1
|
Mallick R, Montaser AB, Komi H, Juusola G, Tirronen A, Gurzeler E, Barbiera M, Korpisalo P, Terasaki T, Nieminen T, Ylä-Herttuala S. VEGF-B is a novel mediator of ER stress which induces cardiac angiogenesis via RGD-binding integrins independent of VEGFR1/NRP activities. Mol Ther 2025:S1525-0016(25)00186-8. [PMID: 40083161 DOI: 10.1016/j.ymthe.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/17/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
Vascular endothelial growth factor B186 (VEGF-B186), a ligand for VEGF receptor 1 (VEGFR1) and neuropilin (NRP), promotes vascular growth in healthy and ischemic myocardium. However, the mechanisms and signaling of VEGF-B186 to support angiogenesis have remained unclear. We studied the effects of VEGF-B186 and its variant, VEGF-B186R127S, which cannot bind to NRPs, using VEGFR1 tyrosine kinase knockout (TK-/-) mice to explore the mechanism of VEGF-B186 in promoting vascular growth. Ultrasound-guided adenoviral VEGF-B186, VEGF-B186R127S, and control vector gene transfers were performed into VEGFR1 TK-/- mice hearts. In vitro studies in cardiac endothelial cells and further validation in normal and ischemic pig hearts, as well as in wild-type mice, were conducted. Both VEGF-B186 forms promoted vascular growth in VEGFR1 TK-/- mouse heart and increased the expression of proangiogenic and hematopoietic factors. Unlike VEGF-A, VEGF-B186 forms induced endoplasmic reticulum (ER) stress via the upregulation of Binding immunoglobulin Protein (BiP) as well as ER stress sensors (ATF6, PERK, IRE1α) through ITGAV and ITGA5 integrins, newly identified receptors for VEGF-B, activating the unfolded protein response (UPR) through XBP1. VEGFR1 and NRP are not essential for VEGF-B186-induced vascular growth. Instead, VEGF-B186 can stimulate cardiac regeneration through RGD-binding integrins and ER stress, suggesting a novel mechanism of action for VEGF-B186.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I.Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ahmed B Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henna Komi
- A.I.Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Greta Juusola
- A.I.Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland; Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Annakaisa Tirronen
- A.I.Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Erika Gurzeler
- A.I.Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maria Barbiera
- A.I.Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petra Korpisalo
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Tetsuya Terasaki
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tiina Nieminen
- A.I.Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I.Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland; Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
2
|
Queiroz M, Sena CM. Perivascular adipose tissue: a central player in the triad of diabetes, obesity, and cardiovascular health. Cardiovasc Diabetol 2024; 23:455. [PMID: 39732729 PMCID: PMC11682657 DOI: 10.1186/s12933-024-02549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024] Open
Abstract
Perivascular adipose tissue (PVAT) is a dynamic tissue that affects vascular function and cardiovascular health. The connection between PVAT, the immune system, obesity, and vascular disease is complex and plays a pivotal role in the pathogenesis of vascular diseases such as atherosclerosis, hypertension, and vascular inflammation. In cardiometabolic diseases, PVAT becomes a significant source of proflammatory adipokines, leading to increased infiltration of immune cells, in cardiometabolic diseases, PVAT becomes a significant source of proinflammatory adipokines, leading to increased infiltration of immune cells, promoting vascular smooth muscle cell proliferation and migrationpromoting vascular smooth muscle cell proliferation and migration. This exacerbates vascular dysfunction by impairing endothelial cell function and promoting endothelial activation. Dysregulated PVAT also contributes to hemodynamic alterations and hypertension through enhanced sympathetic nervous system activity and impaired vasodilatory capacity of PVAT-derived factors. Therapeutic interventions targeting key components of this interaction, such as modulating PVAT inflammation, restoring adipokine balance, and attenuating immune cell activation, hold promise for mitigating obesity-related vascular complications. Lifestyle interventions, pharmacological agents targeting inflammatory pathways, and surgical approaches aimed at reducing PVAT mass or improving adipose tissue function are potential therapeutic avenues for managing vascular diseases associated with obesity and PVAT dysfunction.
