1
|
Angelino GB, Veras K, Viana DG, Pereira KMA, Leitão R, Brito GADC, Chaves HV, Marques M, Goes P. Atorvastatin Accelerates Alveolar Bone Loss in Type 1 Diabetic Rats Submitted to Periodontitis. Braz Dent J 2024; 35:e246100. [PMID: 39476053 PMCID: PMC11520491 DOI: 10.1590/0103-6440202406100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/06/2024] [Indexed: 11/03/2024] Open
Abstract
Periodontal bone loss is potentiated by diabetes. Despite the beneficial anti-inflammatory and antiresorptive effects of Atorvastatin (ATV) on periodontitis, it has been reported to increase the risk of diabetes, which may modify the course of periodontal disease. Therefore, this study aimed to evaluate the effect of ATV on alveolar bone in rats with periodontitis and diabetes. For this, 72 Wistar rats were divided into groups: Naïve (N) not submitted to any procedure; Experimental periodontitis (EP) group submitted to ligature-induced periodontitis; diabetes mellitus (DM), submitted to EP and receiving single dose of streptozotocin (60 mg/kg, i.p.) after 12 hours of fasting; and ATV DM, submitted to EP and DM and receiving orally 27 mg/kg of ATV, 30 minutes before ligature placement, and continued daily until the 11th day. Animals from EP and DM received saline solution 0.9% as placebo. Glycemic levels measured in all animals and then were euthanized. Maxillae were collected for macroscopic, micro-tomographic, and microscopic analyses. DM caused intense bone loss (60%), characterized by a reduction in trabecular thickness and bone volume. DM reduced osteoblasts, increasing osteoclast counts, and induced an inflammatory infiltrate in the periodontium. ATV was found ineffective in protecting bone in diabetic rats, exacerbating bone loss by 21%. Additionally, ATV significantly increased blood glucose levels. In summary, ATV did not prevent alveolar bone loss or modulate inflammation in DM animals undergoing EP. ATV also increased blood glucose levels in these animals. Therefore, the systemic use of ATV in uncontrolled diabetic conditions should be carefully evaluated.
Collapse
Affiliation(s)
- Gisele Barreto Angelino
- Post-Graduate Program in Morphological Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Karysia Veras
- Post-Graduate Program in Health Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Delane Gondim Viana
- Department of Morphology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | | | - Renata Leitão
- Department of Morphology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | | | | | - Mirna Marques
- Department of Pathology and Legal Medicine, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Paula Goes
- Post-Graduate Program in Morphological Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Department of Pathology and Legal Medicine, Federal University of Ceara, Fortaleza, Ceara, Brazil
| |
Collapse
|
2
|
Xiao H, Li W, Qin Y, Lin Z, Qian C, Wu M, Xia Y, Bai J, Geng D. Crosstalk between Lipid Metabolism and Bone Homeostasis: Exploring Intricate Signaling Relationships. RESEARCH (WASHINGTON, D.C.) 2024; 7:0447. [PMID: 39165638 PMCID: PMC11334918 DOI: 10.34133/research.0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024]
Abstract
Bone is a dynamic tissue reshaped by constant bone formation and bone resorption to maintain its function. The skeletal system accounts for approximately 70% of the total volume of the body, and continuous bone remodeling requires quantities of energy and material consumption. Adipose tissue is the main energy storehouse of the body and has a strong adaptive capacity to participate in the regulation of various physiological processes. Considering that obesity and metabolic syndrome have become major public health challenges, while osteoporosis and osteoporotic fractures have become other major health problems in the aging population, it would be interesting to explore these 2 diseases together. Currently, an increasing number of researchers are focusing on the interactions between multiple tissue systems, i.e., multiple organs and tissues that are functionally coordinated together and pathologically pathologically interact with each other in the body. However, there is lack of detailed reviews summarizing the effects of lipid metabolism on bone homeostasis and the interactions between adipose tissue and bone tissue. This review provides a detailed summary of recent advances in understanding how lipid molecules and adipose-derived hormones affect bone homeostasis, how bone tissue, as a metabolic organ, affects lipid metabolism, and how lipid metabolism is regulated by bone-derived cytokines.
