DOI: 10.1016/j.imbio.2023.152415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND The T cells, components of adaptive immunity participate in immune pathology of the autoimmune inflammatory disorder called rheumatoid arthritis (RA). The presence of TLRs on the surface of the CD8+ T cells and their ability to recognize bacterial moieties adds to the inflammatory burden in case of RA. It has been reported that the gut microbiome is necessary for the crucial shift in the balance between proinflammatory and anti-inflammatory cytokines. The altered gut microbiome and the presence of TLRs emphasizes on the microbiome driven inflammatory responses in case of RA. METHODS Eighty-nine RA patients participated in this study. Clinical variations like disease duration, number of actively inflamed joints, number and type of bone deformities, CRP, RF, Anti-CCP, ESR, DAS 28 score were recorded for each patient. Co-culture of CD8+T cells and bacteria has been performed with proper culture condition. TLRs and inflammatory mediators' expression level were checked by both qPCR and flow cytometry analysis. RESULTS We observed in the suppression of pro-inflammatory molecules like Granzyme B and IFNƳ and expression of TLR2 in CD8 + T cells upon treatment with Lactobacillus rhamnosus (L. rhamnosus). Moreover, L. rhamnosus activated CD8+T cells such that they could induce FOXP3 expression in CD4+T cells thereby skewing T cell population towards a regulatory phenotype. On the contrary, TLR4 engagement on CD8+T cell by Escherichia coli (E.coli) increased in inflammatory responses following ERK activation. CONCLUSIONS Thus, we conclude that L. rhamnosus can effectively suppress CD8+T cell mediated inflammation by a simultaneous decrease of Th1 cells that may potentiate better treatment modalities for RA.
Collapse
Affiliation(s)
- Archana Tripathy
- Disease Biology Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Nitish Swain
- Disease Biology Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Prasanta Padhan
- Department of Rheumatology, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Sunil K Raghav
- Immuno-Genomics and Systems Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Bhawna Gupta
- Disease Biology Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India.
| |
Collapse
|
5
|
Romero-Figueroa MDS, Ramírez-Durán N, Montiel-Jarquín AJ, Horta-Baas G. Gut-joint axis: Gut dysbiosis can contribute to the onset of rheumatoid arthritis via multiple pathways. Front Cell Infect Microbiol 2023; 13:1092118. [PMID: 36779190 PMCID: PMC9911673 DOI: 10.3389/fcimb.2023.1092118] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 02/14/2023] Open
Abstract
Rheumatoid Arthritis (RA) is an autoimmune disease characterized by loss of immune tolerance and chronic inflammation. It is pathogenesis complex and includes interaction between genetic and environmental factors. Current evidence supports the hypothesis that gut dysbiosis may play the role of environmental triggers of arthritis in animals and humans. Progress in the understanding of the gut microbiome and RA. has been remarkable in the last decade. In vitro and in vivo experiments revealed that gut dysbiosis could shape the immune system and cause persistent immune inflammatory responses. Furthermore, gut dysbiosis could induce alterations in intestinal permeability, which have been found to predate arthritis onset. In contrast, metabolites derived from the intestinal microbiota have an immunomodulatory and anti-inflammatory effect. However, the precise underlying mechanisms by which gut dysbiosis induces the development of arthritis remain elusive. This review aimed to highlight the mechanisms by which gut dysbiosis could contribute to the pathogenesis of RA. The overall data showed that gut dysbiosis could contribute to RA pathogenesis by multiple pathways, including alterations in gut barrier function, molecular mimicry, gut dysbiosis influences the activation and the differentiation of innate and acquired immune cells, cross-talk between gut microbiota-derived metabolites and immune cells, and alterations in the microenvironment. The relative weight of each of these mechanisms in RA pathogenesis remains uncertain. Recent studies showed a substantial role for gut microbiota-derived metabolites pathway, especially butyrate, in the RA pathogenesis.
Collapse
Affiliation(s)
| | - Ninfa Ramírez-Durán
- Laboratory of Medical and Environmental Microbiology, Department of Medicine, Autonomous University of the State of Mexico, Toluca, Mexico
| | - Alvaro José Montiel-Jarquín
- Dirección de Educación e Investigación en Salud, Hospital de Especialidades de Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Gabriel Horta-Baas
- Rheumatology Service, Internal Medicine Department, Instituto Mexicano del Seguro Social, Merida, Mexico
| |
Collapse
|
6
|
Ramos Meyers G, Samouda H, Bohn T. Short Chain Fatty Acid Metabolism in Relation to Gut Microbiota and Genetic Variability. Nutrients 2022; 14:5361. [PMID: 36558520 PMCID: PMC9788597 DOI: 10.3390/nu14245361] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
It is widely accepted that the gut microbiota plays a significant role in modulating inflammatory and immune responses of their host. In recent years, the host-microbiota interface has gained relevance in understanding the development of many non-communicable chronic conditions, including cardiovascular disease, cancer, autoimmunity and neurodegeneration. Importantly, dietary fibre (DF) and associated compounds digested by the microbiota and their resulting metabolites, especially short-chain fatty acids (SCFA), were significantly associated with health beneficial effects, such as via proposed anti-inflammatory mechanisms. However, SCFA metabolic pathways are not fully understood. Major steps include production of SCFA by microbiota, uptake in the colonic epithelium, first-pass effects at the liver, followed by biodistribution and metabolism at the host's cellular level. As dietary patterns do not affect all individuals equally, the host genetic makeup may play a role in the metabolic fate of these metabolites, in addition to other factors that might influence the microbiota, such as age, birth through caesarean, medication intake, alcohol and tobacco consumption, pathogen exposure and physical activity. In this article, we review the metabolic pathways of DF, from intake to the intracellular metabolism of fibre-derived products, and identify possible sources of inter-individual variability related to genetic variation. Such variability may be indicative of the phenotypic flexibility in response to diet, and may be predictive of long-term adaptations to dietary factors, including maladaptation and tissue damage, which may develop into disease in individuals with specific predispositions, thus allowing for a better prediction of potential health effects following personalized intervention with DF.
Collapse
Affiliation(s)
- Guilherme Ramos Meyers
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
- Doctoral School in Science and Engineering, University of Luxembourg, 2, Avenue de l'Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Hanen Samouda
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
| |
Collapse
|
7
|
Fecal microbiota transplantation from patients with rheumatoid arthritis causes depression-like behaviors in mice through abnormal T cells activation. Transl Psychiatry 2022; 12:223. [PMID: 35650202 PMCID: PMC9160267 DOI: 10.1038/s41398-022-01993-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 02/08/2023] Open
Abstract
Depression is common in patients with rheumatoid arthritis (RA); however, the precise mechanisms underlying a link between depression and RA remain unclear. Accumulating evidence suggests the role of gut-microbiota-brain axis in depression. In this study, we investigated whether collagen-induced arthritis (CIA) mice produce depression-like behaviors and abnormal composition of gut microbiota. Furthermore, we investigated whether fecal microbiota transplantation (FMT) from RA patients causes depression-like phenotypes in antibiotic cocktail (ABX)-treated mice. CIA mice displayed depression-like behaviors, increased blood levels of pro-inflammatory cytokine interleukin-6 (IL-6), decreased expression of synaptic proteins in the prefrontal cortex (PFC), and abnormal composition of gut microbiota. Furthermore, FMT from RA patients caused depression-like phenotypes, alterations of gut microbiota composition, increased levels of IL-6 and tumor necrosis factor-α (TNF-α), and downregulation of synaptic proteins in the PFC compared to FMT from healthy controls. There were correlations between relative abundance of microbiota and plasma cytokines, expression of synaptic proteins in the PFC or depression-like behaviors. Interestingly, FMT from RA patients induced T cells differentiation in Peyer's patches and spleen. Reduced percentage of Treg cells with an increase of Th1/Th2 index was observed in the mice after FMT from RA patients. These findings suggest that CIA mice exhibit depression-like behaviors, systemic inflammation, and abnormal composition of gut microbiota, and that FMT from RA patients produces depression-like behaviors in ABX-treated mice via T cells differentiation. Therefore, abnormalities in gut microbiota in RA patients may contribute to depression via gut-microbiota-brain axis.