Collapse
Affiliation(s)
- Marcelo Queiroz
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal
| | - Cristina M Sena
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.
| |
Collapse
|
3
|
Beşler MS, Karadenizli MB, Ökten RS. A novel imaging biomarker for prediction of cerebrovascular ischemic events: Pericarotid fat density. Am J Emerg Med 2024; 84:130-134. [PMID: 39116673 DOI: 10.1016/j.ajem.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND To investigate the relationship between pericarotid fat density measured in carotid CTA and vulnerable carotid plaque. METHODS This retrospective study included 374 participants who underwent carotid CTA between June 1, 2021, and December 1, 2021 (234 males, median age 68 years [interquartile range: 61-75]). Two groups, symptomatic and asymptomatic, were defined based on either diffusion-weighted MRI or a clinical history of acute ischemia or TIA within 6 months before or after CTA. The relationship between pericarotid fat density and cerebrovascular ischemic events was assessed using receiver operating characteristic analysis and binary logistic regression analysis. RESULTS In the symptomatic group (n = 135), mean pericarotid fat density (-63.3 ± 21.7 vs. -81.7 ± 16.9 HU, respectively; p < 0.001) and median maximum plaque thickness (4 [interquartile range: 3-6] vs. 3.7 [interquartile range: 2.6-4.7] mm, respectively; p = 0.002) were higher, while plaque density (42.1 ± 19.6 vs. 50.6 ± 20.4 HU, respectively; p = 0.001) was lower compared to the asymptomatic group. Pericarotid fat density (OR: 1.038, 95% CI: 1.023-1.053, p < 0.001) was identified as an independent predictor for symptomatic patients. The optimal cut-off value for pericarotid fat density predicting symptomatic patients was estimated as -74 HU (area under the curve: 0.753, 95% CI:0.699-0.808, p < 0.001). Inter-reader agreement for pericarotid fat density was found to be almost perfect (intraclass correlation coefficient: 0.818, 95% CI: 0.770-0.856, p < 0.001). CONCLUSION Pericarotid fat density may serve as an imaging biomarker in predicting acute cerebrovascular ischemic events.
Collapse
Affiliation(s)
- Muhammed Said Beşler
- Department of Radiology, Kahramanmaraş Necip Fazıl City Hospital, Kahramanmaraş, Türkiye.
| | | | - Rıza Sarper Ökten
- Department of Radiology, Ankara Bilkent City Hospital, Ankara, Türkiye
| |
Collapse
|
4
|
Wang Y, Wang X, Chen Y, Zhang Y, Zhen X, Tao S, Dou J, Li P, Jiang G. Perivascular fat tissue and vascular aging: A sword and a shield. Pharmacol Res 2024; 203:107140. [PMID: 38513826 DOI: 10.1016/j.phrs.2024.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/16/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
The understanding of the function of perivascular adipose tissue (PVAT) in vascular aging has significantly changed due to the increasing amount of information regarding its biology. Adipose tissue surrounding blood vessels is increasingly recognized as a key regulator of vascular disorders. It has significant endocrine and paracrine effects on the vasculature and is mediated by the production of a variety of bioactive chemicals. It also participates in a number of pathological regulatory processes, including oxidative stress, immunological inflammation, lipid metabolism, vasoconstriction, and dilation. Mechanisms of homeostasis and interactions between cells at the local level tightly regulate the function and secretory repertoire of PVAT, which can become dysregulated during vascular aging. The PVAT secretion group changes from being reducing inflammation and lowering cholesterol to increasing inflammation and increasing cholesterol in response to systemic or local inflammation and insulin resistance. In addition, the interaction between the PVAT and the vasculature is reciprocal, and the biological processes of PVAT are directly influenced by the pertinent indicators of vascular aging. The architectural and biological traits of PVAT, the molecular mechanism of crosstalk between PVAT and vascular aging, and the clinical correlation of vascular age-related disorders are all summarized in this review. In addition, this paper aims to elucidate and evaluate the potential benefits of therapeutically targeting PVAT in the context of mitigating vascular aging. Furthermore, it will discuss the latest advancements in technology used for targeting PVAT.