Collapse
Affiliation(s)
- Haixiang Xiao
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei 230022, China
| | - Wenming Li
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yi Qin
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhixiang Lin
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Chen Qian
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Mingzhou Wu
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yu Xia
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, Jingjiang People’s Hospital Affiliated to Yangzhou University, Jingjiang 214500, Jiangsu Province, China
| | - Dechun Geng
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
3
|
Conte R, Valentino A, Romano S, Margarucci S, Petillo O, Calarco A. Stimuli-Responsive Nanocomposite Hydrogels for Oral Diseases. Gels 2024; 10:478. [PMID: 39057501 PMCID: PMC11275451 DOI: 10.3390/gels10070478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Oral diseases encompassing conditions such as oral cancer, periodontitis, and endodontic infections pose significant challenges due to the oral cavity's susceptibility to pathogenic bacteria and infectious agents. Saliva, a key component of the oral environment, can compromise drug efficacy during oral disease treatment by diluting drug formulations and reducing drug-site interactions. Thus, it is imperative to develop effective drug delivery methods. Stimuli-responsive nanocomposite hydrogels offer a promising solution by adapting to changes in environmental conditions during disease states, thereby enabling targeted drug delivery. These smart drug delivery systems have the potential to enhance drug efficacy, minimize adverse reactions, reduce administration frequency, and improve patient compliance, thus facilitating a faster recovery. This review explores various types of stimuli-responsive nanocomposite hydrogels tailored for smart drug delivery, with a specific focus on their applications in managing oral diseases.
Collapse
Affiliation(s)
- Raffaele Conte
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.R.); (S.M.); (O.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Anna Valentino
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.R.); (S.M.); (O.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Silvia Romano
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.R.); (S.M.); (O.P.); (A.C.)
| | - Sabrina Margarucci
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.R.); (S.M.); (O.P.); (A.C.)
| | - Orsolina Petillo
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.R.); (S.M.); (O.P.); (A.C.)
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.R.); (S.M.); (O.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| |
Collapse
|
4
|
Zhao Y, Cai X, Sun J, Bi W, Yu Y. Active components and mechanisms of total flavonoids from Rhizoma Drynariae in enhancing cranial bone regeneration: An investigation employing serum pharmacochemistry and network pharmacology approaches. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117253. [PMID: 37778522 DOI: 10.1016/j.jep.2023.117253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhizoma Drynariae, as the dried rhizome of Drynaria fortunei (Kunze ex Mett.) J. Sm., is a traditional Chinese medicine for treating the injury and bone broken of falling and beating. Total flavonoids is considered as the major and effective compounds for the therapeutic efficacy of Rhizoma Drynariae. AIM OF THE STUDY To explore the effect of total flavonoids from Rhizoma Drynariae (TFRD) on bone regeneration and the underlying mechanisms. MATERIALS AND METHODS The effect of TFRD in various doses on bone reconstruction in cranial bone defect rats was explored in vivo. The active ingredients in TFRD-medicated serum were characterized by serum pharmacochemistry and integrated by network pharmacology analysis and target prediction. To elucidate the underlying mechanism of TFRD on bone regeneration, experimental validation in vitro was executed to assess the influence of different concentrations of TFRD-medicated serum on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). RESULTS Micro-CT, histological examination, immunohistochemical analysis, and ELSA demonstrated that administration of TFRD could promote bone reconstruction in a rat cranial defect model. We identified 27 active components of TFRD using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). Results from CCK8, ALP, and Alizarin Red S staining revealed that TFRD-medicated serum notably enhanced BMSCs proliferation and osteogenic differentiation. qRT-PCR and Western blot harvested results consistent with those predicted by network pharmacology, providing further evidence that TFRD activated the TGF-β signaling pathway to benefit bone regeneration. CONCLUSION The active components of TFRD modulate the TGF-β signaling pathway to facilitate osteogenesis, thereby repairing cranial bone defects.