Collapse
|
8
|
Short-Chain Fatty Acids in Chronic Kidney Disease: Focus on Inflammation and Oxidative Stress Regulation. Int J Mol Sci 2022; 23:ijms23105354. [PMID: 35628164 PMCID: PMC9140893 DOI: 10.3390/ijms23105354] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic Kidney Disease (CKD) is a debilitating disease associated with several secondary complications that increase comorbidity and mortality. In patients with CKD, there is a significant qualitative and quantitative alteration in the gut microbiota, which, consequently, also leads to reduced production of beneficial bacterial metabolites, such as short-chain fatty acids. Evidence supports the beneficial effects of short-chain fatty acids in modulating inflammation and oxidative stress, which are implicated in CKD pathogenesis and progression. Therefore, this review will provide an overview of the current knowledge, based on pre-clinical and clinical evidence, on the effect of SCFAs on CKD-associated inflammation and oxidative stress.
Collapse
|
9
|
Arévalo-Caro C, Romero-Sánchez C, Garavito-Rodríguez E. Relation between anti- Porphyromonas gingivalis antibody titers and HLA-DRB1 neutral alleles in individuals with rheumatoid arthritis. Acta Odontol Scand 2022; 80:131-139. [PMID: 34379040 DOI: 10.1080/00016357.2021.1959053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE This study aimed to determine the relation between titres of anti-Porphyromonas gingivalis (P. gingivalis) antibody and rheumatoid arthritis (RA) HLA-DRB1 susceptibility region associated with shared epitope (SE) using the Gregersen's and de Vries's classification methods. MATERIAL AND METHODS In this cross-sectional study, results of immunoglobulin G1 (IgG1) and immunoglobulin G2 (IgG2) anti-P. gingivalis antibodies, anti-citrullinated protein antibodies (ACPA), diagnosis for RA, and periodontal disease (PD), and a genetic study of the HLA DRB1 region were obtained from 50 patients with RA and 50 control individuals. RESULTS Anti-P. gingivalis antibody levels and PD parameters were similar in control and RA groups. Anti-P. gingivalis antibodies were not associated with SE or ACPA. There was no association between ACPA and SE. However, de Vries' classification in RA patients revealed an association between the HLA DRB1 neutral alleles and higher titres of anti-P. gingivalis antibodies as follows: IgG1 anti-P. gingivalis ≥ 1:400 (p = .039); IgG2 anti-P. gingivalis ≥ 1:400 with neutral/neutral genotype (N/N), being exclusive for RA (p = .008); and IgG2 anti-P. gingivalis ≥ 1:200 and N/N (p = .016). CONCLUSIONS Although no association was found between SE and anti-P. gingivalis antibodies; according to the de Vries' classification, there was an existing association between HLA DRB1 neutral alleles, with high titres of IgG anti-P.gingivalis antibodies for RA, focussing on novel associations between P.gingivalis and RA.
Collapse
Affiliation(s)
- Catalina Arévalo-Caro
- Grupo de Investigación en Periodoncia y Medicina Periodontal, Centro de Investigación y Extensión, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Consuelo Romero-Sánchez
- Rheumatology and Immunology Department Hospital Militar Central, Grupo Inmunología Clínica Facultad de Medicina, Universidad Militar Nueva Granada, Bogotá-Colombia. Universidad El Bosque, Facultad de Odontología, Grupo de Inmunologia Celular y Molecular InmuBo, Bogotá, Colombia
| | - Edgar Garavito-Rodríguez
- Department of Morphology, Genetics Institute, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
10
|
Sanchez P, Letarouilly JG, Nguyen Y, Sigaux J, Barnetche T, Czernichow S, Flipo RM, Sellam J, Daïen C. Efficacy of Probiotics in Rheumatoid Arthritis and Spondyloarthritis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2022; 14:nu14020354. [PMID: 35057535 PMCID: PMC8779560 DOI: 10.3390/nu14020354] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Background: We aimed to provide a systematic review and meta-analysis of randomized controlled trials assessing the effect of probiotics supplementation on symptoms and disease activity in patients with chronic inflammatory rheumatic diseases (rheumatoid arthritis (RA), spondylarthritis (SpA), or psoriatic arthritis). Methods: A systematic literature review and meta-analysis from RA and SpA randomized controlled trials were conducted searching for articles in MEDLINE/PubMed and abstracts from recent international rheumatology meetings. The control group was a placebo or another dietary intervention. The risk of bias of the selected studies was evaluated using the Cochrane Collaboration tool and the Jadad scale. Results: The initial search yielded 173 articles. Of these, 13 studies were included in the qualitative synthesis, 8 concerning a total of 344 RA patients and 2 concerning a total of 197 SpA patients. Three meta-analyses were also analyzed. Probiotic strains and quantities used were different among trials (5 studies using Lactobacillus sp., 1 trial Bacillus coagulans and the others a mix of different probiotic strains). Time to assess response ranged from 8 weeks to one year. Two studies associated probiotic supplementation with a dietary intervention. Meta-analysis showed a statistically significant decrease of C-reactive protein (CRP) concentration (mean difference (MD)) −3.04 (95% CI −4.47, −1.62) mg/L, p < 0.001; I2 = 20%, n patients = 209) with probiotics in RA. However, after excluding high-risk-of-bias trials of meta-analysis, there was no difference between probiotics and placebo on DAS28 (standard MD −0.54; 95% CI −1.94 to 0.85, p = 0.45, I2 93%, n patients = 143). The two studies on SpA patients showed no efficacy of probiotics. Conclusions: Probiotic supplementation might decrease RA activity with a moderate decrease effect on CRP, but lack of evidence and studies’ heterogeneity do not allow us to propose them to patients with inflammatory arthritis to control their disease. Further RCTs are required in the future to determinate the efficacy of probiotics and the optimal administration design.
Collapse
Affiliation(s)
- Pauline Sanchez
- Department of Rheumatology, CHU de Montpellier, Montpellier University, F-34295 Montpellier, France;
| | | | - Yann Nguyen
- Department of Internal Medicine, Hôpital Beaujon, AP-HP Nord, Université de Paris, F-92100 Clichy, France;
| | - Johanna Sigaux
- Department of Rheumatology, Hôpital Avicenne, AP-HP, INSERM U1125, Université Paris 13, F-93017 Bobigny, France;
| | - Thomas Barnetche
- Department of Rheumatology, FHU ACRONIM, Bordeaux University Hospital, F-33076 Bordeaux, France;
| | - Sébastien Czernichow
- Department of Nutrition, Specialized Obesity Center, Hôpital Européen Georges Pompidou, Université de Paris, AP-HP, F-75015 Paris, France;
- Epidemiology and Biostatistics Sorbonne Paris City Center, UMR1153, Institut National de la Santé et de la Recherche Médicale, F-75004 Paris, France
| | - René-Marc Flipo
- Department of Rheumatology, CHU Lille, Université de Lille, F-59000 Lille, France; (J.-G.L.); (R.-M.F.)
| | - Jérémie Sellam
- Department of Rheumatology, Hôpital Saint Antoine, AP-HP, DMU 3ID, CRSA Inserm UMRS_938, Sorbonne Université, F-75012 Paris, France;
| | - Claire Daïen
- Department of Rheumatology, CHU de Montpellier, Montpellier University, F-34295 Montpellier, France;
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, F-34295 Montpellier, France
- Correspondence: ; Tel.: +33-4-67-33-87-10
| |
Collapse
|
11
|
Horta-Baas G, Sandoval-Cabrera A, Romero-Figueroa MDS. Modification of Gut Microbiota in Inflammatory Arthritis: Highlights and Future Challenges. Curr Rheumatol Rep 2021; 23:67. [PMID: 34218340 DOI: 10.1007/s11926-021-01031-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW This Review evaluates the available information on the modification of the microbiota by diet, prebiotics, probiotics, or drugs and its association with the severity of arthritis in animals and humans and highlights how this modulation could have therapeutic applications in RA. RECENT FINDINGS The gut microbiota and microbiota-derived metabolites play a role in developing rheumatoid arthritis (RA) in animals and humans, making the intestinal microbiota an exciting novel approach to suppress autoimmunity. Studies in animal models of RA show that it is possible to modify the intestinal microbiota with drugs, natural products, diet, probiotics, and prebiotics. Furthermore, these changes showed beneficial effects on symptom relief in animal models of RA and that these effects were associated with modulation of the immune response. Therapies that modify the gut microbiota would significantly impact the preclinical stage of arthritis, based on the fact that dysbiosis occurs before clinical arthritis. The effects of interventions to modulate the microbiota could not reverse arthritis. Furthermore, the therapies modulating therapies in controlling symptoms were limited once arthritis developed. The results obtained in the study of acarbose, probiotics, and prebiotics suggest that these interventions may decrease the disease's incidence rather than treat or cure it.