Collapse
Affiliation(s)
- Yan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xianmin Wang
- Xinjiang Uygur Autonomous Region Hospital of Traditional Chinese Medicine, Xinjiang 830000, China
| | - Yang Chen
- School of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang 830011, China
| | - Yuelin Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xianjie Zhen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Siyu Tao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinfang Dou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Peng Li
- Xinjiang Uygur Autonomous Region Hospital of Traditional Chinese Medicine, Xinjiang 830000, China
| | - Guangjian Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang 830011, China.
| |
Collapse
|
5
|
Zhang Z, Luo W, Chen G, Chen J, Lin S, Ren T, Lin Z, Zhao C, Wen H, Nie Q, Meng X, Zhang X. Chicken muscle antibody array reveals the regulations of LDHA on myoblast differentiation through energy metabolism. Int J Biol Macromol 2024; 254:127629. [PMID: 37890747 DOI: 10.1016/j.ijbiomac.2023.127629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
Myoblast proliferation and differentiation are highly dynamic and regulated processes in skeletal muscle development. Given that proteins serve as the executors for the majority of biological processes, exploring key regulatory factors and mechanisms at the protein level offers substantial opportunities for understanding the skeletal muscle development. In this study, a total of 607 differentially expressed proteins between proliferation and differentiation in myoblasts were screened out using our chicken muscle antibody array. Biological function analysis revealed the importance of energy production processes and compound metabolic processes in myogenesis. Our antibody array specifically identified an upregulation of LDHA during differentiation, which was associated with the energy metabolism. Subsequent investigation demonstrated that LDHA promoted the glycolysis and TCA cycle, thereby enhancing myoblasts differentiation. Mechanistically, LDHA promotes the glycolysis and TCA cycle but inhibits the ETC oxidative phosphorylation through enhancing the NADH cycle, providing the intermediate metabolites that improve the myoblasts differentiation. Additionally, increased glycolytic ATP by LDHA induces Akt phosphorylation and activate the PI3K-Akt pathway, which might also contribute to the promotion of myoblasts differentiation. Our studies not only present a powerful tool for exploring myogenic regulatory factors in chicken muscle, but also identify a novel role for LDHA in modulating myoblast differentiation through its regulation of cellular NAD+ levels and subsequent downstream effects on mitochondrial function.
Collapse
Affiliation(s)
- Zihao Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Orthaepedics and Traumatology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Genghua Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Jiahui Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Shudai Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Tuanhui Ren
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zetong Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Changbin Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Huaqiang Wen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xun Meng
- School of Life Sciences, Northwest University, Xi'an 710069, China; Abmart, 333 Guiping Road, Shanghai 200033, China.
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Wu T, Jiang Y, Shi W, Wang Y, Li T. Endoplasmic reticulum stress: a novel targeted approach to repair bone defects by regulating osteogenesis and angiogenesis. J Transl Med 2023; 21:480. [PMID: 37464413 PMCID: PMC10353205 DOI: 10.1186/s12967-023-04328-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Bone regeneration therapy is clinically important, and targeted regulation of endoplasmic reticulum (ER) stress is important in regenerative medicine. The processing of proteins in the ER controls cell fate. The accumulation of misfolded and unfolded proteins occurs in pathological states, triggering ER stress. ER stress restores homeostasis through three main mechanisms, including protein kinase-R-like ER kinase (PERK), inositol-requiring enzyme 1ɑ (IRE1ɑ) and activating transcription factor 6 (ATF6), collectively known as the unfolded protein response (UPR). However, the UPR has both adaptive and apoptotic effects. Modulation of ER stress has therapeutic potential for numerous diseases. Repair of bone defects involves both angiogenesis and bone regeneration. Here, we review the effects of ER stress on osteogenesis and angiogenesis, with emphasis on ER stress under high glucose (HG) and inflammatory conditions, and the use of ER stress inducers or inhibitors to regulate osteogenesis and angiogenesis. In addition, we highlight the ability for exosomes to regulate ER stress. Recent advances in the regulation of ER stress mediated osteogenesis and angiogenesis suggest novel therapeutic options for bone defects.