Collapse
Affiliation(s)
- Yuxiao Zhao
- Department of Stomatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, PR China
| | - Xiaofang Cai
- Department of Stomatology, Minhang Hospital, Fudan University, No. 170 Xinsong Road, Shanghai, 201199, PR China
| | - Jian Sun
- Department of Stomatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, PR China
| | - Wei Bi
- Department of Stomatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, PR China
| | - Youcheng Yu
- Department of Stomatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, PR China.
| |
Collapse
|
5
|
Jeddi S, Yousefzadeh N, Kashfi K, Ghasemi A. Role of nitric oxide in type 1 diabetes-induced osteoporosis. Biochem Pharmacol 2021; 197:114888. [PMID: 34968494 DOI: 10.1016/j.bcp.2021.114888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D)-induced osteoporosis is characterized by decreased bone mineral density, bone quality, rate of bone healing, bone formation, and increased bone resorption. Patients with T1D have a 2-7-fold higher risk of osteoporotic fracture. The mechanisms leading to increased risk of osteoporotic fracture in T1D include insulin deficiency, hyperglycemia, insulin resistance, lower insulin-like growth factor-1, hyperglycemia-induced oxidative stress, and inflammation. In addition, a higher probability of falling, kidney dysfunction, weakened vision, and neuropathy indirectly increase the risk of osteoporotic fracture in T1D patients. Decreased nitric oxide (NO) bioavailability contributes to the pathophysiology of T1D-induced osteoporotic fracture. This review discusses the role of NO in osteoblast-mediated bone formation and osteoclast-mediated bone resorption in T1D. In addition, the mechanisms involved in reduced NO bioavailability and activity in type 1 diabetic bones as well as NO-based therapy for T1D-induced osteoporosis are summarized. Available data indicates that lower NO bioavailability in diabetic bones is due to disruption of phosphatidylinositol 3‑kinase/protein kinase B/endothelial NO synthases and NO/cyclic guanosine monophosphate/protein kinase G signaling pathways. Thus, NO bioavailability may be boosted directly or indirectly by NO donors. As NO donors with NO-like effects in the bone, inorganic nitrate and nitrite can potentially be used as novel therapeutic agents for T1D-induced osteoporosis. Inorganic nitrites and nitrates can decrease the risk for osteoporotic fracture probably directly by decreasing osteoclast activity, decreasing fat accumulation in the marrow cavity, increasing osteoblast activity, and increasing bone perfusion or indirectly, by improving hyperglycemia, insulin resistance, and reducing body weight.
Collapse
Affiliation(s)
- Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA.
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Cha JE, Bae WY, Choi JS, Lee SH, Jeong JW. Angiogenic activities are increased via upregulation of HIF-1α expression in gefitinib-resistant non-small cell lung carcinoma cells. Oncol Lett 2021; 22:671. [PMID: 34345296 PMCID: PMC8323004 DOI: 10.3892/ol.2021.12932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) have been used to treat patients with non-small cell lung cancer (NSCLC) and activating EGFR mutations; however, the emergence of secondary mutations in EGFR or the acquisition of resistance to EGFR-TKIs can develop and is involved in clinical failure. Since angiogenesis is associated with tumor progression and the blockade of antitumor drugs, inhibition of angiogenesis could be a rational strategy for developing anticancer drugs combined with EGFR-TKIs to treat patients with NSCLC. The signaling pathway mediated by hypoxia-inducible factor-1 (HIF-1) is essential for tumor angiogenesis. The present study aimed to identify the dependence of gefitinib resistance on HIF-1α activity using angiogenesis assays, western blot analysis, colony formation assay, xenograft tumor mouse model and immunohistochemical analysis of tumor tissues. In the NSCLC cell lines, HIF-1α protein expression levels and hypoxia-induced angiogenic activities were found to be increased. In a xenograft mouse tumor model, tumor tissues derived from gefitinib-resistant PC9 cells showed increased protein expression of HIF-1α and angiogenesis within the tumors. Furthermore, inhibition of HIF-1α suppressed resistance to gefitinib, whereas overexpression of HIF-1α increased resistance to gefitinib. The results from the present study provides evidence that HIF-1α was associated with the acquisition of resistance to gefitinib and suggested that inhibiting HIF-1α alleviated gefitinib resistance in NSCLC cell lines.