Collapse
Affiliation(s)
- Gabriel Horta-Baas
- Servicio de Reumatología, Hospital General Regional número 1, Delegación Yucatán, Instituto Mexicano del Seguro Social, Calle 41 No. 439 x 34. Colonia Industrial, 97150, Mérida, Yucatán, Mexico.
| | - Antonio Sandoval-Cabrera
- Laboratorio de alta especialidad en Hemato-Oncología, Hospital para el Niño, IMIEM, Toluca, Mexico.,Facultad de Medicina, Campus Universitario Siglo XXl, Zinacantepec, State of Mexico, Mexico
| | - María Del Socorro Romero-Figueroa
- Facultad de Medicina, Campus Universitario Siglo XXl, Zinacantepec, State of Mexico, Mexico.,Centro de Investigación en Ciencias de la Salud, Campus Norte Huixquilucan, Universidad Anáhuac México, Mexico City, Mexico
| |
Collapse
|
12
|
Pagnini C, Picchianti-Diamanti A, Bruzzese V, Lorenzetti R, Luchetti MM, Martin Martin LS, Pica R, Scolieri P, Scribano ML, Zampaletta C, Chimenti MS, Lagana B. Vitamin D Signaling in Gastro-Rheumatology: From Immuno-Modulation to Potential Clinical Applications. Int J Mol Sci 2021; 22:ijms22052456. [PMID: 33671090 PMCID: PMC7957646 DOI: 10.3390/ijms22052456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
In the last decades, the comprehension of the pathophysiology of bone metabolism and its interconnections with multiple homeostatic processes has been consistently expanded. The branch of osteoimmunology specifically investigating the link between bone and immune system has been developed. Among molecular mediators potentially relevant in this field, vitamin D has been recently pointed out, and abnormalities of the vitamin D axis have been described in both in vitro and in vivo models of inflammatory bowel diseases (IBD) and arthritis. Furthermore, vitamin D deficiency has been reported in patients affected by IBD and chronic inflammatory arthritis, thus suggesting the intriguing possibility of impacting the disease activity by the administration vitamin D supplements. In the present review, the complex interwoven link between vitamin D signaling, gut barrier integrity, microbiota composition, and the immune system was examined. Potential clinical application exploiting vitamin D pathway in the context of IBD and arthritis is presented and critically discussed. A more detailed comprehension of the vitamin D effects and interactions at molecular level would allow one to achieve a novel therapeutic approach in gastro-rheumatologic inflammatory diseases through the design of specific trials and the optimization of treatment protocols.
Collapse
Affiliation(s)
- Cristiano Pagnini
- Department of Gastroenterology and Digestive Endoscopy, S. Giovanni Addolorata Hospital, 00184 Rome, Italy;
| | - Andrea Picchianti-Diamanti
- Department of Clinical and Molecular Medicine, S. Andrea University Hospital, Sapienza University, 00189 Rome, Italy;
- Correspondence:
| | - Vincenzo Bruzzese
- Department of Internal Medicine, Rheumatology and Gastroenterology, Nuovo Regina Margherita Hospital, 00153 Rome, Italy; (V.B.); (R.L.); (P.S.)
| | - Roberto Lorenzetti
- Department of Internal Medicine, Rheumatology and Gastroenterology, Nuovo Regina Margherita Hospital, 00153 Rome, Italy; (V.B.); (R.L.); (P.S.)
| | - Michele Maria Luchetti
- Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | | | - Roberta Pica
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, 00157 Rome, Italy;
| | - Palma Scolieri
- Department of Internal Medicine, Rheumatology and Gastroenterology, Nuovo Regina Margherita Hospital, 00153 Rome, Italy; (V.B.); (R.L.); (P.S.)
| | | | | | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of Medicina dei Sistemi, University of Rome Tor Vergata, 00187 Rome, Italy;
| | - Bruno Lagana
- Department of Clinical and Molecular Medicine, S. Andrea University Hospital, Sapienza University, 00189 Rome, Italy;
| |
Collapse
|
13
|
Brandl C, Bucci L, Schett G, Zaiss MM. Crossing the barriers: Revisiting the gut feeling in rheumatoid arthritis. Eur J Immunol 2021; 51:798-810. [PMID: 33594693 DOI: 10.1002/eji.202048876] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/23/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022]
Abstract
To avoid autoimmunity, it is essential to keep the balance between the defence against pathogens and the maintenance of tolerance to self-antigens. Mucosal inflammation may lead to breakdown of tolerance and activation of autoreactive cells. Growing evidence suggests a major contribution of gut microbiota to the onset of chronic, autoimmune inflammatory diseases including rheumatoid arthritis (RA). RA patients show significant differences in the composition of gut microbiota compared to healthy controls, and in murine arthritis models certain bacteria can induce inflammatory Th17 responses or autoantibody production. The gut microbiota plays an important role in regulating the balance between immunogenic and tolerogenic immune responses. The intestinal barrier is the site of the body where most host-microbiota interaction takes place. Certain microbiota or their metabolites can cause a break in homeostasis by affecting the intestinal barrier integrity and permeability. However, an intact intestinal barrier is essential to separate the intestinal epithelium from toxins, microorganisms, and antigens in the gut lumen. This review will focus on the correlation between a leaky gut and the onset of arthritis. Furthermore, it will be discussed how targeting the intestinal barrier function by dietary changes might provide an opportunity to modulate the development of RA.
Collapse
Affiliation(s)
- Carolin Brandl
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Laura Bucci
- Dipartimento di Medicina di Precisione, University della Campania L. Vanvitelli, Naples, Italy
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
14
|
Impact of Mediterranean Diet on Disease Activity and Gut Microbiota Composition of Rheumatoid Arthritis Patients. Microorganisms 2020; 8:microorganisms8121989. [PMID: 33327432 PMCID: PMC7764882 DOI: 10.3390/microorganisms8121989] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/05/2020] [Accepted: 12/11/2020] [Indexed: 01/21/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder in which gut and oral microbiota play a crucial role. Diet is a modifiable factor that can influence both microbiota composition and arthritis outcome; previous studies have suggested associations between dietary habits and RA, with contrasting results. We investigate the protective effect of the Mediterranean diet (MD) on disease activity and the gut microbiota profile in RA patients. Sixty consecutive RA patients were enrolled upon filling a validated 14-item questionnaire for the assessment of adherence to the Mediterranean diet (Prevention with Mediterranean Diet-PREDIMED). Then, 16S analysis was employed to explore the gut microbiota within the two cohorts of patients. Patients with high adherence to MD (20) had a significantly lower C-reactive protein (p < 0.037) and disease activity (p < 0.034) than the 40 patients with low/moderate adherence to MD. An inverse association between MD and disease activity was confirmed by multivariate analysis after adjustments for all the different demographic, clinical and serologic variables. A healthier gut microbiota composition was observed in the high adherence group, with a significant decrease in Lactobacillaceae and an almost complete absence of Prevotella copri with respect to the low/moderate adherence group. In conclusion, our findings support the protective role of MD on disease activity and microbiota composition in RA patients, and suggest the feasibility of shifting the habitual diet to modulate the gut microbiota and promote the benefits associated with MD.