Collapse
Affiliation(s)
- Tingyu Wu
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Yaping Jiang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Weipeng Shi
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Yingzhen Wang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Tao Li
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China.
| |
Collapse
|
7
|
Chen Y, Li F, Hua M, Liang M, Song C. Role of GM-CSF in lung balance and disease. Front Immunol 2023; 14:1158859. [PMID: 37081870 PMCID: PMC10111008 DOI: 10.3389/fimmu.2023.1158859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth factor originally identified as a stimulus that induces the differentiation of bone marrow progenitor cells into granulocytes and macrophages. GM-CSF is now considered to be a multi-origin and pleiotropic cytokine. GM-CSF receptor signals activate JAK2 and induce nuclear signals through the JAK-STAT, MAPK, PI3K, and other pathways. In addition to promoting the metabolism of pulmonary surfactant and the maturation and differentiation of alveolar macrophages, GM-CSF plays a key role in interstitial lung disease, allergic lung disease, alcoholic lung disease, and pulmonary bacterial, fungal, and viral infections. This article reviews the latest knowledge on the relationship between GM-CSF and lung balance and lung disease, and indicates that there is much more to GM-CSF than its name suggests.
Collapse
Affiliation(s)
- Yingzi Chen
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Anhui, China
| | - Fan Li
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Anhui, China
| | - Mengqing Hua
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Anhui, China
| | - Meng Liang
- Department of Biotechnology, School of Life Science, Bengbu Medical College, Anhui, China
- *Correspondence: Chuanwang Song, ; Meng Liang,
| | - Chuanwang Song
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Anhui, China
- *Correspondence: Chuanwang Song, ; Meng Liang,
| |
Collapse
|
8
|
Freitas IN, da Silva Jr JA, de Oliveira KM, Lourençoni Alves B, Dos Reis Araújo T, Camporez JP, Carneiro EM, Davel AP. Insights by which TUDCA is a potential therapy against adiposity. Front Endocrinol (Lausanne) 2023; 14:1090039. [PMID: 36896173 PMCID: PMC9989466 DOI: 10.3389/fendo.2023.1090039] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
Adipose tissue is an organ with metabolic and endocrine activity. White, brown and ectopic adipose tissues have different structure, location, and function. Adipose tissue regulates energy homeostasis, providing energy in nutrient-deficient conditions and storing it in high-supply conditions. To attend to the high demand for energy storage during obesity, the adipose tissue undergoes morphological, functional and molecular changes. Endoplasmic reticulum (ER) stress has been evidenced as a molecular hallmark of metabolic disorders. In this sense, the ER stress inhibitor tauroursodeoxycholic acid (TUDCA), a bile acid conjugated to taurine with chemical chaperone activity, has emerged as a therapeutic strategy to minimize adipose tissue dysfunction and metabolic alterations associated with obesity. In this review, we highlight the effects of TUDCA and receptors TGR5 and FXR on adipose tissue in the setting of obesity. TUDCA has been demonstrated to limit metabolic disturbs associated to obesity by inhibiting ER stress, inflammation, and apoptosis in adipocytes. The beneficial effect of TUDCA on perivascular adipose tissue (PVAT) function and adiponectin release may be related to cardiovascular protection in obesity, although more studies are needed to clarify the mechanisms. Therefore, TUDCA has emerged as a potential therapeutic strategy for obesity and comorbidities.
Collapse
Affiliation(s)
- Israelle Netto Freitas
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
| | | | | | | | | | - João Paulo Camporez
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Everardo Magalhães Carneiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
| | - Ana Paula Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
- *Correspondence: Ana Paula Davel,
| |
Collapse
|
9
|
Rami AZA, Hamid AA, Anuar NNM, Aminuddin A, Ugusman A. Exploring the Relationship of Perivascular Adipose Tissue Inflammation and the Development of Vascular Pathologies. Mediators Inflamm 2022; 2022:2734321. [PMID: 35177953 PMCID: PMC8846975 DOI: 10.1155/2022/2734321] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 12/18/2022] Open
Abstract
Initially thought to only provide mechanical support for the underlying blood vessels, perivascular adipose tissue (PVAT) has now emerged as a regulator of vascular function. A healthy PVAT exerts anticontractile and anti-inflammatory actions on the underlying vasculature via the release of adipocytokines such as adiponectin, nitric oxide, and omentin. However, dysfunctional PVAT produces more proinflammatory adipocytokines such as leptin, resistin, interleukin- (IL-) 6, IL-1β, and tumor necrosis factor-alpha, thus inducing an inflammatory response that contributes to the pathogenesis of vascular diseases. In this review, current knowledge on the role of PVAT inflammation in the development of vascular pathologies such as atherosclerosis and hypertension was discussed.