Collapse
Affiliation(s)
- Jeong Eun Cha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woom-Yee Bae
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Sun Choi
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.,Medical Science Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Hyeun Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joo-Won Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Liu X, Li W, Cai J, Yan Z, Shao X, Xie K, Guo XE, Luo E, Jing D. Spatiotemporal characterization of microdamage accumulation and its targeted remodeling mechanisms in diabetic fatigued bone. FASEB J 2020; 34:2579-2594. [PMID: 31908007 DOI: 10.1096/fj.201902011rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/22/2023]
Abstract
The skeleton of type 1 diabetes mellitus (T1DM) has deteriorated mechanical integrity and increased fragility, whereas the mechanisms are not fully understood. Load-induced microdamage naturally occurs in bone matrix and can be removed by initiating endogenous targeted bone remodeling. However, the microdamage accumulation in diabetic skeleton and the corresponding bone remodeling mechanisms remain poorly understood. Herein, streptozotocin-induced T1DM rats and age-matched non-diabetic rats were subjected to daily uniaxial ulnar loading for 1, 4, 7, and 10 days, respectively. The SPECT/CT and basic fuchsin staining revealed significant higher-density spatial accumulation of linear and diffuse microdamage in diabetic ulnae than non-diabetic ulnae. Linear microcracks increased within 10-day loading in diabetic bone, whereas peaked at Day 7 in non-diabetic bone. Moreover, diabetic fatigued ulnae had more severe disruptions of osteocyte canaliculi around linear microcracks. Immunostaining results revealed that diabetes impaired targeted remodeling in fatigued bone at every key stage, including increased apoptosis of bystander osteocytes, decreased RANKL secretion, reduced osteoclast recruitment and bone resorption, and impaired osteoblast-mediated bone formation. This study characterizes microdamage accumulation and abnormal remodeling mechanisms in the diabetic skeleton, which advances our etiologic understanding of diabetic bone deterioration and increased fragility from the aspect of microdamage accumulation and bone remodeling.
Collapse
Affiliation(s)
- Xiyu Liu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Wei Li
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Jing Cai
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zedong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xi Shao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Kangning Xie
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - X Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Erping Luo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW An elevated level of pro-inflammatory cytokines in inflammatory conditions causes bone loss and disrupts vital organ function. Osteocytes comprise > 95% of the cellular component in bone tissue, produce a range of cytokines and signaling molecules, and influence bone and other organ function. In this review, we hypothesized that an elevated level of pro-inflammatory cytokines in inflammatory conditions affects osteocyte survival and function thereby possibly amplifying inflammation, and causing bone loss and non-bone clinical complications. RECENT FINDINGS Several studies have reported that the elevated level of pro-inflammatory cytokines in inflammatory conditions alters osteocyte mechanosensitivity, causes osteocyte apoptosis, and modulates osteocyte-derived production of various inflammatory cytokines and signaling molecules. Cytokines and signaling molecules released from osteocytes affect surrounding bone cells and distant organ function in a paracrine and endocrine fashion. Inflammatory diseases including diabetes, chronic kidney disease, rheumatoid arthritis, and periodontitis affect osteocyte survival and function, and upregulate osteocyte-derived expression of sclerostin, RANKL, TNFα, FGF23, DKK1, and other signaling molecules.
Collapse
Affiliation(s)
- Miao Zhou
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Huangsha Avenue 39, Guangzhou, 510140, China
| | - Shuyi Li
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Huangsha Avenue 39, Guangzhou, 510140, China
| | - Janak L Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Huangsha Avenue 39, Guangzhou, 510140, China.
| |
Collapse
|
9
|
Guo ZL, Gan SL, Cao CY, Fu R, Cao SP, Xie C, Chen JW, Gibson A, Zheng X, Teng NC. Advanced glycosylated end products restrain the osteogenic differentiation of the periodontal ligament stem cell. J Dent Sci 2019; 14:146-151. [PMID: 31210888 PMCID: PMC6562104 DOI: 10.1016/j.jds.2019.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/06/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND/PURPOSE Many studies have confirmed that periodontal disease interacts with diabetes. The aim of this study was to examine whether the advanced glycosylated end products (AGEs), which are generated by diabetics, have important effects on the osteogenic differentiation of periodontal ligament stem cells (PDLSCs). MATERIALS AND METHODS In this study PDLSCs were isolated from the periodontal ligaments of extracted third molar teeth. The subjects were divided into two groups, which included the normal control group (N-PDLSCs) and the AGEs-stimulating group (A-PDLSCs). Changes of receptor of AGEs (RAGE) and cumulative ROS in PDLSCs were monitored by western blot and flow cytometry, respectively. RESULTS In the study AGEs noticeably inhibited the osteogenic differentiation of PDLSCs, with significant lower calcification nodules detected in A-PDLSCs (P < 0.01). RAGE expression level and ROS accumulation in A-PDLSCs were clearly higher than those in N-PDLSCs (P < 0.01). CONCLUSION Our conclusions were that AGEs may cause the apoptosis of stem cells, which could lead to the disorder of bone differentiation function of PDLSCs.