Collapse
|
15
|
Dourado E, Ferro M, Sousa Guerreiro C, Fonseca JE. Diet as a Modulator of Intestinal Microbiota in Rheumatoid Arthritis. Nutrients 2020; 12:E3504. [PMID: 33202579 PMCID: PMC7696404 DOI: 10.3390/nu12113504] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 12/23/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic immune-driven inflammatory disease characterised by synovial inflammation, leading to progressive cartilage and bone destruction, impacting patients' functional capacity and quality of life. Patients with RA have significant differences in gut microbiota composition when compared to controls. Intestinal dysbiosis influences the intestinal barrier strength, integrity and function, and diet is considered the main environmental factor impacting gut microbiota. Over the last few years, researchers have focused on the influence of single components of the diet in the modulation of intestinal microbiota in RA rather than whole dietary patterns. In this review, we focus on how the Mediterranean diet (MD), a whole dietary pattern, could possibly act as an adjuvant therapeutic approach, modulating intestinal microbiota and intestinal barrier function in order to improve RA-related outcomes. We also review the potential effects of particular components of the MD, such as n-3 polyunsaturated fatty acids (PUFAs), polyphenols and fibre.
Collapse
Affiliation(s)
- Eduardo Dourado
- Serviço de Reumatologia e Doenças Ósseas Metabólicas, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa (CAML), 1649-028 Lisboa, Portugal;
- Unidade de Investigação em Reumatologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, CAML, 1649-028 Lisboa, Portugal
| | - Margarida Ferro
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (M.F.); (C.S.G.)
| | - Catarina Sousa Guerreiro
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (M.F.); (C.S.G.)
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - João Eurico Fonseca
- Serviço de Reumatologia e Doenças Ósseas Metabólicas, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa (CAML), 1649-028 Lisboa, Portugal;
- Unidade de Investigação em Reumatologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, CAML, 1649-028 Lisboa, Portugal
| |
Collapse
|
16
|
Afzal M, Mazhar SF, Sana S, Naeem M, Rasool MH, Saqalein M, Nisar MA, Rasool M, Bilal M, Khan AA, Khurshid M. Neurological and cognitive significance of probiotics: a holy grail deciding individual personality. Future Microbiol 2020; 15:1059-1074. [PMID: 32755361 DOI: 10.2217/fmb-2019-0143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The role of the human microbiome in the brain and behavioral development is an area of increasing attention. Recent investigations have found that diverse mechanisms and signals including the immune, endocrine and neural associations are responsible for the communication between gut microbiota and the brain. The studies have suggested that alteration of intestinal microbiota using probiotic formulations may offer a significant role in the maturation and organization of the brain and can shape the brain and behavior as well as mood and cognition in human subjects. The understanding of the possible impact of gut microflora on neurological function is a promising phenomenon that can surely transform the neurosciences and may decipher the novel etiologies for neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Muhammad Afzal
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University Faisalabad, Pakistan
| | - Sayyeda Farwa Mazhar
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University Faisalabad, Pakistan
| | - Sadia Sana
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University Faisalabad, Pakistan
| | - Muhammad Naeem
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University Faisalabad, Pakistan
| | | | - Muhammad Saqalein
- Department of Microbiology, Government College University Faisalabad, Pakistan
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University Faisalabad, Pakistan
| | - Maria Rasool
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University Faisalabad, Pakistan.,Department of Microbiology, Government College University Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science & Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Abdul Arif Khan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Pakistan
| |
Collapse
|
17
|
Castro Rocha FA, Duarte-Monteiro AM, Henrique da Mota LM, Matias Dinelly Pinto AC, Fonseca JE. Microbes, helminths, and rheumatic diseases. Best Pract Res Clin Rheumatol 2020; 34:101528. [PMID: 32448639 PMCID: PMC7203059 DOI: 10.1016/j.berh.2020.101528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There has been a progressive interest on modifications of the human defense system following insults occurring in the interface between our body and the external environment, as they may provoke or worsen disease states. Studies suggest that billions of germs, which compose the gut microbiota influence one's innate and adaptive immune responses at the intestinal level, but these microorganisms may also impact rheumatic diseases. The microbiota of the skin, respiratory, and urinary tracts may also be relevant in rheumatology. Evidence indicates that changes in the gut microbiome alter the pathogenesis of immune-mediated diseases such as rheumatoid arthritis and ankylosing spondylitis but also of other disorders like atherosclerosis and osteoarthritis. Therapeutic strategies to modify the microbiota, including probiotics and fecal microbiota transplantation, have been received with skepticism, which, in turn, has drawn attention back to previously developed interventions such as antibiotics. Helminths adapted to humans over the evolution process, but their role in disease modulation, particularly immune-mediated diseases, remains to be understood. The present review focuses on data concerning modifications of the immune system induced by interactions with microbes and pluricellular organisms, namely helminths, and their impact on rheumatic diseases. Practical aspects, including specific microbiota-targeted therapies, are also discussed.
Collapse
Affiliation(s)
- Francisco Airton Castro Rocha
- Departamento de Medicina Clínica, Liga de Reumatologia e Doenças Autoimunes, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| | - Ana Margarida Duarte-Monteiro
- Serviço de Reumatologia e Doenças Ósseas Metabólicas, Hospital de Santa Maria, CHULN and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - Licia Maria Henrique da Mota
- Hospital Universitário de Brasília, Programa de Pós-graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brazil
| | - Ana Carolina Matias Dinelly Pinto
- Departamento de Medicina Clínica, Liga de Reumatologia e Doenças Autoimunes, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - João Eurico Fonseca
- Serviço de Reumatologia e Doenças Ósseas Metabólicas, Hospital de Santa Maria, CHULN and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| |
Collapse
|
18
|
The Gut Microbiota and Respiratory Diseases: New Evidence. J Immunol Res 2020; 2020:2340670. [PMID: 32802893 PMCID: PMC7415116 DOI: 10.1155/2020/2340670] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Human body surfaces, such as the skin, intestines, and respiratory and urogenital tracts, are colonized by a large number of microorganisms, including bacteria, fungi, and viruses, with the gut being the most densely and extensively colonized organ. The microbiome plays an essential role in immune system development and tissue homeostasis. Gut microbiota dysbiosis not only modulates the immune responses of the gastrointestinal (GI) tract but also impacts the immunity of distal organs, such as the lung, further affecting lung health and respiratory diseases. Here, we review the recent evidence of the correlations and underlying mechanisms of the relationship between the gut microbiota and common respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), lung cancer, and respiratory infection, and probiotic development as a therapeutic intervention for these diseases.
Collapse
|
19
|
Abstract
The disease course of autoimmune diseases such as rheumatoid arthritis is altered during pregnancy, and a similar modulatory role of pregnancy on inflammatory bowel disease (IBD) has been proposed. Hormonal, immunological, and microbial changes occurring during normal pregnancy may interact with the pathophysiology of IBD. IBD consists of Crohn's disease and ulcerative colitis, and because of genetic, immunological, and microbial differences between these disease entities, they may react differently during pregnancy and should be described separately. This review will address the pregnancy-induced physiological changes and their potential effect on the disease course of ulcerative colitis and Crohn's disease, with emphasis on the modulation of epithelial barrier function and immune profiles by pregnancy hormones, microbial changes, and microchimerism.
Collapse
|
20
|
Picchianti-Diamanti A, Lorenzetti R, Chimenti MS, Luchetti MM, Conigliaro P, Canofari C, Benfaremo D, Bruzzese V, Laganà B, Perricone R. Enteropathic spondyloarthritis: Results from a large nationwide database analysis. Autoimmun Rev 2019; 19:102457. [PMID: 31838160 DOI: 10.1016/j.autrev.2019.102457] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Spondyloarthrits (SpA) share clinical, genetic and immunological features with Inflammatory Bowel Diseases (IBD), and enteropathic SpA (eSpA) represent the clinical evidence of the association between gut and joint diseases. This cross-sectional study aimed to report data of eSpA patients collected from the first Italian database. PATIENTS AND METHODS A specific web-based interface has been created to insert and collect the main clinical, serologic and imaging data from patients with eSpA, as well as disease activity, comorbidities and treatment, in a real-life scenario. RESULTS Data were collected in 14 Italian centers (7 rheumatology and 7 gastroenterology units). A total of 347 eSpA patients were enrolled in the study. Type 1 peripheral eSpA was the most frequent form. Crohn' Disease (CD) was the most represented IBD. CD activity was similar among eSpA, whereas UC activity was slightly higher in the axial and mixed form than in the peripheral eSpA. The disease was active in less than half of axial eSpA patients and in only 18% of patients with peripheral eSpA. Furthermore, most of the patients had an inactive IBD. Nineteen percent of the total eSpA patients were free of therapy at the time of the enrollment and 61% of the patients were receiving biotechnological agents. CONCLUSIONS The multidisciplinary management of eSpA patients, favored by this ad hoc created web-based platform, allowed to obtain data from the largest eSpA cohort. The information coming of this database might advance knowledge of eSpA and improve their standard of care.