Collapse
Affiliation(s)
- Afifah Zahirah Abd Rami
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Nur Najmi Mohamad Anuar
- Center for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, 50300 Kuala Lumpur, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Cao Q, Lei H, Yang M, Wei L, Dong Y, Xu J, Nasser M, Liu M, Zhu P, Xu L, Zhao M. Impact of Cardiovascular Diseases on COVID-19: A Systematic Review. Med Sci Monit 2021; 27:e930032. [PMID: 33820904 PMCID: PMC8035813 DOI: 10.12659/msm.930032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In December 2019, pneumonia of unknown cause broke out, and currently more than 150 countries around the world have been affected. Globally, as of 5: 46 pm CET, 6 November 2020, the World Health Organization (WHO) had reported 48 534 508 confirmed cases of COVID-19, including 1 231 017 deaths. The novel coronavirus disease (COVID-19) outbreak, caused by the SARS-CoV-2 virus, is the most important medical challenge in decades. Previous research mainly focused on the exploration of lung changes. However, with development of the disease and deepening research, more and more patients showed cardiovascular diseases, even in those without respiratory symptoms, and some researchers have found that underlying cardiovascular diseases increase the risk of infection. Although the related mechanism is not thoroughly studied, based on existing research, we speculate that the interaction between the virus and its receptor, inflammatory factors, various forms of the stress response, hypoxic environment, and drug administration could all induce the development of cardiac adverse events. Interventions to control these pathogenic factors may effectively reduce the occurrence of cardiovascular complications. This review summarizes the latest research on the relationship between COVID-19 and its associated cardiovascular complications, and we also explore possible mechanisms and treatments.
Collapse
Affiliation(s)
- Qingtai Cao
- Hunan Normal University School of Medicine, Changsha, Hunan, China (mainland)
| | - HanYu Lei
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland).,Xiangya School of Medicine, Central South University, Changsha, Hunan, China (mainland)
| | - MengLing Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland).,Xiangya School of Medicine, Central South University, Changsha, Hunan, China (mainland)
| | - Le Wei
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland).,Xiangya School of Medicine, Central South University, Changsha, Hunan, China (mainland)
| | - YinMiao Dong
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - JiaHao Xu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland).,Xiangya School of Medicine, Central South University, Changsha, Hunan, China (mainland)
| | - Mi Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China (mainland)
| | - MengQi Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland).,Xiangya School of Medicine, Central South University, Changsha, Hunan, China (mainland)
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China (mainland)
| | - LinYong Xu
- School of Life Science, Central South University, Changsha, Hunan, China (mainland)
| | - MingYi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
11
|
Hu H, Garcia-Barrio M, Jiang ZS, Chen YE, Chang L. Roles of Perivascular Adipose Tissue in Hypertension and Atherosclerosis. Antioxid Redox Signal 2021; 34:736-749. [PMID: 32390459 PMCID: PMC7910418 DOI: 10.1089/ars.2020.8103] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Perivascular adipose tissue (PVAT), which is present surrounding most blood vessels, from the aorta to the microvasculature of the dermis, is mainly composed of fat cells, fibroblasts, stem cells, mast cells, and nerve cells. Although the PVAT is objectively present, its physiological and pathological significance has long been ignored. Recent Advances: PVAT was considered as a supporting component of blood vessels and a protective cushion to the vessel wall from the neighboring tissues during relaxation and contraction. Nonetheless, further extensive research found that PVAT actively regulates blood vessel tone through PVAT-derived vasoactive factors, including both relaxing and contracting factors. In addition, PVAT contributes to atherosclerosis through paracrine secretion of a large number of bioactive factors such as adipokines and cytokines. Thereby, PVAT regulates the functions of blood vessels through various mechanisms operating directly on PVAT or on the underlying vessel layers, including vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). Critical Issues: PVAT is a unique adipose tissue that plays an essential role in maintaining the vascular structure and regulating vascular function and homeostasis. This review focuses on recent updates on the various PVAT roles in hypertension and atherosclerosis. Future Directions: Future studies should further investigate the actual contribution of alterations in PVAT metabolism to the overall systemic outcomes of cardiovascular disease, which remains largely unknown. In addition, the messengers and underlying mechanisms responsible for the crosstalk between PVAT and ECs and VSMCs in the vascular wall should be systematically addressed, as well as the contributions of PVAT aging to vascular dysfunction.