Collapse
Affiliation(s)
- Zhu-Ling Guo
- School of Dentistry, Hainan Medical University, Hainan, PR China
- Department of Dentistry, The First Affiliated Hospital of Hainan Medical University, Hainan, PR China
| | - Shan-Ling Gan
- School of Dentistry, Hainan Medical University, Hainan, PR China
| | - Chun-Yi Cao
- School of Dentistry, Hainan Medical University, Hainan, PR China
| | - Rao Fu
- School of Dentistry, Hainan Medical University, Hainan, PR China
| | - Sheng-Ping Cao
- School of Dentistry, Hainan Medical University, Hainan, PR China
| | - Chen Xie
- School of Dentistry, Hainan Medical University, Hainan, PR China
| | - Jing-Wei Chen
- School of Dentistry, Hainan Medical University, Hainan, PR China
| | - Alex Gibson
- School of Dentistry, Hainan Medical University, Hainan, PR China
| | - Xu Zheng
- School of Dentistry, Hainan Medical University, Hainan, PR China
- Department of Dentistry, The First Affiliated Hospital of Hainan Medical University, Hainan, PR China
| | - Nai-chia Teng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taiwan
- Department of Dentistry, Taipei Medical University Hospital, Taiwan
| |
Collapse
|
10
|
Zhang L, Zheng L, Li C, Wang Z, Li S, Xu L. Sema3a as a Novel Therapeutic Option for High Glucose-Suppressed Osteogenic Differentiation in Diabetic Osteopathy. Front Endocrinol (Lausanne) 2019; 10:562. [PMID: 31481931 PMCID: PMC6710340 DOI: 10.3389/fendo.2019.00562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/02/2019] [Indexed: 12/29/2022] Open
Abstract
Objective: Diabetic osteopathy is a common comorbidity of diabetes mellitus, with skeletal fragility, osteoporosis and bone pain. The aim of our study was to highlight the role of sema3a on osteoblast differentiation of MC3T3-e1 in high-glucose condition and explore its therapeutic effect of diabetic osteopathy in vitro and vivo. Methods: In our study, the expression of osteogenesis-related makers, such as ALP, OCN, OPG, β-catenin and Runx2, were analyzed in MC3T3 osteoblastic cells to explore the effect of sema3a on osteoblast differentiation in high-glucose condition, and as was the staining of ALP and Alizarin Red S. In a diabetic animal model, the expression of serum bone metabolic markers, such as ALP, P1NP, OCN, and β-CTX, were analyzed and micro-CT was used to detect bone architecture, including Tb.N, Tb.Th, Tb.Sp, Tb.Pf, BS/BV, and BV/TV after the treatment of sema3a. Results: High glucose significantly inhibited osteogenic differentiation by decreasing the expression of osteogenesis-related makers, sema3a and its receptor of Nrp-1 in a dose-dependent manner in MC3T3. In high-glucose condition, exogenous sema3a (RPL917Mu01) increased the expression of ALP, OCN, OPG, Runx2, β-catenin, and the positive proportion of ALP and Alizarin Red S staining. In addition, in diabetic animal model, exogenous sema3a could increase bone mass and bone mineral density, and downregulate the expression of ALP, P1NP, OCN, and β-CTX. Conclusion: High glucose suppresses osteogenic differentiation in MC3T3 and sema3a may take part in this process. The application of exogenous sema3a alleviates high glucose-induced inhibition of osteoblast differentiation in diabetic osteopathy.
Collapse
|