Collapse
Affiliation(s)
- Andrea Picchianti-Diamanti
- Department of Clinical and Molecular Medicine, S. Andrea University Hospital, "Sapienza" University, Rome, Italy.
| | - Roberto Lorenzetti
- Department of Internal Medicine, Rheumatology and Gastroenterology, "Nuovo Regina Margherita" Hospital, Rome, Italy
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of Medicina dei Sistemi, University of Rome Tor Vergata, Rome, Italy.
| | - Michele Maria Luchetti
- Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy.
| | - Paola Conigliaro
- Rheumatology, Allergology and Clinical Immunology, Department of Medicina dei Sistemi, University of Rome Tor Vergata, Rome, Italy.
| | - Claudia Canofari
- Rheumatology, Allergology and Clinical Immunology, Department of Medicina dei Sistemi, University of Rome Tor Vergata, Rome, Italy.
| | - Devis Benfaremo
- Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy.
| | - Vincenzo Bruzzese
- Department of Internal Medicine, Rheumatology and Gastroenterology, "Nuovo Regina Margherita" Hospital, Rome, Italy.
| | - Bruno Laganà
- Department of Clinical and Molecular Medicine, S. Andrea University Hospital, "Sapienza" University, Rome, Italy.
| | - Roberto Perricone
- Rheumatology, Allergology and Clinical Immunology, Department of Medicina dei Sistemi, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
21
|
Flak MB, Colas RA, Muñoz-Atienza E, Curtis MA, Dalli J, Pitzalis C. Inflammatory arthritis disrupts gut resolution mechanisms, promoting barrier breakdown by Porphyromonas gingivalis. JCI Insight 2019; 4:125191. [PMID: 31292292 PMCID: PMC6629160 DOI: 10.1172/jci.insight.125191] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/22/2019] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis is linked with altered host immune responses and severe joint destruction. Recent evidence suggests that loss of gut homeostasis and barrier breach by pathobionts, including Porphyromonas gingivalis, may influence disease severity. The mechanism(s) leading to altered gut homeostasis and barrier breakdown in inflammatory arthritis are poorly understood. In the present study, we found a significant reduction in intestinal concentrations of several proresolving mediators during inflammatory arthritis, including downregulation of the gut-protective mediator resolvin D5n-3 DPA (RvD5n-3 DPA). This was linked with increased metabolism of RvD5n-3 DPA to its inactive 17-oxo metabolite. We also found downregulation of IL-10 expression in the gut of arthritic mice that was coupled with a reduction in IL-10 and IL-10 receptor (IL-10R) in lamina propria macrophages. These changes were linked with a decrease in the number of mucus-producing goblet cells and tight junction molecule expression in the intestinal epithelium of arthritic mice when compared with naive mice. P. gingivalis inoculation further downregulated intestinal RvD5n-3 DPA and Il-10 levels and the expression of gut tight junction proteins. RvD5n-3 DPA, but not its metabolite 17-oxo-RvD5n-3 DPA, increased the expression of both IL-10 and IL-10R in macrophages via the upregulation of the aryl hydrocarbon receptor agonist l-kynurenine. Administration of RvD5n-3 DPA to arthritic P. gingivalis-inoculated mice increased intestinal Il-10 expression, restored gut barrier function, and reduced joint inflammation. Together, these findings uncover mechanisms in the pathogenesis of rheumatoid arthritis, where disruption of the gut RvD5n-3 DPA-IL-10 axis weakens the gut barrier, which becomes permissive to the pathogenic actions of the pathobiont P. gingivalis.
Collapse
Affiliation(s)
- Magdalena B. Flak
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London (QMUL), London, United Kingdom
| | - Romain A. Colas
- Lipid Mediator Unit, William Harvey Research Institute, QMUL, London, United Kingdom
| | - Estefanía Muñoz-Atienza
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London (QMUL), London, United Kingdom
| | | | - Jesmond Dalli
- Lipid Mediator Unit, William Harvey Research Institute, QMUL, London, United Kingdom
- Centre for Inflammation and Therapeutic Innovation, QMUL, London, United Kingdom
| | - Costantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London (QMUL), London, United Kingdom
- Centre for Inflammation and Therapeutic Innovation, QMUL, London, United Kingdom
| |
Collapse
|
22
|
Mahendran SM, Keystone EC, Krawetz RJ, Liang K, Diamandis EP, Chandran V. Elucidating the endogenous synovial fluid proteome and peptidome of inflammatory arthritis using label-free mass spectrometry. Clin Proteomics 2019; 16:23. [PMID: 31160890 PMCID: PMC6542032 DOI: 10.1186/s12014-019-9243-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/24/2019] [Indexed: 12/20/2022] Open
Abstract
Background Inflammatory arthritis (IA) is an immunological disorder in which loss of immune tolerance to endogenous self-antigens perpetuates synovitis and eventual destruction of the underlying cartilage and bone. Pathological changes in the joint are expected to be represented by synovial fluid (SF) proteins and peptides. In the present study, a mass spectrometry-based approach was utilized for the identification of key protein and peptide mediators of IA. Methods Age-matched SF samples from 10 rheumatoid arthritis patients, 10 psoriatic arthritis patients and 10 cadaveric controls were subjected to an integrated proteomic and peptidomic protocol using liquid chromatography tandem mass spectrometry. Significant differentially abundant proteins and peptides were identified between cohorts according to the results of a Mann-Whitney U test coupled to the Benjamini-Hochberg correction for multiple hypothesis testing. Fold change ratios were computed for each protein and peptide according to their log-transformed extracted ion current. Pathway analysis and antimicrobial peptide (AMP) prediction were conducted to clarify the pathophysiological relevance of identified proteins and peptides to IA. Results We determined that 144 proteins showed significant differential abundance between the IA and control SF proteomes, of which 11 protein candidates were selected for future follow-up studies. Similar analyses applied to our peptidomic data identified 15 peptide sequences, originating from 4 protein precursors, to have significant differential abundance in IA compared to the control SF peptidome. Pathway enrichment analysis of the IA SF peptidome along with AMP prediction suggests a possible mechanistic role of microbes in eliciting an immune response which drives the development of IA. Conclusions The discovery-phase data generated herein has provided a basis for the identification of candidates with the greatest potential to serve as novel serum biomarkers specific to inflammatory arthritides. Moreover, these findings facilitate the understanding of possible disease mechanisms specific to each subtype.
Collapse
Affiliation(s)
- Shalini M Mahendran
- 1Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada.,2Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON Canada
| | - Edward C Keystone
- 3Department of Rheumatology, Mount Sinai Hospital, Toronto, ON Canada
| | - Roman J Krawetz
- 4McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB Canada.,5Department of Surgery, University of Calgary, Calgary, AB Canada.,6Department of Anatomy and Cell Biology, University of Calgary, Calgary, AB Canada
| | - Kun Liang
- 7Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON Canada
| | - Eleftherios P Diamandis
- 1Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada.,2Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON Canada.,8Department of Clinical Biochemistry, University Health Network, Toronto, ON Canada
| | - Vinod Chandran
- 1Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada.,9Centre for Prognosis Studies in Rheumatic Diseases, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada.,10Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, ON Canada.,11Institute of Medical Science, University of Toronto, Toronto, ON Canada
| |
Collapse
|
23
|
du Teil Espina M, Gabarrini G, Harmsen HJM, Westra J, van Winkelhoff AJ, van Dijl JM. Talk to your gut: the oral-gut microbiome axis and its immunomodulatory role in the etiology of rheumatoid arthritis. FEMS Microbiol Rev 2019; 43:1-18. [PMID: 30219863 DOI: 10.1093/femsre/fuy035] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023] Open
Abstract
Microbial communities inhabiting the human body, collectively called the microbiome, are critical modulators of immunity. This notion is underpinned by associations between changes in the microbiome and particular autoimmune disorders. Specifically, in rheumatoid arthritis, one of the most frequently occurring autoimmune disorders worldwide, changes in the oral and gut microbiomes have been implicated in the loss of tolerance against self-antigens and in increased inflammatory events promoting the damage of joints. In the present review, we highlight recently gained insights in the roles of microbes in the etiology of rheumatoid arthritis. In addition, we address important immunomodulatory processes, including biofilm formation and neutrophil function, which have been implicated in host-microbe interactions relevant for rheumatoid arthritis. Lastly, we present recent advances in the development and evaluation of emerging microbiome-based therapeutic approaches. Altogether, we conclude that the key to uncovering the etiopathogenesis of rheumatoid arthritis will lie in the immunomodulatory functions of the oral and gut microbiomes.