Collapse
Affiliation(s)
- Hengjing Hu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Minerva Garcia-Barrio
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Yuqing Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Lin Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Han Z, Wang Y, Li J. Effects of Atorvastatin Combined with Nano-Selenium on Blood Lipids and Oxidative Stress in Atherosclerotic Rats. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:1331-1337. [PMID: 33183480 DOI: 10.1166/jnn.2021.18633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dyslipidemia and oxidative stress injury of blood vessel walls play important roles in the formation of atherosclerosis (AS) and plaque progression. This is also the main pathological basis for atherosclerosis. Statins, as inhibitors of HMG-CoA reductase in the process of cholesterol biosynthesis, have become key drugs for lipid-lowering treatment. Many studies have found the anti-atherosclerotic effect of atorvastatin is far beyond the lipid-lowering effect. Its lipid-lowering effects are also involved, such as anti-inflammatory, inhibiting endothelial cell ROS production, and improving endothelial cell damage. Nano selenium (Nano-Se) shows stronger anti-oxidation ability, lower toxicity, high efficiency absorption and strong immune regulation ability. Because of the unique biological effects of Nano-Se, it has broad prospects in the field of human health care. Therefore, in this study, by constructing a rat model of abnormal lipid metabolism, we observed changes in parameters such as serum peroxidase (MPO), propylene glycol (MDA), superoxide dismutase (SOD), and blood lipid levels in atherosclerotic rats Happening, furthermore, the effects of atorvastatin+nano-selenium on lipid metabolism disorders and the protective effects and mechanisms of oxidative stress injury in rats were investigated and with a view to providing new targets for the treatment of arteriosclerosis. The results of this study demonstrated that contrast to the AS rat, the combined use of atorvastatin+nano-selenium group could significantly reduce serum TC, TG, and LDL-C contents, and declined tissue lesions such as aortic arch and liver; Significantly enhanced the activities of GPx-1 and SOD in serum, decreased MDA content, and increased the SOD activity in rat aorta. These results suggested that the combined use of atorvastatin+nano-selenium has good protection against oxidative stress caused by disorders of lipid metabolism.
Collapse
Affiliation(s)
- Zhe Han
- Department of Cardiac Surgery, Affiliated Hospital of Hebei University, Baoding City, 071000, Hebei Province, China
| | - Yang Wang
- Department of Cardiac Surgery, Affiliated Hospital of Hebei University, Baoding City, 071000, Hebei Province, China
| | - Jing Li
- The Second Department of Cardiology, Affiliated Hospital of Hebei University, Baoding City, 071000, Hebei Province, China
| |
Collapse
|
13
|
Liu Y, Sun Y, Hu C, Liu J, Gao A, Han H, Chai M, Zhang J, Zhou Y, Zhao Y. Perivascular Adipose Tissue as an Indication, Contributor to, and Therapeutic Target for Atherosclerosis. Front Physiol 2020; 11:615503. [PMID: 33391033 PMCID: PMC7775482 DOI: 10.3389/fphys.2020.615503] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
Perivascular adipose tissue (PVAT) has been identified to have significant endocrine and paracrine functions, such as releasing bioactive adipokines, cytokines, and chemokines, rather than a non-physiological structural tissue. Considering the contiguity with the vascular wall, PVAT could play a crucial role in the pathogenic microenvironment of atherosclerosis. Growing clinical evidence has shown an association between PVAT and atherosclerosis. Moreover, based on computed tomography, the fat attenuation index of PVAT was verified as an indication of vulnerable atherosclerotic plaques. Under pathological conditions, such as obesity and diabetes, PVAT shows a proatherogenic phenotype by increasing the release of factors that induce endothelial dysfunction and inflammatory cell infiltration, thus contributing to atherosclerosis. Growing animal and human studies have investigated the mechanism of the above process, which has yet to be fully elucidated. Furthermore, traditional treatments for atherosclerosis have been proven to act on PVAT, and we found several studies focused on novel drugs that target PVAT for the prevention of atherosclerosis. Emerging as an indication, contributor to, and therapeutic target for atherosclerosis, PVAT warrants further investigation.
Collapse
Affiliation(s)
- Yan Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yan Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Chengping Hu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Jinxing Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Ang Gao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Hongya Han
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Meng Chai
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Jianwei Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yingxin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| |
Collapse
|
14
|
Potential role of perivascular adipose tissue in modulating atherosclerosis. Clin Sci (Lond) 2020; 134:3-13. [PMID: 31898749 PMCID: PMC6944729 DOI: 10.1042/cs20190577] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
Abstract
Perivascular adipose tissue (PVAT) directly juxtaposes the vascular adventitia and contains a distinct mixture of mature adipocytes, preadipocytes, stem cells, and inflammatory cells that communicate via adipocytokines and other signaling mediators with the nearby vessel wall to regulate vascular function. Cross-talk between perivascular adipocytes and the cells in the blood vessel wall is vital for normal vascular function and becomes perturbed in diseases such as atherosclerosis. Perivascular adipocytes surrounding coronary arteries may be primed to promote inflammation and angiogenesis, and PVAT phenotypic changes occurring in the setting of obesity, hyperlipidemia etc., are fundamentally important in determining a pathogenic versus protective role of PVAT in vascular disease. Recent discoveries have advanced our understanding of the role of perivascular adipocytes in modulating vascular function. However, their impact on cardiovascular disease (CVD), particularly in humans, is yet to be fully elucidated. This review will highlight the complex mechanisms whereby PVAT regulates atherosclerosis, with an emphasis on clinical implications of PVAT and emerging strategies for evaluation and treatment of CVD based on PVAT biology.
Collapse
|
15
|
Salminen A, Kaarniranta K, Kauppinen A. ER stress activates immunosuppressive network: implications for aging and Alzheimer's disease. J Mol Med (Berl) 2020; 98:633-650. [PMID: 32279085 PMCID: PMC7220864 DOI: 10.1007/s00109-020-01904-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) contains stress sensors which recognize the accumulation of unfolded proteins within the lumen of ER, and subsequently these transducers stimulate the unfolded protein response (UPR). The ER sensors include the IRE1, PERK, and ATF6 transducers which activate the UPR in an attempt to restore the quality of protein folding and thus maintain cellular homeostasis. If there is excessive stress, UPR signaling generates alarmins, e.g., chemokines and cytokines, which activate not only tissue-resident immune cells but also recruit myeloid and lymphoid cells into the affected tissues. ER stress is a crucial inducer of inflammation in many pathological conditions. A chronic low-grade inflammation and cellular senescence have been associated with the aging process and many age-related diseases, such as Alzheimer’s disease. Currently, it is known that immune cells can exhibit great plasticity, i.e., they are able to display both pro-inflammatory and anti-inflammatory phenotypes in a context-dependent manner. The microenvironment encountered in chronic inflammatory conditions triggers a compensatory immunosuppression which defends tissues from excessive inflammation. Recent studies have revealed that chronic ER stress augments the suppressive phenotypes of immune cells, e.g., in tumors and other inflammatory disorders. The activation of immunosuppressive network, including myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg), has been involved in the aging process and Alzheimer’s disease. We will examine in detail whether the ER stress-related changes found in aging tissues and Alzheimer’s disease are associated with the activation of immunosuppressive network, as has been observed in tumors and many chronic inflammatory diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
16
|
Liang X, Qi Y, Dai F, Gu J, Yao W. PVAT: an important guardian of the cardiovascular system. Histol Histopathol 2020; 35:779-787. [PMID: 32080826 DOI: 10.14670/hh-18-211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Perivascular adipose tissue (PVAT) had long been considered to serve only structural, vessel-supporting purposes, but today PVAT is recognized to be an endocrine organ with important physiological and pathological effects. The expansion of PVAT in vascular homeostasis and vascular disease has attracted much interest. PVAT has been shown to release a wide spectrum of molecules, such as PVAT-derived relaxing factors (PVATRFs) and PVAT-derived contracting factors (PVATCFs). PVAT dysfunction may lead to obesity, atherosclerosis, and other cardiovascular diseases. This review describes recent advances in our understanding of PVAT's important effects on the cardiovascular system.