Collapse
Affiliation(s)
- Marines du Teil Espina
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Giorgio Gabarrini
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, 9700 RB Groningen, the Netherlands.,University of Groningen, University Medical Center Groningen, Center for Dentistry and Oral Hygiene, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Hermie J M Harmsen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Johanna Westra
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Arie Jan van Winkelhoff
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, 9700 RB Groningen, the Netherlands.,University of Groningen, University Medical Center Groningen, Center for Dentistry and Oral Hygiene, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Jan Maarten van Dijl
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| |
Collapse
|
24
|
Spondyloarthritis patients with and without intestinal symptoms - searching for discriminating biomarkers. Cent Eur J Immunol 2019; 44:414-422. [PMID: 32140054 PMCID: PMC7050049 DOI: 10.5114/ceji.2019.92802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/05/2018] [Indexed: 12/17/2022] Open
Abstract
Spondyloarthritis (SpA) is often complicated with subclinical gut inflammation. This study was aimed at searching for biomarkers discriminating SpA patients with and without intestinal symptoms. A group of 29 SpA patients and 33 healthy volunteers (control) were included in the study. Based on clinical evaluation, the patient cohort was subdivided into two groups: 1) SpA accompanied by various intestinal symptoms suggesting gut inflammation (group 2, n = 14) and 2) without such complications (group 1, n = 15). Serum concentrations of interleukins (IL) (IL-10, IL-17A/F, IL-22, IL-23), tumour necrosis factor (TNF), bone-homeostasis-related factors (osteoprotegerin – OPG and Dickkopf-1 – DKK-1), and the concentrations of selected gut inflammation-associated factors (intestinal fatty acid binding protein – iFABP, claudin 3 – CLDN3 and calprotectin) in samples of sera and/or urine or stool, respectively, were measured by specific ELISA. Serum concentrations of tested factors were similar in SpA patients and control. Faecal calprotectin level was higher in patients but did not discriminate between group 1 and 2. Compared to group 1, group 2 was characterized by elevated erythrocyte sedimentation rate (ESR), higher serum CLDN3 and DKK-1 levels. In SpA patients, serum DKK-1 concentrations correlated with systemic inflammation markers (R = 0.6, p < 0.01), while serum CLDN3 was found to be an independent risk factor (OR = 4.5, p = 0.021) for the occurrence of intestinal symptoms. We conclude that in SpA patients, up-regulated circulating levels of CLDN3 seem to be related to intestinal complication, while the quantity of circulating DKK-1 reflects the intensity of systemic inflammation.
Collapse
|
25
|
Guerreiro CS, Calado Â, Sousa J, Fonseca JE. Diet, Microbiota, and Gut Permeability-The Unknown Triad in Rheumatoid Arthritis. Front Med (Lausanne) 2018; 5:349. [PMID: 30619860 PMCID: PMC6302746 DOI: 10.3389/fmed.2018.00349] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022] Open
Abstract
Growing experimental and clinical evidence suggests that a chronic inflammatory response induced by gut dysbiosis can critically contribute to the development of rheumatic diseases, including rheumatoid arthritis (RA). Of interest, an adherence to a Mediterranean diet has been linked to a reduction in mortality and morbidity in patients with inflammatory diseases. Diet and intestinal microbiota are modifying factors that may influence intestinal barrier strength, functional integrity, and permeability regulation. Intestinal microbiota may play a crucial role in RA pathogenesis, but up to now no solid data has clarified a mechanistic relationship between gut microbiota and the development of RA. Nonetheless, microbiota composition in subjects with RA differs from that of controls and this altered microbiome can be partially restored after prescribing disease modifying antirheumatic drugs. High levels of Prevotella copri and similar species are correlated with low levels of microbiota previously associated with immune regulating properties. In addition, some nutrients can alter intestinal permeability and thereby influence the immune response without a known impact on the microbiota. However, critical questions remain to be elucidated, such as the way microbiome fluctuates in relation to diet, and how disease activity may be influenced by changes in diet, microbiota or diet-intestinal microbiota equilibrium.
Collapse
Affiliation(s)
- Catarina Sousa Guerreiro
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ângelo Calado
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Bioquímica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Sousa
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João Eurico Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Serviço de Reumatologia e Doenças Ósseas Metabólicas, Hospital de Santa Maria, CHLN, Lisbon, Portugal.,Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| |
Collapse
|
26
|
Marzocco S, Fazeli G, Di Micco L, Autore G, Adesso S, Dal Piaz F, Heidland A, Di Iorio B. Supplementation of Short-Chain Fatty Acid, Sodium Propionate, in Patients on Maintenance Hemodialysis: Beneficial Effects on Inflammatory Parameters and Gut-Derived Uremic Toxins, A Pilot Study (PLAN Study). J Clin Med 2018; 7:jcm7100315. [PMID: 30274359 PMCID: PMC6210519 DOI: 10.3390/jcm7100315] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In end-stage renal disease (ESRD), gut-derived uremic toxins play a crucial role in the systemic inflammation and oxidative stress promoting the excess morbidity and mortality. The biochemical derangement is in part a consequence of an insufficient generation of short-chain fatty acids (SCFA) due to the dysbiosis of the gut and an insufficient consumption of the fermentable complex carbohydrates. AIM OF THE STUDY The primary end-point was to evaluate the potential efficacy of SCFA (specifically, sodium propionate (SP)) for patients on maintenance hemodialysis (MHD) on systemic inflammation. Secondary end-points included potential attenuation of oxidative stress markers, insulin resistance and production of gut-derived uremic toxins indoxyl sulfate and p-cresol sulfate, as well as health status after SP supplementation. STUDY DESIGN We performed a single-center non-randomized pilot study in 20 MHD patients. They received the food additive SP with a daily intake of 2 × 500 mg in the form of capsules for 12 weeks. Pre-dialysis blood samples were taken at the beginning, after six weeks and at the end of the administration period, as well as four weeks after withdrawal of the treatment. RESULTS The subjects revealed a significant decline of inflammatory parameters C-reactive protein (-46%), interleukin IL-2 (-27%) and IL-17 (-15%). The inflammatory parameters IL-6 and IFN-gamma showed a mild non-significant reduction and the anti-inflammatory cytokine IL-10 increased significantly (+71%). While the concentration of bacterial endotoxins and TNF-α remained unchanged, the gut-derived uremic toxins, indoxyl sulfate (-30%) and p-cresyl sulfate (-50%), revealed a significant decline. The SP supplementation reduced the parameters of oxidative stress malondialdehyde (-32%) and glutathione peroxidase activity (-28%). The serum insulin levels dropped by 30% and the HOMA-index by 32%. The reduction of inflammatory parameters was associated with a lowering of ferritin and a significant increase in transferrin saturation (TSAT). Four weeks after the end of the treatment phase, all improved parameters deteriorated again. Evaluation of the psycho-physical performance with the short form 36 (SF-36) questionnaire showed an enhancement in the self-reported physical functioning, general health, vitality and mental health. The SP supplementation was well tolerated and without important side effects. No patient had left the study due to intolerance to the medication. The SP supplementation in MHD patients reduced pro-inflammatory parameters and oxidative stress and improved insulin resistance and iron metabolism. Furthermore, SP effectively lowered the important gut-derived uremic toxins indoxyl and p-cresol sulfate. These improvements were associated with a better quality of life. Further controlled studies are required in a larger cohort to evaluate the clinical outcome.