Collapse
Affiliation(s)
- Xiuying Liang
- School of Pharmacy, Nantong University, Nantong, China
| | - Yan Qi
- School of Pharmacy, Nantong University, Nantong, China
| | - Fan Dai
- School of Pharmacy, Nantong University, Nantong, China
| | - Jingya Gu
- School of Pharmacy, Nantong University, Nantong, China
| | - Wenjuan Yao
- School of Pharmacy, Nantong University, Nantong, China.
| |
Collapse
|
17
|
Zheng T, Zhou Q, Chen Z, Wang Q. Correlation between expression levels of IL-37, GM-CSF, and CRP in peripheral blood and atherosclerosis and plaque stability. EUR J INFLAMM 2019. [DOI: 10.1177/2058739219844068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The study aimed to study the correlation between expression levels of interleukin-37 (IL-37), granulocyte macrophage colony-stimulating factor (GM-CSF), and C-reactive protein (CRP) in peripheral blood and the status of atherosclerosis (AS) and plaque stability and to confirm the clinical significance of these inflammatory factors in the pathogenesis of AS. A total of 64 AS patients (case group) were selected and divided into unstable plaque group (group A, 28 cases) and stable plaque group (group B, 36 cases) according to the color ultrasonography results of arterial vessels. At the same time, 30 healthy subjects were classified into the control group. General information of the enrolled subjects was collected, including levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), CRP, and homocysteine (Hcy). The expression levels of IL-37 and GM-CSF in the serum of peripheral blood samples collected from these subjects were measured by enzyme-linked immunosorbent assay (ELISA). There was no significant difference between the case group and the control group in the levels of TC, TG, HDL, and LDL ( P > 0.05). However, the expression level of Hcy in the case group was significantly higher than that in the control group ( P < 0.05). Compared with the control group, the expression levels of IL-37, GM-CSF, and CRP in the case group were significantly increased ( P < 0.05). In addition, compared with group B, the expression level of GM-CSF in group A was significantly increased ( P < 0.05), while no significant difference was detected between group A and group B in the expression levels of IL-37 and CRP ( P > 0.05). In conclusion, inflammatory factors IL-37, GM-CSF, CRP, and Hcy were all involved in the pathogenesis of AS, and the increased levels of GM-CSF were closely related to the progress of unstable plaques. These results may aid the early diagnosis/treatment of AS.
Collapse
Affiliation(s)
- Tao Zheng
- Cardiothoracic and Vascular Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Qingyun Zhou
- Cardiothoracic and Vascular Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Zhe Chen
- Cardiothoracic and Vascular Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Qinning Wang
- Cardiothoracic and Vascular Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| |
Collapse
|
18
|
Endoplasmic Reticulum Stress in Metabolic Disorders. Cells 2018; 7:cells7060063. [PMID: 29921793 PMCID: PMC6025008 DOI: 10.3390/cells7060063] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023] Open
Abstract
Metabolic disorders have become among the most serious threats to human health, leading to severe chronic diseases such as obesity, type 2 diabetes, and non-alcoholic fatty liver disease, as well as cardiovascular diseases. Interestingly, despite the fact that each of these diseases has different physiological and clinical symptoms, they appear to share certain pathological traits such as intracellular stress and inflammation induced by metabolic disturbance stemmed from over nutrition frequently aggravated by a modern, sedentary life style. These modern ways of living inundate cells and organs with saturating levels of sugar and fat, leading to glycotoxicity and lipotoxicity that induce intracellular stress signaling ranging from oxidative to ER stress response to cope with the metabolic insults (Mukherjee, et al., 2015). In this review, we discuss the roles played by cellular stress and its responses in shaping metabolic disorders. We have summarized here current mechanistic insights explaining the pathogenesis of these disorders. These are followed by a discussion of the latest therapies targeting the stress response pathways.
Collapse
|