Collapse
Affiliation(s)
- Stefania Marzocco
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy.
| | - Gholamreza Fazeli
- Rudolf Virchow Center, University of Wuerzburg, 97080 Wuerzburg, Germany.
| | - Lucia Di Micco
- UOC Nephrology, A. Landolfi Hospital, 83029 Solofra (AV), Italy.
| | - Giuseppina Autore
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy.
| | - Simona Adesso
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy.
| | - Fabrizio Dal Piaz
- Department of Medicine and Surgery, University of Salerno, 84084 Fisciano (SA), Italy.
| | - August Heidland
- Department of Internal Medicine and KfH Kidney Center, University of Würzburg, KfH Kidney Center Würzburg, 97080 Würzburg, Germany.
| | - Biagio Di Iorio
- UOC Nephrology, A. Landolfi Hospital, 83029 Solofra (AV), Italy.
| |
Collapse
|
27
|
The Anti-Inflammatory Mediator, Vasoactive Intestinal Peptide, Modulates the Differentiation and Function of Th Subsets in Rheumatoid Arthritis. J Immunol Res 2018; 2018:6043710. [PMID: 30155495 PMCID: PMC6092975 DOI: 10.1155/2018/6043710] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
Genetic background, epigenetic modifications, and environmental factors trigger autoimmune response in rheumatoid arthritis (RA). Several pathogenic infections have been related to the onset of RA and may cause an inadequate immunological tolerance towards critical self-antigens leading to chronic joint inflammation and an imbalance between different T helper (Th) subsets. Vasoactive intestinal peptide (VIP) is a mediator that modulates all the stages comprised between the arrival of pathogens and Th cell differentiation in RA through its known anti-inflammatory and immunomodulatory actions. This “neuroimmunopeptide” modulates the pathogenic activity of diverse cell subpopulations involved in RA as lymphocytes, fibroblast-like synoviocytes (FLS), or macrophages. In addition, VIP decreases the expression of pattern recognition receptor (PRR) such as toll-like receptors (TLRs) in FLS from RA patients. These receptors act as sensors of pathogen-associated molecular pattern (PAMP) and damage-associated molecular pattern (DAMP) connecting the innate and adaptive immune system. Moreover, VIP modulates the imbalance between Th subsets in RA, decreasing pathogenic Th1 and Th17 subsets and favoring Th2 or Treg profile during the differentiation/polarization of naïve or memory Th cells. Finally, VIP regulates the plasticity between theses subsets. In this review, we provide an overview of VIP effects on the aforementioned features of RA pathology.
Collapse
|
28
|
Masuko K. A Potential Benefit of "Balanced Diet" for Rheumatoid Arthritis. Front Med (Lausanne) 2018; 5:141. [PMID: 29868593 PMCID: PMC5962728 DOI: 10.3389/fmed.2018.00141] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/25/2018] [Indexed: 01/05/2023] Open
Abstract
Although it is largely unknown how diet might modulate rheumatoid arthritis (RA), dietary interventions, including so-called “low-carbohydrate” diets, may be considered for RA patients because of the high incidence of cardiovascular comorbidity. However, it has been shown that restriction or skewed intake of particular nutrient may alter the components of the intestinal flora. Changes to the gut microbiota or dysbiosis may be relevant to the pathogenesis of RA because the gut microbiota is reported to regulate the T cell phenotype and T cell-mediated immunity. RA patients should be advised that a balanced diet that includes appropriate amounts of carbohydrate, especially dietary fiber, is important for maintaining the symbiosis of intestinal flora, which could be beneficial for preventing autoimmunity. The review attempts to focus current findings regarding the suggested relationship between diet-derived carbohydrate, gut microbiota, and the pathogenesis of RA.
Collapse
Affiliation(s)
- Kayo Masuko
- Health Evaluation and Promotion Center, Sanno Medical Center, Tokyo, Japan.,Clinical Research Center for Medicine, International University of Health and Welfare, Tokyo, Japan
| |
Collapse
|
29
|
Jin YY, Singh P, Chung HJ, Hong ST. Blood Ammonia as a Possible Etiological Agent for Alzheimer's Disease. Nutrients 2018; 10:E564. [PMID: 29734664 PMCID: PMC5986444 DOI: 10.3390/nu10050564] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD), characterized by cognitive decline and devastating neurodegeneration, is the most common age-related dementia. Since AD is a typical example of a complex disease that is affected by various genetic and environmental factors, various factors could be involved in preventing and/or treating AD. Extracellular accumulation of beta-amyloid peptide (Aβ) and intracellular accumulation of tau undeniably play essential roles in the etiology of AD. However, interestingly enough, medications targeting Aβ or tau all failed and the only clinically efficient medications for AD are drugs targeting the cholinergic pathway. Also, a very intriguing discovery in AD is that the Mediterranean diet (MeDi), containing an unusually large quantity of Lactobacilli, is very effective in preventing AD. Based on recently emerging findings, it is our opinion that the reduction of blood ammonia levels by Lactobacilli in MeDi is the therapeutic agent of MeDi for AD. The recent evidence of Lactobacilli lowering blood ammonia level not only provides a link between AD and MeDi but also provides a foundation of pharmabiotics for hyperammonemia as well as various neurological diseases.
Collapse
Affiliation(s)
- Yan Yan Jin
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk 54907, Korea.
| | - Parul Singh
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk 54907, Korea.
| | - Hea-Jong Chung
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk 54907, Korea.
| | - Seong-Tschool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk 54907, Korea.
| |
Collapse
|
30
|
Paine A, Ritchlin C. Altered Bone Remodeling in Psoriatic Disease: New Insights and Future Directions. Calcif Tissue Int 2018; 102:559-574. [PMID: 29330560 PMCID: PMC5906143 DOI: 10.1007/s00223-017-0380-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/27/2017] [Indexed: 12/15/2022]
Abstract
Psoriatic arthritis (PsA) is an inflammatory rheumatic disorder that occurs in patients with psoriasis and predominantly affects musculoskeletal structures, skin, and nails. The etiology of PsA is not well understood but evidence supports an interplay of genetic, immunologic, and environmental factors which promote pathological bone remodeling and joint damage in PsA. Localized and systemic bone loss due to increased activity of osteoclasts is well established in PsA based on animal models and translational studies. In contrast, the mechanisms responsible for pathological bone remodeling in PsA remain enigmatic although new candidate molecules and pathways have been identified. Recent reports have revealed novel findings related to bone erosion and pathologic bone formation in PsA. Many associated risk factors and contributing molecular mechanisms have also been identified. In this review, we discuss new developments in the field, point out unresolved questions regarding the pathogenetic origins of the wide array of bone phenotypes in PsA, and discuss new directions for investigation.
Collapse
Affiliation(s)
- Ananta Paine
- Allergy, Immunology & Rheumatology Division, University of Rochester Medical Center, Rochester, NY, 14623, USA.
| | - Christopher Ritchlin
- Allergy, Immunology & Rheumatology Division, University of Rochester Medical Center, Rochester, NY, 14623, USA
| |
Collapse
|
31
|
Picchianti-Diamanti A, Rosado MM, D'Amelio R. Infectious Agents and Inflammation: The Role of Microbiota in Autoimmune Arthritis. Front Microbiol 2018; 8:2696. [PMID: 29387048 PMCID: PMC5776018 DOI: 10.3389/fmicb.2017.02696] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 12/26/2017] [Indexed: 12/17/2022] Open
Abstract
In higher vertebrates, mucosal sites at the border between the internal and external environments, directly interact with bacteria, viruses, and fungi. Through co-evolution, hosts developed mechanisms of tolerance or ignorance toward some infectious agents, because hosts established "gain of function" interactions with symbiotic bacteria. Indeed, some bacteria assist hosts in different functions, among which are digestion of complex carbohydrates, and absorption and supply of vitamins. There is no doubt that microbiota modulate innate and acquired immune responses starting at birth. However, variations in quality and quantity of bacterial species interfere with the equilibrium between inflammation and tolerance. In fact, correlations between gut bacteria composition and the severity of inflammation were first described for inflammatory bowel diseases and later extended to other pathologies. The genetic background, environmental factors (e.g., stress or smoking), and diet can induce strong changes in the resident bacteria which can expose the intestinal epithelium to a variety of different metabolites, many of which have unknown functions and consequences. In addition, alterations in gut permeability may allow pathogens entry, thereby triggering infection and/or chronic inflammation. In this context, a local event occurring at a mucosal site may be the triggering cause of an autoimmune reaction that eventually involves distant sites or organs. Recently, several studies attributed a pathogenic role to altered oral microbiota in rheumatoid arthritis (RA) and to gut dysbiosis in spondyloarthritis (SpA). There is also growing evidence that different drugs, such as antibiotics and immunosuppressants, can influence and be influenced by the diversity and composition of microbiota in RA and SpA patients. Hence, in complex disorders such RA and SpA, not only the genetic background, gender, and immunologic context of the individual are relevant, but also the history of infections and the structure of the microbial community at mucosal sites should be considered. Here the role of the microbiota and infections in the initiation and progression of chronic arthritis is discussed, as well as how these factors can influence a patient's response to synthetic and biologic immunosuppressive therapy.
Collapse
Affiliation(s)
- Andrea Picchianti-Diamanti
- Department of Clinical and Molecular Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | | | - Raffaele D'Amelio
- Department of Clinical and Molecular Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
32
|
Vereecke L, Elewaut D. Spondyloarthropathies: Ruminococcus on the horizon in arthritic disease. Nat Rev Rheumatol 2017; 13:574-576. [PMID: 28814815 DOI: 10.1038/nrrheum.2017.130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lars Vereecke
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, University Hospital Ghent, De Pintelaan 185, 0K12B, B-9000 Ghent, Belgium; and at the Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Fiers-Schell-Van Montagu Building, Technologiepark 927, Ghent University, B-9052 Ghent, Belgium
| | - Dirk Elewaut
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, University Hospital Ghent, De Pintelaan 185, 0K12B, B-9000 Ghent, Belgium; and at the Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Fiers-Schell-Van Montagu Building, Technologiepark 927, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
33
|
Wang M, Wu L, Weng R, Zheng W, Wu Z, Lv Z. Therapeutic potential of helminths in autoimmune diseases: helminth-derived immune-regulators and immune balance. Parasitol Res 2017; 116:2065-2074. [PMID: 28664463 DOI: 10.1007/s00436-017-5544-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 06/21/2017] [Indexed: 12/22/2022]
Abstract
Helminths have accompanied human throughout history by releasing immune-evasion molecules that could counteract an aberrant immune response within the host. In the past decades, helminth infections are becoming less prevalent possibly due to the developed sanitation. Meanwhile, the incidence of autoimmune diseases is increasing, which cannot be exclusively explained by the changes of susceptibility genes. While the hygiene hypothesis casts light on the problem. The infections of helminths are believed to interact with and regulate human immunity with the byproduct of suppressing the autoimmune diseases. Thus, helminths are potential to treat or cure the autoimmune diseases. The therapeutic progresses and possible immune suppression mechanisms are illustrated in the review. The helminths that are studied most intensively include Heligmosomoides polygyrus, Hymenolepis diminuta, Schistosoma mansoni, Trichinella spiralis, and Trichuris suis. Special attentions are paid on the booming animal models and clinical trials that are to detect the efficiency of immune-modulating helminth-derived molecules on autoimmune diseases. These trials provide us with a prosperous clinical perspective, but the precise mechanism of the down-regulatory immune response remains to be clarified. More efforts are needed to be dedicated until these parasite-derived immune modulators could be used in clinic to treat or cure the autoimmune diseases under a standard management.
Collapse
Affiliation(s)
- Meng Wang
- Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Linxiang Wu
- Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Rennan Weng
- Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Weihong Zheng
- Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Zhongdao Wu
- Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China
| | - Zhiyue Lv
- Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China. .,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China.
| |
Collapse
|
34
|
Synbiotic supplementation and the effects on clinical and metabolic responses in patients with rheumatoid arthritis: a randomised, double-blind, placebo-controlled trial. Br J Nutr 2017; 117:1095-1102. [DOI: 10.1017/s000711451700085x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractSynbiotic intake may be associated with reduced inflammation in patients with rheumatoid arthritis (RA) due to optimised inflammatory markers, oxidative stress and insulin resistance. This research was conducted to assess the effects of synbiotic supplementation on the clinical and metabolic parameters of patients with RA. A total of fifty-four patients with RA were allocated into two groups to receive either a synbiotic capsule (n 27) or a placebo (n 27) for 8 weeks in this randomised, double-blind, placebo-controlled trial. Fasting blood samples were taken at baseline and week 8 of the study to quantify related markers. After the 8-week intervention, compared with the placebo, synbiotic supplementation resulted in a significant reduction in serum high-sensitivity C-reactive protein (hs-CRP) levels (–1427·8 (sd 3267·2) v. +2833·4 (sd 5639·7) ng/ml, P=0·001). In addition, compared with the placebo, synbiotic supplementation improved disease activity score-28 joints (DAS-28) (–1·6 (sd 0·8) v. –0·3 (sd 0·5), P<0·001) and visual analogue scales (VAS) pain (–30·4 (sd 18·7) v. –11·5 (sd 15·9), P<0·001). In addition, a significant elevation in plasma nitric oxide (NO) (+0·8 (sd 4·4) v. –2·6 (sd 4·5) µmol/l, P=0·008), and significant reductions in insulin values (–13·8 (sd 26·4) v. +4·2 (sd 28·2) pmol/l, P=0·01), homoeostasis model of assessment-estimated insulin resistance (HOMA-IR) (–0·5 (sd 1·0) v.+0·1 (sd 1·1), P=0·03) and homoeostatic model assessment-β-cell function (HOMA-B) (–9·4 (sd 17·9) v. +3·3 (sd 18·9), P=0·01) following supplementation with the synbiotic compared with the placebo. Compared with the placebo, synbiotic supplementation also resulted in a significant increase in plasma GSH (+36·6 (sd 63·5) v. –58·5 (sd 154·4) µmol/l, P=0·005). Overall, our study demonstrated that synbiotic supplementation for 8 weeks among patients with RA had beneficial effects on hs-CRP, DAS-28, VAS, NO, insulin levels, HOMA-IR, HOMA-B and GSH levels.
Collapse
|
35
|
Microbiota and neurologic diseases: potential effects of probiotics. J Transl Med 2016; 14:298. [PMID: 27756430 PMCID: PMC5069982 DOI: 10.1186/s12967-016-1058-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/10/2016] [Indexed: 12/15/2022] Open
Abstract
Background The microbiota colonizing the gastrointestinal tract have been associated with both gastrointestinal and extra-gastrointestinal diseases. In recent years, considerable interest has been devoted to their role in the development of neurologic diseases, as many studies have described bidirectional communication between the central nervous system and the gut, the so-called “microbiota-gut-brain axis”. Considering the ability of probiotics (i.e., live non-pathogenic microorganisms) to restore the normal microbial population and produce benefits for the host, their potential effects have been investigated in the context of neurologic diseases. The main aims of this review are to analyse the relationship between the gut microbiota and brain disorders and to evaluate the current evidence for the use of probiotics in the treatment and prevention of neurologic conditions. Discussion Overall, trials involving animal models and adults have reported encouraging results, suggesting that the administration of probiotic strains may exert some prophylactic and therapeutic effects in a wide range of neurologic conditions. Studies involving children have mainly focused on autism spectrum disorder and have shown that probiotics seem to improve neuro behavioural symptoms. However, the available data are incomplete and far from conclusive. Conclusions The potential usefulness of probiotics in preventing or treating neurologic diseases is becoming a topic of great interest. However, deeper studies are needed to understand which formulation, dosage and timing might represent the optimal regimen for each specific neurologic disease and what populations can benefit. Moreover, future trials should also consider the tolerability and safety of probiotics in patients with neurologic diseases.
Collapse
|